

By Megha Patil

course content

* Networks: Basic concepts

Uses of networks in sharing of resources, Backups Common types of networks; LAN/WAN/Internet, Server based networks, client server model, P2P Network media
Wireless networks.
Threats to networks
The internet world
Cloud and Cloud Computing

The Computer Network

$>$ A computer network is a group of computers/devices(Nodes) that use a set of common communication protocols over digital interconnections for the purpose of sharing resources located on or provided by the network nodes.
> The nodes of a computer network may include personal computers, servers, networking hardware, or other specialised or general-purpose hosts.
$>$ The interconnections between nodes are formed from a broad spectrum of telecommunication network technologies, based on physically wired, optical, and wireless technologies.
> A communication protocol is a set of rules for exchanging information over a network.

Simultaneous Access

> There are moments in any business when several workers may need to use the same data at the same time.

Shared Peripheral Devices

Personal Communications

$>$ Videoconferencing
$>$ Voice over Internet Protocol (VoIP):-VoIP transmits the sound of voice over a computer network using the Internet Protocol (IP) rather than sending the signal over traditional phone wires
Easier Data Backup

The Networking Devices(Nodes)

1. NIC Card

2. Repeater
3. Hub
4. Switch
5. Bridge
6. Router
7. Gateway
8. Firewall
> NIC is used to physically connect host devices to the network media.

- A NIC is a printed circuit board that fits into the expansion slot of a bus on a computer motherboard.
> It can also be a peripheral device. NICs are sometimes called network adapters.
> Each NIC is identified by a unique code called a Media Access Control (MAC) address.
$>$ This address is used to control data communication for the host on the network. \qquad
\qquad
\qquad $\underline{\square}$ \qquad
\qquad
\qquad

$>$ A repeater is a network device used to regenerate a signal.
> Repeaters regenerate analog or digital signals that are distorted by transmission loss due to attenuation.
$>$ A repeater does not make an intelligent decision concerning forwarding packets

$>$ Hubs concentrate on connections.
$>$ In other words, they take a group of hosts and allow the network to see them as a single unit. This is done passively, without any other effect on the data transmission.
> Active hubs concentrate hosts and also regenerate signals.

100BaseTHub

10BaseTHub

> Bridges convert network data formats and perform basic data transmission management.
> Bridges provide connections between LANs.
> They also check data to determine if it should cross the bridge. This makes each part of the network more efficient

$>$ Switches add more intelligence to data transfer management.
$>$ They can determine if data should remain on a LAN and transfer data only to the connection that needs it.
$>$ Another difference between a bridge and switch is that a switch does not convert data transmission formats

Workstations

$>$ A gateway is a piece of networking hardware used in telecommunications for telecommunications networks that allows data to flow from one discrete network to another.
$>$ Gateways are distinct from routers or switches in that they communicate using more than one protocol to connect a bunch of networks

$>$ A firewall is a network device or software for controlling network security and access rules.
$>$ Firewalls are inserted in connections between secure internal networks and potentially insecure external networks such as the Internet.
> Firewalls are typically configured to
 reject access requests from unrecognized sources while allowing actions from recognized ones.
> The vital role firewalls play in network security grows in parallel with the constant increase in cyber attacks.

The function of the media is to carry a flow of information through a LAN.
A. Wired Media:- widely adopted family that uses copper and fiber media in local area network (LAN) technology are collectively known as Ethernet

1. Copper Cable
a. Coaxial Cables
b. Shielded Twisted Pair(STP)
c. Unshielded Twisted Pair
2. Fibre Optic Cable
B. Wireless Media:- use the atmosphere, or space, as the medium.

$>$ It can be run longer distances than Twisted pair Cables.

- Speed: 10-100Mbps
- Cost: Inexpensive
- Media and connector size: Medium
- Maximum cable length: 500m

- Speed: 0-100Mbps
- Cost: Moderate
- Media and connector size: Medium to large
- Maximum cable length: 100m

Jacket
Braided Shield

G. Unshielded Twisted Pair

$>$ UTP is a four-pair wire medium used in a variety of networks.
$>$ Each of the eight copper wires in the UTP cable is covered by insulating material

Speed: 10-100-1000 Mbps*
Cost: Least Expensive
Media and connector size: Small
Maximum cable length: 100m * (Depending on the quality/category of cable)

> Glass fiber carrying light pulses, each pulse a bit.
> Based on the Total Internal Reflection of Light.
$>$ High-speed point-to-point transmission 10-100's Gbps
$>$ low error rate:
$>$ repeaters spaced far apart
$>$ immune to electromagnetic noise

Internet Protocol Suite

$>$ Also called TCP/IP, is the foundation of all modern networking.
$>$ It defines the addressing, identification, and routing specifications for IPv4 and for IPv6.
$>$ It is the defining set of protocols for the Internet.

