VIVEKANAND COLLEGE,KOLHAPUR (AUTONOMOUS)

DEPARTMENT OF BCA
 SUBJECT - COMPUTER MATHEMATICS CHAPTER 3- MATRICES

LEARNING OBJECTIVES:-

- Cost estimation, Sale projection and factory problems can be solved by using matrix.
- Expressing in vector form
- Expressing day to day life problems in matrix form
- Matrix notation and operations are used in electronic spreadsheet, advanced statistics.
- Expressing simultaneous linear equations in matrix form.

Defination of matrix:-

- A matrix is an ordered rectangular array of numbers that represent some data (Plural = matrices)
- A matrix on its own has no value - it is just a representation of data
- Could be data associated with manufactured quantity in a factory, speed of a rocket etc
- Forms the basis of computer programming
- A matrix is used in solving equations that represent business problems

Types of matrix :-

- Row matrix: it having only one row Ex $\left.\begin{array}{ccc}{\left[\begin{array}{ll}1 & 2\end{array}\right.} & 1\end{array}\right]$
- Column matrix: it having only one column Ex $\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$
- Zero matrix: A matrix is called a zero matrix if all the entries are 0 Ex

$$
\left\lvert\,\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right.
$$

- Square matrix: if number of rows is equal to number of columns

- Note: if number of rows $=$ no of number columns $=n$, is called square matrix of order n or order n
- order 2

$$
\left[\begin{array}{cc}
5 & 7 \\
-2 & 5
\end{array}\right]
$$

order 3

Types of matrix :-

- Diagonal matrix: A square matrix is called diagonal matrix, if all of its nondiagonal elements are zero.
- EXAMPLE
$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right.$
$\left.\begin{array}{ll}0 & 0 \\ 4 & 0 \\ 0 & 1\end{array}\right]$
- Scalar matrix: A square matrix is called scalar matrix if diagonal elements are same and other are " 0 "
- EXAMPLE

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

- Identity/ unit matrix : A square matrix is identity if diagonal entries are 1 and other are 0 .

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

REPRESENTATION OF MATRIX

$A=\left[\mathbf{a i j}_{\text {iax }}\right.$

Qij $=$ element in row ' i ' and column ' j ', where ' a ' is
an element in the matrix
Eg: 23 = element in $2^{\text {nd }}$ row and 3 rd column $=9$

Examples of Matrices

2	4		This is an example of a 2×2 matrix
5			What is \boldsymbol{a}_{12}
2	3	6	What is the dimension or der
72	3	9	∂_{11}

\(\left[\begin{array}{cccc}7 \& 9 \& 11 \& 5

9 \& 0 \& 3 \& 6\end{array}\right]\)| What is the dimension or order |
| :--- |
| of this Matrix? |
| What is $\mathrm{a}_{12} ?$ |

Addition /subtraction: when two matrices of same order are added/ subtracted, their corresponding entries are added/subtracted

Addition operation on Matrices

$\left[\begin{array}{lll}2 & 45 & 72 \\ 6 & 3 & 0 \\ 7 & 9 & 10 \\ A\end{array}\right]+\left[\begin{array}{lll}40 & 7 & 9 \\ 6 & 1 & 2 \\ 7 & 2 & 8\end{array}\right]$
$=\left[\begin{array}{ccc}(2+40) & (45+7) & (72+9) \\ (6+6) & (3+1) & (0+2) \\ (7+7) & (9+2) & (10+8)\end{array}\right]=\left[\begin{array}{ccc}47 & 52 & 81 \\ 12 & 4 & 2 \\ 14 & 11 & 18\end{array}\right]$

Only Matrices of the same order(comparable) can be added!! Rule 1: $A+B=B+A$

Question Set 1

1. Add the following matrices:
$\left[\begin{array}{lll}32 & 4 & 60 \\ 29 & 2 & 4 \\ 21 & 65 & 7\end{array}\right]$ ־ $\left[\begin{array}{lll}22 & 5 & 8 \\ 10 & 8 & 12 \\ 9 & 7 & 2\end{array}\right]$
2. Subtract the following matrices:
$\left.\left[\begin{array}{ccc}18 & 26 & 12 \\ 10 & 11 & 12 \\ 8 & 10 & 16\end{array}\right] \rightleftharpoons \begin{array}{ccc}7 & 2 & 15 \\ 13 & 3 & 5 \\ 5 & 8 & 9\end{array}\right]$

