DEPARTMENT OF BCA

SUBJECT - COMPUTER MATHEMATICS
 CHAPTER 4- GRAPH THEORY

PRESENTED BY -
Mr. Suraj Sunil Shinde

Contents

> Basic terminology,
> Multi graphs and weighted graphs
$>$ Paths and circuits
$>$ Shortest path in weighted graph
$>$ Hamiltonian and Euler paths and circuits
> Planer graph
> Travelling salesman problem.

Introduction to Graphs

Definition: A graph is collection of points called vertices \& collection of lines called edges each of which joins either a pair of points or single points to itself.

Mathematically graph G is an ordered pair of (V, E)

Each edge e_{ij} is associated with an ordered pair of vertices $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$.

Introduction to Graphs

In Fig. G has graph 4 vertices namely
v1, v2, v3, v4\& 7 edges
Namely e1, e2, e3, e4, e5, e6, e7 Then e1=(v1, v2) e7 e6
Similarly for other edges.
Graph G
In short, we can represent $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where $\mathrm{V}=(\mathrm{v} 1, \mathrm{v} 2$, v3, v4) \& $E=(e 1, e 2, ~ e 3, ~ e 4, ~ e 5, ~ e 6, e 7) ~$

Self Loops \& Parallel Edges

Definition: If the end vertices V_{i} \& V_{j} of any edge e_{ij} are same, then edge eij called as Self Loop.

For Example, In graph G, the edge $e_{6}=\left(v_{3}, v_{3}\right)$ is self loop.
Definition: If there are more than one edge is associated with given pair of vertices then those edge called as Parallel or Multiple edge.

For Example, In graph G, $\mathrm{e}_{4} \& \mathrm{e}_{7}$ has $\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)$ are called as Parallel edge.

Simple \& Multiple Graphs

Definition: A graph that has neither self loops or parallel edge is called as Simple Graph otherwise it is called as Multiple Graph.

For Example,

G1 (Simple Graph) G2 (Multiple Graph)

Weighted Graph

Definition: If each edge or each vertex or both are associated with some + ve no. then the graph is called as Weighted Graph

For Example,

Finite \& Infinite Graph

Definition: A graph is Finite no. of vertices as well as finite no. of edges called as Finite Graph otherwise it is Infinite Graph.

For Example, The graph G1 \& G2 is Finite Graph.

Definition: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called as Labeled Graph if its edges are labeled with some names or data.

For Example, Graph G is labeled graph.

Adjacency \& Incidence

Definition: Two vertices $v_{1} \& v_{2}$ vertices of G joins directly by at least one edge then there vertices called Adjacent Vertices.

For Example, In Graph G, $\mathrm{v}_{1} \& \mathrm{v}_{2}$ are adjacent vertices.
Definition: If V_{i} is end vertex of edge $\mathrm{e}_{\mathrm{ij}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ then edge e_{ij} is said to be Incident on v_{i}. Similarly e_{ij} is said to be Incident on v_{j}.

For Example, In Graph G, e_{1} is incident on $\mathrm{v}_{1} \& \mathrm{v}_{2}$.

Degree of a Vertex

Definition: The no. of edges incident on a vertex v_{i} with self loop counted twice is called as degree of vertex vi.

For Example, Consider the Graph G, $\mathrm{d}\left(\mathrm{v}_{1}\right)=3 \quad, \mathrm{~d}\left(\mathrm{v}_{2}\right)=2, \mathrm{~d}\left(\mathrm{v}_{3}\right)=5$
, $\mathrm{d}\left(\mathrm{v}_{4}\right)=4$

Definition :

A vertex with degree zero is called as Isolated Vertex \& A vertex with degree one is called as Pendant Vertex.

Handshaking Lemma

Theorem: The graph G with e no. of edges \& n no. of vertices, since each edge contributes two degree, the sum of the degrees of all vertices in G is twice no. of edges in G .
i.e. $\sum_{\substack{i=\\ n}} d\left(v_{i}\right)=2 e \quad$ is called as Handshaking Lemma.

Example: How many edges are there in a graph with 10 vertices, each of degree 6? Solution: The sum of the degrees of the vertices is $6 * 10=60$. According to the Handshaking Theorem, it follows that $2 \mathrm{e}=60$, so there are 30 edges.