IEEE 802

$>$ It is a family of IEEE standards dealing with local area networks and metropolitan area networks.
> They operate mostly at levels 1 and 2 of the OSI model. Ethernet
> It is a family of protocols used in wired LANs, described by a set of standards together called IEEE 802.3

Wireless LAN

$>$ It is standardized by IEEE 802.11 and shares many properties with wired Ethernet.

SONET/SDH

> Synchronous optical networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized multiplexing protocols that transfer multiple digital bit streams over optical Fibre using lasers.

Asynchronous Transfer Mode(ATM)

$>$ It uses asynchronous time-division multiplexing and encodes data into small, fixed-sized cells.
> Good choice for a network that handle both traditional high-throughput data traffic, and real-time, low-latency content such as voice and video.

1. Personal Area Network (PAN)
2. Local Area Network (LAN)
3. Campus Area Network (CAN)
4. Metropolitan Area Network (MAN)
5. Wide Area Network (WAN)
6. Storage-Area Network (SAN)
7. Virtual Private Network (VPN)
8. Client Server Network
9. Peer to Peer Network (P2P)

1. Personal Area Network

1. Personal Area Network (PAN) is a computer network used for data transmission amongst devices such as computers, telephones, tablets and personal digital assistants.
2. Also Known as HAN (Home Area Network)
3. PANs can be used for communication amongst the personal devices themselves (interpersonal communication), or for connecting to a higher level network and the Internet (an uplink) where one "master" device takes up the role as internet router.

> Xerox Corporation worked in collaboration with DEC and Intel to create Ethernet, which is the most pervasive LAN architecture used today.
> Ethernet has evolved and has seen significant improvements in regard to speed and efficiency.
> An upside of a LAN is fast data transfer with data speed that can reach up to 10Gbps.
> Other significant LAN technologies are Fiber Distributed Data Interface (FDDI) and token ring.

3. Campus Area Network

> Larger than LANs, but smaller than metropolitan area networks these types of networks are typically seen in universities, large K-12 school districts or small businesses.
They can be spread across several buildings that are fairly close to each other so users can share resources

4. Metropolitan Area Network

1. A MAN is larger than a LAN but smaller than or equal in size to a WAN.
2. The size range anywhere from 5 to 50 km in diameter.
3. MANs are typically owned and managed by a single entity.
4. This could be an ISP or telecommunications company that sells its services to end-users in that metropolitan area.
5. For all intents and purposes, a MAN has the same characteristics as a WAN with distance constraints.

- A Wide Area Network exist over a large area
- Data travels through telephone or cable lines
- Usually requires a Modem
- The world's largest Wide Area Network in the Internet
\qquad
\qquad
\qquad
\qquad
$\xrightarrow{\underline{\underline{2}}}$

6. Storage Area Network

$>$ SAN may be referred to as a Sub network or special purpose network.
> Its special purpose is to allow users on a larger network to connect various data storage devices with clusters of data servers.
$>$ SANs can be accessed in the same fashion as a drive attached to a server.
 7. Virtual Private Network
$>$ VPN is a private network that can access public networks remotely. VPN uses encryption and security protocols to retain privacy while it accesses outside resources.
> When employed on a network, VPN enables an end user to create a virtual tunnel to a remote location. Typically, telecommuters use VPN to log in to their company networks from home.

> Authentication is provided to validate the identities of the two peers.
> Confidentiality provides encryption of the data to keep it private from prying eyes.
> Integrity is used to ensure that the data sent between the two devices or sites has not been tampered with.

8. Client/Server Network

> In a client/server arrangement, network services are located on a dedicated computer called a server.
$>$ The server responds to the requests of clients.
$>$ The server is a central computer that is continuously available to respond to requests from clients for file, print, application, and other services.

