

SNEHAL WADKAR

Department of Botany, Shivaji University Kolhapur 416 004.

CHIRAG U. NARAYANKAR Department of Botany, Shivaji University Kolhapur 416 004.

ADITYA MAGDUM

Department of Botany, Shivaji University Kolhapur 416 004.

MAHESH MANE Department of Botany, Shivaji University Kolhapur 416 004.

D. K. GAIKWAD

Department of Botany, Shivaji University Kolhapur 416 004.

NIVAS DESAI

Shri Pancham Khemraj Mahavidyalaya, Sawantwadi. nivasdesai88@gmail.co

m

Tamil Nadu, Andhra Pradesh, Karnataka, and Kerala in India (Khurana, 2014).

Abstract

The present study was carried out identify its phytochemical by GC-MS/MS analysis. The present study deals with the Gas Chromatography Mass Spectroscopy analysis of Amaranthus cruentus, Amaranthus hypochondricus, Amaranthus cruentus, which have various medicinal properties. The GC-MS/MS study also carried out and it showed the presence of phytochemicals. Hence these plants extracts with the property of bioavailability and retention of certain compounds can be recommended for their use as a natural medicine for the treatment of infectious diseases.

Introduction

Amaranthus is a huge taxonomic gathering with a diverse variety of species that share characteristics like resistance to biotic and abiotic stresses, good vield, nutritional supplement, and economic qualities (Brenner et al., 200 and Rana et al., 2007). Amaranthus is a very narrow annual plant that had rapid growth, is drought resistant, and is adaptive to different surroundings. Its various species have unisexual flowers and seeds that are compact, black in colour with shiny lustre. Multiple raised in captivity aspects are grown up in

Amaranth is made up of 60-70 different species, 40 of which are native to the Continent of South America. Over 400 varieties of such species are found across the World in both temperate and tropical climates, and are classified as grain, vegetable, decoration, or weed types (Rana et al., 2007). Amaranth is also commonly known as Rajgira (king seed) and Ramdana (God's seed). It is typically a pseudo-cereal with amazing and nutritional protein content as compared to the actual cereal crops. Thus, recent decades have witnessed an increased use of amaranth flour blended with wheat or maize in households. Amaranth species are therefore gaining a lot of attention in developing countries to overcome protein malnutrition (Escudero, 2006). Various parts of plant are used for respiratory infections, vision defects, tuberculosis, fleshy tumors, liver problems and inflammations. In Ayurveda, leaf decoction used for chest afflictions and gastroenteritis. Seeds are also beneficial for sores. Seeds and leaves use as astringent for stopping diarrhea, bloody excrement, hematuria and excessive menstruation (Sumner *et al.*, 2003, Weckwerth, 2003 and Kopka *et al.*, 2014).

Figure 1. Pharmcological properties of *Amaranthus* species

GC-MS is the most popular technique for the identification and quantitation of secondary metabolites. The intention of the present study was to investigate the bio-chemical components by using GC-MS/MS analysis. This analysis provides a demonstrative spectral output for the entire compounds which are separated from the sample.

Material and Method Collection of the plant

In the current investigation different plant part of Amaranthus (Stem, cruentus leaves. root). Amaranthus viridus (Stem), Amaranthus hypochondricus (Leaves), Amaranthus cruentus (Leaves), Amaranthus cruentus (root). The plant was identified. Department of Botany, Shivaji University, Kolhapur.

Preparation of extract

The plant was shadow dried and standard procedure using electrical

blender was used for conversion of plant into powder. Ethanolic extract of selected plant powder was prepared by maceration process in which powder was soaked in analytical grade ethanolic and kept to macerate for 24 hours. After 24 hours macerated powder extract was filtered with the help of Whatman. filter No.1. Prepared extract was further used for GC-MS/MS analysis of different compounds from *Amaranthus* plant species.