Matrix Representation of Graphs

A graph can also be represented by matrix.

Two ways are used for matrix representation of graph are given as follows,

1. Adjacent Matrix
2. Incident Matrix

Lets see one by one...

1. Adjacent Matrix

The A.M. of Graph G with n vertices \& no parallel edges is a symmetric binary matrix $\mathrm{A}(\mathrm{G})=\left[\mathrm{a}_{\mathrm{ij}}\right]$ or order n * n where,
$\mathrm{a}_{\mathrm{ij}}=1$, if there is as edge between vi \&vj. $\mathrm{a}_{\mathrm{ij}}=0$, if $\mathrm{v}_{\mathrm{i}} \& \mathrm{v}_{\mathrm{j}}$ are not adjacent.

A self loop at vertex vi corresponds to $\mathrm{a}_{\mathrm{ij}}=1$.

For Example,

$$
A(G)=\left[\begin{array}{l}
\text { v1 } \\
\mathrm{v} 2 \\
\mathrm{v3} \\
\mathrm{v} 4 \\
\mathrm{v} 5
\end{array}\left[\begin{array}{lllll}
1 & \mathbf{v} 2 & \mathrm{v} 3 & \mathrm{v} 4 & \mathbf{v 5} \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]\right.
$$

1. Adjacent Matrix

The A.M. of multigraph \mathbf{G} with n vertices is an $n^{*} n$ matrix $A(G)=\left[a_{i j}\right]$ where,
$a_{i j}=N$, if there one or more edge are there between $v_{i} \& v_{j} \& N$ is no. of edges between $v_{i} \&$ v_{j}.
$\mathrm{a}_{\mathrm{ij}}=0$, otherwise.

v 1
v 2
v 3
v 4
v 5 $\left[\begin{array}{ccccc}0 & \mathrm{v} 2 & \mathrm{v} 3 & \mathrm{v} 4 & \mathrm{v} 5 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$

2. Incident Matrix

Given a graph G with n vertices, e edges \& no self loops. The incidence matrix $x(G)=\left[X_{i j}\right]$ of the other graph G is an $n *$ e matrix where,
$\mathrm{X}_{\mathrm{ij}}=1$, if $\mathrm{j}^{\text {th }}$ edge e_{j} is incident on $\mathrm{i}^{\text {th }}$ vertex v_{i},
$\mathrm{X}_{\mathrm{ij}}=0$, otherwise.

Here n vertices are rows \& e edges are columns.

Directed Graph or Diagraph

Definition: If each edge of the graph G has a direction then graph called as diagraph.

In a graph with directed edges, the in-degree of a vertex v , denoted by $\operatorname{deg}^{-}(\mathrm{v}) \&$ out-degree of v , denoted by $\operatorname{deg}^{+}(\mathrm{v})$.

See the example in Next page....

Directed Graph or Diagraph

Example: What are the in-degrees and out-degrees of the vertices a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ in this graph:

$$
\begin{aligned}
& \operatorname{deg}^{-}(a)=1 \\
& \operatorname{deg}^{+}(a)=2
\end{aligned}
$$

$\operatorname{deg}^{-}(\mathrm{d})=2$
$\operatorname{deg}^{+}(\mathrm{d})=1$

$\operatorname{deg}^{-}(b)=4$
$\operatorname{deg}^{+}(b)=2$
$\operatorname{deg}^{-}(\mathrm{c})=0$
$\operatorname{deg}^{+}(\mathrm{c})=2$

Adjacency Matrix of a diagraph

It is defined in similar fashion as it defined for undirected graph.

For Example,

$\mathbf{v 1}$					$\mathbf{v 2}$
$\mathbf{v 3}$	$\mathbf{v 4}$	$\mathbf{v 5}$			
$\mathbf{v 1}$					
$\mathbf{v 2}$					
$\mathbf{v 2}$					
$\mathbf{v 3}$					
$\mathbf{v 4}$					
$\mathbf{v 4}$					
$\mathbf{v 5}$	1	0	0	0	
0	0	0	1	1	
0	0	0	1	0	
0	0	0	0	1	