> Most network operating systems adopt the form of a client/server relationship.
> Typically, desktop computers function as clients, and one or more computers with additional processing power, memory, and specialized software function as servers.

Network topology defines the structure of the network.
A. Physical topology:- It define the actual layout of the wire or media.

1. Bus
2. Ring
3. Star
4. Tree(Hierarchical)
5. Mesh
B. Logical topology:- It defines how the hosts access the media to send data.
6. Broadcast
7. Token passing
C. Hybrid Topology

All devices are connected to a central cable, called bus or backbone.
 There are terminators at each end of the bus that stops the signal and keeps it from traveling backwards.

1. Bus Topology

Advantages:

1. There is no central controller.
2. Control resides in each station
3. The less interconnecting wire is required.
4. Ease of installation.
5. Backbone cable can be laid along the most efficient path, and then connected to the nodes by drop lines of various lengths

Disadvantages:

1. It is possible that more than one station may attempt transmission simultaneously (collision or contention).
2. Difficult reconfiguration and fault isolation.
3. A fault or break in the bus cable stops all transmission, even between devices on the same side of the problem.
4. The damaged area reflects signals in the direction of origin, creating noise in both directions

- All devices are connected to one another in the shape of a closed loop.
- Each device is connected directly to two other devices, one on either side of it.
Advantages:

1. Avoids the collisions that are possible in the bus topology.
2. Each pair of stations has a point-to-point connection.
3. A signal is passed along the ring in one direction, from device to
another, until it reaches its destination.
4. Each device incorporates a repeater.
5. Relatively easy to install and reconfigure.
6. Fault isolation is simplified.

Disadvantages:

1. A break in the ring (such as station disabled) can disable the entire network.
2. Unidirectional traffic.

- All devices are connected to a central hub.
- Nodes communicate across the network by passing data through the hub or switch.

Advantages:

1. Easy to install and reconfigure.
2. Robustness, if one link fails; only that link is affected. All other links remain active.
3. Easy fault identification and isolation. As long as the hub is working, it can be used to monitor link problems and bypass defective links.

Disadvantages:

1. The devices are not linked to each other.
2. If one device wants to send data to another, it sends it to the controller, which then relays the data to the other connected device.

4. Tree/Hierarchical Topology

Advantages:

1. It allows more devices to be attached to a single central hub and can therefore increase the distance a signal can travel between devices.
2. It allows the network to isolate and prioritize communications from different computers.

Disadvantages:

1. The devices are not linked to each other.
2. If one device wants to send data to another, it sends it to the controller, which then relays the data to the other connected device.
3. The addition of secondary hubs brings two
 further advantages.

Each host has its connections to all other hosts. Mesh topology is implemented to provide as much protection as possible from interruption of service.

1. A nuclear power plant might use a mesh topology in the networked control systems.
2. Although the Internet has multiple paths to any one location, it does not adopt the full mesh topology.

Advantages:

1. The use of dedicated links guarantees that each connection can carry its data load, thus eliminating the traffic problems that can occur when links must be shared by multiple devices.
2. It is robust, if one link becomes unusable, it does not incapacitate (affect) the entire system.
3. Privacy and Security (every message sent travels along a dedicated line; only the intended recipient sees it).
4. Point-to-point links make fault identification and

Disadvantages:

1. A large amount of cabling required.
2. A large amount of I/O ports required.
3. Installation and reconfiguration are difficult.
4. The sheer bulk of the wiring can be greater than the available space (in the walls, ceiling, or floors) can accommodate. 5. The hardware required to connect each link (l/O ports and cables) can be prohibitively expensive.

$>$ Wi-Fi Stands for Wireless Fidelity.
$\mid>$ Wi-Fi, is a Local Area Wireless technology.
$>$ Wi-Fi networks use radio technologies to transmit and receive data at high speed.
$>$ It is based on the IEEE 802.11 family of
 standards.
$>$ Access point: The access point is a wireless LAN transceiver or " base station" that can connect one or many wireless devices simultaneously to the internet

How Information Travel Through the Internet

When you connect to a Web site through an ISP and start exchanging information, there isn't a fixed connection between your computer and the Web server computer hosting the Web site. Instead, information is exchanged using the best possible path at that particular time. Special computers called routers determine these paths, avoiding slow links and favoring fast ones.

