# VIVEKANAND COLLEGE,KOLHAPUR (AUTONOMOUS) 

## DEPARTMENT OF BCA

SUBJECT - COMPUTER MATHEMATICS CHAPTER 1- SETS

## What is a Set?

- A set is a well-defined collection of distinct objects.
- The objects in a set are called the elements or members of the set.
- Capital letters $A, B, C, \ldots$ usually denote sets.
- Lowercase letters $a, b, c, \ldots$ denote the elements of a set.


## Examples

- The collection of the vowels in the word "probability".
- The collection of real numbers that satisfy the equation $x^{2}-9=.0$
- The collection of two-digit positive integers divisible by 5.
- The collection of great football players in the National Football League.
- The collection of intelligent members of the United States Congress.


## The Empty Set

- The set with no elements.
- Also called the null set.
- Denoted by the symbol $\phi$.
- Example: The set of real numbers $x$ that satisfy the equation

$$
x^{2}+1=0
$$

## Finite and Infinite Sets

- A finite set is one which can be counted.
- Example: The set of two-digit positive integers has 90 elements.
- An infinite set is one which cannot be counted.
- Example: The set of integer multiples of the number 5 .


## The Cardinality of a Set

- Notation: $n(A)$
- For finite sets $A, n(A)$ is the number of elements of $A$.
- For infinite sets $A$, write $n(A)=\infty$.


## Specifying a Set

- List the elements explicitly, e.g.,

$$
C=\{a, o, i\}
$$

- List the elements implicitly, e.g.,

$$
K=\{10,15,20,25, \ldots . ., 95\}
$$

- Use set builder notation, e.g.,

$$
Q=\{x \mid x=p / q \text { where } p \text { and } q \text { are integers and } q \neq 0\}
$$

## The Universal Set

- A set $U$ that includes all of the elements under consideration in a particular discussion.
- Depends on the context.
- Examples: The set of Latin letters, the set of natural numbers, the set of points on a line.


## The Membership Relation

- Let $A$ be a set and let $x$ be some object.
- Notation: $x \in A$
- Meaning: $x$ is a member of $A$, or $x$ is an element of $A$, or $x$ belongs to A.
- Negated by writing $x \notin A$
- Example: $V=\left\{a, e, i, o, v_{b}\right\} \quad e \in V \quad b \notin V$


## Equality of Sets

- Two sets $A$ and $B$ are equal, denoted $A=B$, if they have the same elements.
- Otherwise, $A \neq B$.
- Example: The set $A$ of odd positive integers is not equal to the set $B$ of prime numbers.
- Example: The set of odd integers between 4 and 8 is equal to the set of prime numbers between 4 and 8 .


## Subsets

- $A$ is a subset of $B$ if every element of $A$ is an element of $B$.
- Notation: $\quad A \subseteq B$
- For each set $A, \quad A \subseteq A$
- For each set $B, \quad \varnothing \subseteq B$
- $A$ is proper subset of $B$ if $A \subseteq B$ and $A \neq B$


## Unions

- The union of two sets $A$ and $B$ is

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- The word "or" is inclusive.


## Intersections

- The intersection of $A$ and $B$ is

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- Example: Let $A$ be the set of even positive integers and $B$ the set of prime positive integers. Then

$$
A \cap B=\{2\}
$$

- Definition: $A$ and $B$ are disjoint if

$$
A \cap B=\emptyset
$$

## Complements

o If $A$ is a subset of the universal set $U$, then the complement of $A$ is the set

$$
\begin{aligned}
A^{c} & =\{x \in U \mid x \notin A\} \\
\text { o Note: } \quad A \cap A^{c} & =\Phi \quad A \cup A^{c}=U
\end{aligned}
$$

## Venn Diagrams



Set $A$ represented as a disk inside a rectangular region representing $U$.

Possible Venn Diagrams for Two Sets


## The Complement of a Set



The shaded region represents the complement of the set $A$

## The Union of Two Sets



## The Intersection of Two Sets



## Sets Formed by Two Sets

○ $\quad R_{1}=A \cap B^{C}$

- $R_{2}=A \cap B$

- $R_{3}=A^{c} \cap B$
- $R_{4}=A^{c} \cap B^{c}$


## Two Basic Counting Rules

If $A$ and $B$ are finite sets,

1. $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
2. $n\left(A \cap B^{c}\right)=n(A)-n(A \cap B)$

See the preceding Venn diagram.

