VIVEKANAND COLLEGE, KOLHAPUR (AUTONOMOUS)

DEPARTMENT OF BCA

SUBJECT – COMPUTER MATHEMATICS CHAPTER 1- SETS

> PRESENTED BY – Mr. Suraj Sunil Shinde

What is a Set?

- A *set* is a well-defined collection of distinct objects.
- The objects in a set are called the *elements* or *members* of the set.
- Capital letters A, B, C, ... usually denote sets.
- Lowercase letters *a*,*b*,*c*,... denote the elements of a set.

Examples

- The collection of the vowels in the word "probability".
- The collection of real numbers that satisfy the equation $x^2 9 = .0$
- The collection of two-digit positive integers divisible by 5.
- The collection of great football players in the National Football League.
- The collection of intelligent members of the United States Congress.

The Empty Set

- The set with no elements.
- Also called *the null set*.
- \bullet Denoted by the symbol $\varphi.$
- Example: The set of real numbers x that satisfy the equation $x^2 + 1 = 0$

Finite and Infinite Sets

- A finite set is one which can be counted.
- Example: The set of two-digit positive integers has 90 elements.
- An infinite set is one which cannot be counted.
- Example: The set of integer multiples of the number 5.

The Cardinality of a Set

- Notation: *n*(*A*)
- For finite sets A, n(A) is the number of elements of A.
- For infinite sets A, write $n(A) = \infty$.

Specifying a Set

• List the elements explicitly, e.g.,

$$C = \{a, o, i\}$$

• List the elements implicitly, e.g.,

$$K = \{ 10, 15, 20, 25, \dots, 95 \}$$

• Use set builder notation, e.g.,

$$Q = \left\{ x \mid x = p/q \text{ where } p \text{ and } q \text{ are integers and } q \neq 0 \right\}$$

The Universal Set

- A set *U* that includes all of the elements under consideration in a particular discussion.
- Depends on the context.
- Examples: The set of Latin letters, the set of natural numbers, the set of points on a line.

The Membership Relation

- Let A be a set and let x be some object.
- <u>Notation</u>: $x \in A$
- <u>Meaning</u>: *x* is a member of *A*, or *x* is an element of *A*, or *x* belongs to *A*.
- Negated by writing $x \notin A$
- Example: $V = \{a, e, i, o, u\}$ $e \in V$ $b \notin V$

Equality of Sets

- Two sets A and B are equal, denoted A=B, if they have the same elements.
- Otherwise, A≠B.
- Example: The set A of odd positive integers is not equal to the set B of prime numbers.
- Example: The set of odd integers between 4 and 8 is equal to the set of prime numbers between 4 and 8.

Subsets

- A is a <u>subset</u> of B if every element of A is an element of B.
- Notation: $A \subseteq B$
- For each set A, $A \subseteq A$
- For each set B, $\emptyset \subseteq B$
- A is proper subset of B if $A \subseteq B$ and $A \neq B$

Unions

• The <u>union</u> of two sets A and B is

$$A \cup B = \left\{ x \mid x \in A \text{ or } x \in B \right\}$$

• The word "or" is inclusive.

Intersections

• The intersection of A and B is

$$A \cap B = \left\{ x \mid x \in A \text{ and } x \in B \right\}$$

• <u>Example</u>: Let *A* be the set of even positive integers and *B* the set of prime positive integers. Then

$$A \cap B = \{2\}$$

• <u>Definition</u>: A and B are <u>disjoint</u> if

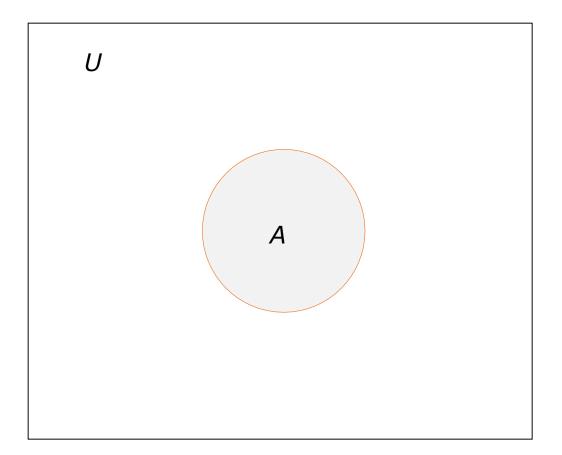
$$A \cap B = \emptyset$$

Complements

o If A is a subset of the universal set U, then the <u>complement</u> of A is the set

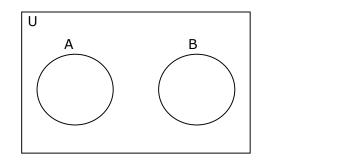
 $A^{c} = \left\{ x \in U \mid x \notin A \right\}$ o Note: $A \cap A^{c} = \Phi \quad A \cup A^{c} = U$

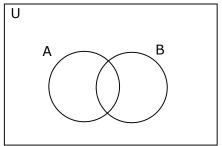
Venn Diagrams

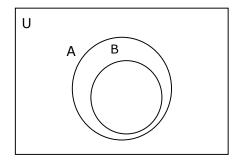


Set *A* represented as a disk inside a rectangular region representing *U*.

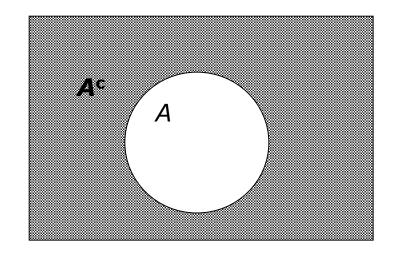
Possible Venn Diagrams for Two Sets





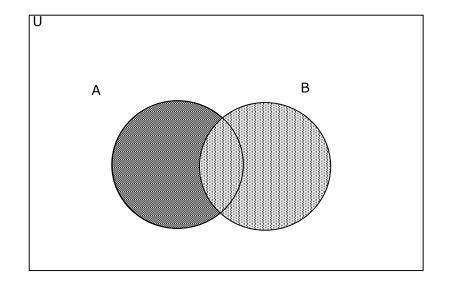


The Complement of a Set

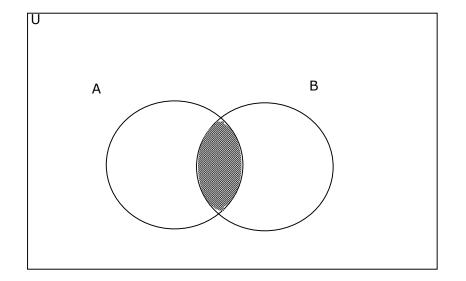


The shaded region represents the complement of the set *A*

The Union of Two Sets



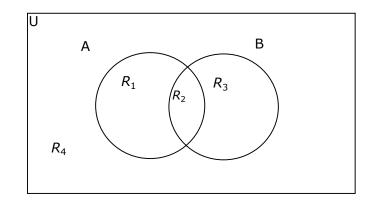
The Intersection of Two Sets



Sets Formed by Two Sets

•
$$R_1 = A \cap B^c$$

•
$$R_2 = A \cap B$$



•
$$R_3 = A^c \cap B$$

•
$$R_4 = A^c \cap B^c$$

Two Basic Counting Rules

If A and B are finite sets,

1.
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

2.
$$n(A \cap B^c) = n(A) - n(A \cap B)$$

See the preceding Venn diagram.