GC-MS/MS analysis

The GC-MS/MS analysis of the Ethanolic extract was run on Shimadzu make QP- 2010 with non-polar 60 M RTX 5MS column. For these analysis helium gas was used as carrier gas and 400C temperature set at oven for initial 3min. and then final temperature 48° C with rate at 10° C (min.sup.-1). A2 (mu) L sample was injected with splitless mode. The mass spectra with electron impact ionization 70 eV energy were estimated across 35 to 650 amu scale.

Identification of phytochemical

The specimen running time was 45 min. and the extract's bioactive molecules have been established by analyzing chromatographic maximum persistence duration use the NIST Library. The amount inferences are rendered from those in the GC-MS/MS to the TIC areas by the corresponding maximum regions.

Result and discussion

The analysis of mass spectra of fruit of *Amaranthus* species it's extracted in alcohol is shown in Table 1, 2, 3, 4, 5 and 6. The unknown sample and library standard chromatogram are shown in figure 2, 3, 4, 5 and 6. The GC-MS/MS spectra of fruit, leaves, bark extract

shown various peaks the identification was made by percent pick area, retention time after comparing it with the library of National Institute of standard and technology (NIST).

Amaranthus cruentus

The various phytocomponents identified in the Amaranthus cruentus (Stem) shows total nine peak in stem ertract out of these n-Hexadecanoic acid have the human colon cancer cell line inhibition activity, Ethyl Oleate increase the medicinal drug solubility activity. The spectra Ethane, 1,1,1-triethoxymass (4.15)%), 2(2Butoxyethoxy)carbonyl)benzoic acid (2.66 %), Undec-10-ynoic acid, tetradecyl ester (2.93 %), trans-Geranylgeraniol (16.16 %), n- Hexadecanoic acid (19.67 %), Hexadecanoic acid, ethyl ester (15.48 %), trans,trans-9,12-Octadecadienoic acid, propyl e (16.98 %), Ethyl Oleate (15.66 %), Octadecanoic acid, 17-methyl-, methyl ester (6.31 %) (Table No. 1 and figure 2).

Table No. 1: Phytocomponents identifiedin the alcoholic extract of the stem ofAmaranth cruentus by GC- MS/MS.

Peak	R. Time	Area	Name	Biologi	Referen
		%		cal	ce
				properti es	
1	6.678	4.15	Ethan	-	-
			e,		
			1,1,1-		
			trietho		
			xy-		
2	16.44	2.66	2(2Bu	-	-
			toxyet		
			hoxy)		
			carbo		
			nyl)be		
			nzoic		

			acid		
2	10.07	2.02	TT 1		
3	19.07	2.93	Undec	-	-
			-10-		
			ynoic		
			ester		
4	19.23	16.16	trans-	-	-
			Geran		
			ylgera		
			niol		
5	22.74	19.67	n-	human	Ravi
			Hexad		Zyakun
			ecanoi		1
			c acid		al.,
					(2012)
6	22.10	15 19	Uavad		
0	23.19	13.40	пехац	-	-
			etnyi		
_			ester		
7	26.11	16.98	trans,t		
			rans-		
			9,12-		
			Octad		
			ecadie		
			noic		
			acid.		
			propyl		
			este		
8	26.20	15.66	Ethyl	Increasi	Xing <i>et</i>
			Oleate	ng	al
				0	,
				drug	2016.
				solubilit	
				у	
9	26.58	6.31	Octad		
			ecanoi		
			с		
			methy		
			1 octor		

Figure No. 2: GC-MS/MS Chromatogam of *Amaranthus cruentus* stem.

The various phytocomponents identified in the *Amaranthus cruentus* (leaves) shows total eight peak in leaves extract out of these Phytol showing Antiinflammatory, Anticarcinogenic and Antitumoral agent properties.