Multiplication of a matrix by a scalar

If K is any number and A is a given matrix, Then KA is the matrix obtained by multiplying each element of A byK. K is called 'Scalar'. Eg: if $K=2$
$A=\left[\begin{array}{lll}2 & 4 & 5 \\ 1 & 3 & 2 \\ 2 & 5 & 1\end{array}\right] K A=\left[\begin{array}{lll}4 & 8 & 10 \\ 2 & 6 & 4 \\ 4 & 10 & 2\end{array}\right]$

MULTIPLICATION OF MATRICES

- The product $A B$ of two matrices A and B is defined, if the number of columns of A is equal to the number of B.
- If $A B$ is defined then $B A$ need not be defined. In particular both A and B are square matrices of same order then $A B$ and $B A$ are defined.
- In general $A B \neq B A$
- Observation : Two non zero matrices multiplication is zero matrix

Ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \times 2 \times\left[\begin{array}{cc}-1 & 2 \\ 0 & 1 \\ 2 & 1\end{array}\right]_{3 \times 2}$ here multipication is not possible. \quad Ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] 2 \times 2\left[\begin{array}{l}2 \\ 1\end{array}\right]_{2 \times 1}$ here mullitiplication possible, order of new matrix

$$
\text { is } 2 \times 1 \text {. }
$$

If order of first matrix A is $\mathrm{m} \times n$ and that of B is $\mathrm{n} \times p$, then A.B is possible of order $\mathrm{m} \times p$.

Multiplication of Matrices - 2

$$
\begin{aligned}
& (2 \times 4+3 \times 1+1 \times 5) \\
& (4 \times 4+3 \times 1+2 \times 5)
\end{aligned}
$$

$(2 \times 2+3 \times 0+1 \times 2)$ $(4 \times 2+3 x 0+2 x 2)$
 16
29

MLTIPLICATION OF MATRIX

Procedure for multiplication:

$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \times\left[\begin{array}{ccc}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]=$
$\left[\begin{array}{llll}a_{11} \cdot b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} \cdot b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} \cdot b_{13}+a_{12} b_{23}+a_{13} b_{33} \\ a_{21} \cdot b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} \cdot b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} \cdot b_{13}+a_{22} b_{23}+a_{23} b_{33} \\ a_{31} \cdot b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} \cdot b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} \cdot b_{13}+a_{32} b_{23}+a_{33} b_{33}\end{array}\right]$
EX: $\left[\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right] \times\left[\begin{array}{cc}4 & 0 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}1.4+2 .-1 & 1.0+2.2 \\ -1.4+0 .-1 & -1.0+0.2\end{array}\right]=\left[\begin{array}{cc}2 & 4 \\ -4 & 0\end{array}\right]$
EX: $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{c}1.1+2.3 \\ 1.1+1.3\end{array}\right]=\left[\begin{array}{l}6 \\ 4\end{array}\right]$

Multiplication of Matrices: -1

$(1 \times 1+3 x 5+5 \times 2)$
$(2 \mathrm{x} 1+4 \mathrm{x} 5+2 \mathrm{x} 2)$
$(2 x 1+5 \times 5+6 \times 2)$
$(1 \times 3+3 \times 2+5 \times 3)$
$(2 \times 3+4 \times 2+2 \times 3)$
$(2 \times 3+5 \times 2+6 \times 3)$ \square
$\left[\begin{array}{lll}25 & 26 & 24 \\ 32 & 26 & 20 \\ 58 & 39 & 34\end{array}\right]$

Multiplication of Matrices - 3

$(4 \times 2+2 \times 4)$
$\left(4 x^{3}+2 x 3\right)$
($1 \times 3+0 \times 3$)
18
3
21
$(4 x 1+2 x 2)$
($1 \mathrm{x} 1+0 \mathrm{x} 2$)
$(5 \times 1+2 \times 2)$

Rule 2: Ax B
$B \times A$

Question Set 1

3. Multiply the following matrices:
$\left[\begin{array}{lll}2 & 3 & 4 \\ 0 & 10 & 3 \\ 1 & 0 & 1\end{array}\right]$
1
5
4
$\left.\begin{array}{ll}0 & 5 \\ 6 & 9 \\ 2 & 0\end{array}\right]$
4. $\left[\begin{array}{lll}1 & 0 \\ 2 & 1 & \leftrightarrow\end{array}\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 10\end{array}\right]\right.$
5. $\left[\begin{array}{lll}3 & 4 & 2 \\ 2 & 1 & 0\end{array}\right] \leftrightarrow\left[\begin{array}{lll}2 & 3 & 1 \\ 4 & 2 & 2\end{array}\right]$

Is it possible to compute No.5?! No!W hy?