Incident matrix of diagraph

Given a graph G with n , e \& no self loops is matrix $\mathrm{x}(\mathrm{G})=\left[\mathrm{X}_{\mathrm{ij}}\right]$ or order n *e where n vertices are rows \& e edges are columns such that, $\mathrm{X}_{\mathrm{ij}}=1$, if jth edge e_{j} is incident out $\mathrm{i}^{\text {th }}$ vertex v_{i}
$\mathrm{X}_{\mathrm{ij}}=-1$, if j th edge e_{j} is incident into $\mathrm{i}^{\text {th }}$ vertex v_{i}
$\mathrm{X}_{\mathrm{ij}}=0$, if jth edge e_{j} not incident on $\mathrm{i}^{\text {ith }}$ vertex v_{i}.

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline \mathbf{e 1} & \mathbf{e 2} & \mathbf{e 3} & \mathbf{e 4} & \mathbf{e 5} & \mathbf{e 6} & \mathbf{e 7} & \mathbf{e 8} \\ \hline \mathbf{v 1} & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \mathbf{v 2} & -1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ \mathbf{v 3} & 0 & -1 & 1 & 1 & -1 & 0 & 0 & 0 \\ \hline \mathbf{v 4} & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\ \hline \mathbf{v 5} & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 0 \\ \hline \mathbf{v 6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]$

Null Graph

Definition: If the edge set of any graph with n vertices is an empty set, then the graph is known as null graph.

It is denoted by N_{n} For Example,

○
N_{4}

Complete Graph

Definition: Let G be simple graph on n vertices. If the degree of each vertex is ($\mathrm{n}-1$) then the graph is called as complete graph.

Complete graph on n vertices, it is denoted by K_{n}.

In complete graph K_{n}, the number of edges are

> n(n-1)/2,For example,
K_{1}

K_{3}

K_{5}

Regular Graph

Definition: If the degree of each vertex is same say ' r ' in any graph
G then the graph is said to be a regular graph of degree r .

For example,

K_{3}

K_{4}

K_{5}

Bipartite Graph

Definition: The graph is called as bipartite graph , if its vertex set V can be partitioned into two distinct subset say V1 \& V2. such that V1 U V2=V \& V1 \cap V2 = $\varnothing \&$ also each edge of G joins a vertex of V1 to vertex of V2.

A graph can not have self loop.

Bipartite Graphs

Example I: Is G1 bipartite?

No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.

Example II: Is G2 bipartite?

Yes, because we can display G2 like this:

Isomorphism

Definition: Two graphs are thought of as equivalent (called isomorphic) if they have identical behavior in terms of graph theoretic properties.

Two graphs $G(V, E) \& G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ are said to be isomorphic to each other if there is one-one correspondence between their vertices \& between their edges such that incidence relationship in preserved.

It is denoted by $\mathrm{G} 1=\mathrm{G} 2$

Isomorphism

For Example,

It is immediately apparent by definition of isomorphism that two isomorphic graphs must have,
the same number of vertices,

- the same number of edges, and
- the same degrees of vertices.

Sub Graph

Definition: A sub graph of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V^{\prime}\right.$, E^{\prime}) where $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.

For Example:

Spanning Graph

Definition: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be any graph. Then G^{\prime} is said to be the spanning subgraph of the graph G if its vertex set V^{\prime} is equal to vertex set V of G .

For Example:

Complement of a Graph

Definition: Let G is a simple graph. Then complement of G denoted by $\sim \mathrm{G}$ is graph whose vertex set is same as vertex set of G \& in which two vertices are adjacent if \& only if they are not adjacent in G.For Example:
G

$\sim G$

H
$\sim \mathrm{H}$

Operations on Graphs

Definition: The union of two simple graphs $\mathrm{G}_{1}=$
$\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$.

The union of G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$.

G_{1}

G_{2}

$\mathrm{G}_{1} \cup \mathrm{G}_{2}$

Operations on Graphs

Definition: The Intersection of two simple graphs $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ is the simple graph with vertex set $\mathrm{V}_{1} \cap \mathrm{~V}_{2}$ and edge set $\mathrm{E}_{1} \cap \mathrm{E}_{2}$.

The Intersection of G_{1} and G_{2} is denoted by $G_{1} \cap G_{2}$.

G_{1}

G_{2}

$\mathrm{G}_{1} \cap \mathrm{G}_{2}$