The mass spectra Naphthalene, decahydro-1,4a-dimethyl-7-(1-meth (1.68 %),Hexadecane (1.35 %), 2,6,10-Trimethyltridecane (2.16 %), Hexadecanoic acid, ethyl ester (19.82 %), Phytol (21.89 %)

TableNo.2:Phytocomponentsidentified in the alcoholic extract of theleaves of Amaranth cruentus by GC-MS.

Peak	R.Tim	Are	Name	Biolo	Reference
	e	a%		gical	
				proper	
				ties	
1	13.11	1.6	Na		
		8	р		
			ht		
			h	-	-
			al		
			e		
			n		
			е,		
			d		

			e			
			с			
			а			
			h			
			у			
			dr			
			0-			
			1,			
			4			
			a-			
			dim	eth		
			yl-'	7-		
			(1-			
			me	th		
2	13.77	1.3	Hex	ade	-	-
		5	car	ne		
3	14.60	2.1	2,6,	10-	-	-
		6	Trin	neth		
			yltı	ride		
			car	ne		
4	23.17	19.	Hex	ade	-	-
		82	car	noic		
			aci	d,		
			othu	1		
			eury	l ar		
5	25 56	21	Dhy		Anti	Olofsson
5	25.50	21. 89	I II y	101	infl	ot al
		07			am	201 <i>4</i>
					mat	Islam <i>et</i>
					ory	al 2018
					Anti	<i>un</i> , 2010.
					carc	
					inog	
					enic	
				and		
					Anti	
				tum	oral	
				0.00	nt	
6	26.10	21	tron	age	111.	
U	20.10	21.07	u an	-		-
		07	s,u			
			ans			
1	1		1-			

Anveshana's International Journal of Research in Engineering and Applied Sciences EMAILID:<u>anveshanaindia@gmail.com</u>,WEBSITE:<u>www.anveshanaindia.com</u> 55

			9,1		
			2-		
			Oct		
			ade		
			cad		
			ien		
			oic		
			aci		
			d,		
			pro		
			pyl		
			este		
			r		
7	26.19	23.	Eth	-	-
		44	yl		
			Ole		
			ate		
8	26.57	8.5	Oct	-	-
		9	ade		
			can		
			oic		
			aci		
			d,		
			eth		
			yl		
			este		
			r		

intensi 70000 60000 550000 50000 450000 400000 35000 300000 250000 20000 15000 10000 TIC*1.00 10000 20.0 30.0 38.0 6.0

Figure No. 2: GC-MS/MS chromatogram of *Amaranthus cruentus* leaves.

The various phytocomponents

identified in the *Amaranthus cruentus* (root) shows total six peak in root extract out of these Squalene showing Drug and vaccine delivery, Inhibit the development of various tumors, Rich Antioxidant properties and Linoleic acid ethyl ester showing antioxidant activity.

The mass spectra Butane, 1,1-diethoxy-3methyl- (5.71 %), Ethane, 1,1,1triethoxy- (6.54

%), Squalene (2.56 %), Ethyl 13-methyltetradecanoate (31.28 %), Linoleic acid ethyl ester (23.50

%), Ethyl Oleate (30.41 %).

Table No. 3: Phytocomponents identifiedin the alcoholic extract of the root ofAmaranthus cruentus by GC-MS/MS.

Peak	R.	Area	Name	Biolo	Re
	Time	%		gical	fer
				prope rties	en ce
1	5.71	5.71	Butane,		
			diet		
			hox		
			у-		
			3-		
			met		
			hyl		
			-		
2	6.672	6.54	Ethane,		
			1,1,1-		
			trietho		
			xy-		
3	19.230	2.56	Squale	Dru	Fo
			ne	g	X,
				prope	20
				rties	09.
					R
					e
					d

					d
					У
4	23.189	31.28	Ethyl	-	-
			methy		
			1-		
			tetrade		
			canoat		
			e		
5	26.112	23.50	Linolei	Antio	Ki
			c acid	xidan	m
			ethyl	t	20
			ester	Activ	20
				itios	20
_				nies	
6	26.200	30.41	Ethyl	-	-
			Oleate		
inten 400	ily 4,377,551		20		
3500	000-				
300	000-				
200	000				
1500	000-				
100	000-		â		
50	000	a.230	lune	\checkmark	TICHIN
	60 100	200		300	38.0
	1,0204			200	min

Figure No. 3: Chromatogram GC-MS/MS of Amaranthus cruentus root.