Transpose of a Matrix

- Matrix formed by interchanging rows and .I. If $\mathrm{A}=\left[\begin{array}{lll}2 & 4 & 0 \\ 3 & 9 & 6\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 4 \\ 2 & 8 \\ 1 & 3\end{array}\right]$ columns of A is calledA transpose (A')

Q.Verity $(A+B)^{\prime}=A^{\prime}+B^{\prime}$

$$
\text { If } A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
4 & 2 & 1
\end{array}\right] \text { then } A^{\prime}=\left[\begin{array}{cc}
3 & 4 \\
-1 & 2 \\
0 & 1
\end{array}\right]
$$

$$
\text { If } A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
4 & 2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
3 & 6 & 5 \\
-1 & 5 & 9
\end{array}\right]
$$

Symmetric matrix: A square matrix A is called symmetric if $A^{T}=A$
Remark: In a symmetric matrix, the entries opposite to diagonal entries are same. $a_{i j}=a_{j i}$
$\mathrm{EX}=$ is $\left[\begin{array}{cc}1 & -1 \\ -1 & 3\end{array}\right]$

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 5 \\
3 & 5 & 4
\end{array}\right]
$$

Skew symmmetric matrix : A square matrix A is called skew symmetric if $A^{T}=-A$ or $a_{i j}=-a_{j i}$. In skew symmetric matrix diagonal elements are ${ }^{c c} O^{"}$ and entries opposite to main diagonal are same but opposite sign.
EX: $\left.\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \quad$ iit $\left[\begin{array}{ccc}0 & 2 & 3 \\ -2 & 0 & -5 \\ -3 & 5 & 0\end{array}\right]$

Question Set 1

6. Find the transpose of the following matrices and verify that $(A+B)^{\prime}=A^{\prime}+B^{\prime}$

Hint: FindA+B, $\quad(A+B)^{\prime}, A^{\prime}$ and B^{\prime} and verify
7. If D is a matrix where first row = number of table fans and second row = number of ceiling fans factories A and B make in one daxlf a week has 5 working days compute 5A. What does 5A represent?
$D=\begin{array}{r}10 \\ 30\end{array}$
20
40

Question Set 1

9. Two shops have the stock of large, medium and small sizes of a toothpaste. The number of each size stocked is given by the matrixA where
\(\left.\begin{array}{lll}Large \& Medium \& Small

150 \& 240 \& 120

90 \& 300 \& 210\end{array}\right] \quad\)| |
| :--- |
| 90 |

The cost matrix B of the different size of the toothpaste is given by

```
B=
Cost
[r}1
                                    Find the investment in toothpaste by each shop
Answer: [3820]-- Investment by shop no 1 5520
-- Investm entby shop no 2
```


Question Set 1

8. For the matrix
$A=\left[\begin{array}{ccc}4 & 5 & 6 \\ 2 & 1 & 3 \\ -5 & 2 & 2\end{array}\right]$ and $B=$

Multiply by the Matrix I =
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

What is A.I and I.B ?

Identity Matrix

- If you were to multiply 'a' by ' 1 ', you would get ' a '.

$$
\text { Eg: } \quad 2 \times 1=2 \times 1=2
$$

- The 'identity' matrix (i) is the equivalent of ' 1 ' in basic math IfA is a matrix and I is an identity Matrix,
- Then $\mathrm{A} x \mathrm{I}=\mathrm{A}$ and $\mathrm{I} \times \mathrm{A}=\mathrm{A}$. Identity Matrices
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

To find inverse by using elementary Row

transformations.

Step 1: \quad Write A = IA
Step 2: Apply various row operations on left hand side and apply same operations to I on right side but not to A on right side.
Step3: From step 2 we get a new matrix equation $I=B A$. Hence $B=A^{-1}$

To find inverse by using elementary Column

transformations.

Step 1: Write A = AI
Step 2: Apply various Column operations on left hand side and apply same operations to I on right side but not to A on right side.
Step3: From step 2 we get a new matrix equation $I=A B$. Hence $B=A^{-1}$

INVERSE OF ORDER 2 MATRIX

Exmples:

Using elementary row transformation find the inverse of $\left[\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right]$ Ans: Given $A=\left[\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right]$
Consider

$$
A=1 A
$$

$\Rightarrow\left[\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}-\mathbf{R}_{2}$
$\left[\begin{array}{cc}1 & 1 \\ 5 & 4\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{2} \rightarrow \mathbf{R}_{2}-5 \mathbf{R}_{1}$
$\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -5 & 6\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}+\mathbf{R}_{2}$
$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}-4 & 5 \\ -5 & 6\end{array}\right] A$
Applying $\mathbf{R}_{2} \rightarrow(-1) \mathbf{R}_{2}$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-4 & 5 \\ 5 & -6\end{array}\right] \mathrm{A}$
Hence $A^{-1}=\left[\begin{array}{cc}-4 & 5 \\ 5 & -6\end{array}\right]$

INVERSE OF ORDER 3 MATRIX

- Using elementary row transformation find the inverse of $\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$ Ans:Given $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
Consider $A=L A$
$\Rightarrow\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow 3 \mathbf{R}_{1}$
$\left[\begin{array}{ccc}6 & 0 & -3 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}-\mathbf{R}_{2}$
$\left[\begin{array}{ccc}1 & -1 & -3 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}+\mathbf{R}_{\mathbf{3}}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathbf{R}_{2} \rightarrow \mathbf{R}_{\mathbf{2}}-5 \mathrm{R}_{1}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 0 & 0 & 1\end{array}\right] A$
Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 15 & -6 & 6\end{array}\right] A$
Applying $R_{3} \rightarrow \frac{1}{3} \mathbf{R}_{3}$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right] A \quad$. Hence $A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$

Inverse of a Matrix

In basic math: $22=1$ and $1 / 2 \times 2=1$.
Dividing 2 by two is the same as multiplying 2 by $1 / 2$. The net result is 1 .

A similar concept is the 'inverse' of a matrix. If A is a matrix, then A is the inverse such that $A x A=I$ (identity matrix)

$$
-1
$$

If A has an inverse(A) thenA is said to be 'invertible' $A \cdot A=A \cdot A=1$

The determirnaruis a scalar valuethatcarm be comphted from the elermerts of a square matrix
$A=\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]$ then detenminant of A or detA orlAl
$\mid A \|=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-\right.$ $\left.x_{31} x_{22}\right) \neq 0$ then inverse of matrix exist i.e A^{-1}
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 5 \\ 3 & 5 & 4\end{array}\right]=1(-1.4-5-5)-2(2.4-3.5)+3(2.5-3-1)=11+10$
here inverse of A exist. $\left.\operatorname{So} A^{-1}=\frac{a c i A}{\| A \mid}=\|A\| \neq O \right\rvert\,$

$$
A-1=\frac{\cot j A}{1 A 1}=\frac{1}{11}\left[\begin{array}{ccc}
-29 & 7 & 13 \\
7 & -5 & 5 \\
13 & 1 & -5
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-29}{11} & \frac{7}{11} & \frac{13}{11} \\
\frac{1}{11} & \frac{1}{11} & \frac{1}{11} \\
\frac{13}{11} & \frac{5}{11} & \frac{-5}{11}
\end{array}\right]
$$

If the simultaneous equation are of the form
$a_{11} x+a_{12} y^{+}+a_{13} z=b_{1} \quad$ it can also be represented in matrix form $A X=$ B

$$
\begin{array}{ll}
a_{21} x+a_{22} y+a_{23} z=b_{2} & \text { where } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] B=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
a_{31} x+a_{32} y+a_{33} z=b_{3} \quad \text { so } X=A-1 \quad B=\frac{a d j A}{|A|} B
\end{array}
$$

$$
\begin{aligned}
& \operatorname{adi} A=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{cc}
-29 & 7 \\
73 & 13 \\
13 & 5
\end{array}\right] \\
& A_{11}=-29 A_{12}=7 A_{13}=13 A_{21}=A_{22}=-5 A_{23}=A_{31} A_{1} \\
& A_{32}=1 A_{33}=-5
\end{aligned}
$$

$E x:$ Solve by matrix method $x+y+z=6,2 x-y+5 z=6,3 x+5 y+4 z=12$
Ans Here $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 5 \\ 3 & 5 & 4\end{array}\right] X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] B=\left[\begin{array}{c}6 \\ 6 \\ 12\end{array}\right]$

$$
|A|=\left|\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 5 \\
3 & 5 & 4
\end{array}\right|=1(-1.4-5.5)-2(2.4-3.5)+3(2.5-3 .-1)=11 \neq 0
$$

So inverse exist, Previous example it is found that

$$
A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{1}{11}\left[\begin{array}{ccc}
-29 & 7 & 13 \\
7 & -5 & 5 \\
13 & 1 & -5
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-29}{11} & \frac{7}{11} & \frac{13}{11} \\
\frac{7}{11} & \frac{-5}{11} & \frac{1}{11} \\
\frac{13}{11} & \frac{5}{11} & \frac{-5}{11}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=x=-1-1=\left[\begin{array}{lll}
\frac{-29}{11} & \frac{7}{11} & \frac{13}{11} \\
\frac{7}{11} & \frac{1}{11} & \frac{1}{11} \\
\frac{11}{11} & \frac{5}{11} & \frac{15}{11}
\end{array}\right]\left[\begin{array}{c}
6 \\
62
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$\operatorname{Sox} x=1, y=1$ and $z=1$
Singular matrix : A square matrix is said to be singular if det $(A)=0$ Ex: Let $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]$ here $\operatorname{det}(A)=4-4=0$, so given matrix is singular. Non singular Natrix: A square matrix is said to be non singular if $\operatorname{det}(A) \neq 0$,

Note : Inverse of a square matrix exist in non singular matrix.|

KEY POINTS

- A matrix is an ordered rectangular array of numbers or functions.
- A matrix having m rows and n columns is called a matrix of order mxn
- A is a diagonal matrix if its non diagonal elements are zero.
- A is a identity matrix if diagonal elements are 1 and non diagonal elements are 0
- A is zero matrix if all elements are zero.
- Matrix addition is commutative ,associative over same order. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}, \quad(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$

KEY POINTS

- $k(A+B)=k A+k B, k$ is constant A, B are of same order
- If order of first matrix A is m and that of B is n, then $A . B$ is possible of order m
- Matrix multiplication is not commutative.
- A matrix is symmetric if $\quad a_{i j}=a_{j i}$
- If a square matrix is invertible if $\operatorname{det} A \neq 0$, or singular matrix
- if $\operatorname{det} A=0$, inverse of a square matrix doesn't exist.or non singular matrix

$$
\begin{aligned}
& (\mathcal{A})^{T}=K A^{T} \\
& (A \pm B)^{T}=A^{T} \pm B^{T} \\
& \left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1} \\
& \left(A^{T}\right)^{T}=A
\end{aligned}
$$

CONCEPT MAPPING

Drifer al a

Matrix

A matrix having m nowx and n columns is called a
matrix of order $\mathrm{m} \times \mathrm{rf}$.

Transpose

Transpose is obtained by interchanging rows and columns. if $A=\left[a_{\ell j}\right]_{m \times H}$ then $A^{\text {c }}$ or $A^{T}=\left[a_{i g}\right]_{\text {nexth }}$
$\left(A^{\prime}\right)^{r}=A$
$(A B)^{r}=B^{r} A^{\prime}$

Properiles

$(A \pm B)$
$=A^{\prime} \perp B^{\prime}$

Sparial Matrices

Nilpotent Matrix : $A^{k}=0$ and $A^{k-1} \neq 0, k \in z^{1}$ $\Rightarrow|A|=0$, order $=$ Least value of k

Involutory Matrix : $\boldsymbol{A}^{2}=1 \Rightarrow|A|= \pm 1$
Orthogonal Matrix $: A A^{T}=\Lambda^{T} A=I$

$$
\Rightarrow|A|= \pm 1
$$

Periodic Matrix : $A^{k}=A$

$$
\Longrightarrow|A|=0,1, \text { arder }-k-1
$$

Idempotent Matrix: $A^{2}=A \Rightarrow|A|=0,1$

Unitary Matrix: $A_{A} A^{B}=A_{A} A_{A}=I$

Symmetric Matrix $=A^{*}=A$
Skew Symmetric Matrix : $A^{\prime}=-A$

Inverse

If A and B are two square matrica such that $A B=B A=I_{2}$ then B is th inverse matrix of A and is denote by A^{-1} and A is the inverse of B.