Amaranthus viridus

The various phytocomponents identified in the Amaranthus viridus shows total thirteen peak in stem extract out of these 2,4-Decadienal, (E,E)showing Nematicidal Activity, 2.4-Dodecadienal inhibition of smooth muscle cells, n-Hexadecanoic acid having human colon cancer cell line.

Mass spectra 2,4-Decadienal, (E,E)- (25.94 %), 2-Undecenal (6.12 %), 2,4-Dodecadienal (9.95 %), Diethyl Phthalate (2.11 %), 1-Dodecanol, 3,7,11trimethyl- (1.66 %), 3,5-di-tert-Butyl- 4hydroxybenzaldehyde (3.53 %), Undec10-ynoic acid, tridec-2-yn-1-yl ester (0.62 %), trans- Geranylgeraniol (11.29 %), n-Hexadecanoic acid (24.21 %), Hexadecanoic acid, ethyl ester (1. 41 %), 1-Decanol, 2-octyl- (1.38 %), 13-Hexyloxacyclotridec-10-en-2-one (2. 26 %), 9-Octadecenoic acid, (E)- (9. 52 %).

Table No. 4: Phytocomponents identified in the alcoholic extract of the stem of Amaranthus viridus

Peak		Area%	Nam	Biologi	Ref
	P Time		e	cal	eren
	K. I IIIC			activity	ce
1	12.64	25.94	2,4-	Nematic	Cab
			Deca	idal	oni
			diena	Activity	201
			1,	Activity	201
			(E,E)		_
			-		
2	13.30	6.12	2-		
			Unde		
			cenal		
3	14.19	9.95	2,4-	Cytotox	Cab
			Dode	ic	re ei
			cadie	smooth	al.,
			nal		200
					3
4	16.41	2.11	Dieth		
			yl		
			Phth		
			alate		
5	18.05	1.66	1-		
			Dode		
			canol		
			,		
			3,7,1		
			1-		
			trime		
			thyl-		

6	18.77	3.53	3,5-		
			di-		
			tert-		
			Butyl		
			-4-		
			hydr		
			oxyb		
			enzal		
			dehy		
			de		
7	19.06	0.62	Unde		
			c-10-		
			ynoic		
			acid,		
			tride		
			c-2-		
			yn-1-		
			yl		
			ester		
8	19.21	11.29	trans		
			-		
			Gera		
			nylge		
			ranio		
			1		
9	22.75	24.21	n-	human	Rav
			Hexa		i
			deca		Kri
			noic		shn
			acid		an
					(20)
					(20)
10	23.16	1.41	Hexa		
			deca		
			noic		
			ethyl		
			ester		
11	23.27	1.38	1-		
			Deca		
			nol,		
			2-		
			octyl		

Figure No. 5: Chromatogram GC-MS/MS of Amaranthus viridus stem.

Amaranthus hypochondricus

The various phytocomponents identified in the Amaranthus hypochondricus shows total four peak in the leaves extract. Squalene having used in drug and vaccine delivery, Inhibit the development of various tumors, Rich Antioxidant properties.

Mass spectra Squalene (7.81 %),3,7,11,15-Tetramethyl-2-hexadecen1-ol (5.68 %), Cholesta-4,6-dien-3-ol, (3.beta.)- (28.58 %), Stigmast-5-en-3-ol, oleate (32.91 %).

TableNo.**5:** Phytocomponentsidentified in the alcoholic extract of theleaves of Amaranthus hypochondricusby GC-MS/MS.

Peak	R.Tim	Are	Name	Biologic	Referen
	e	a%		al	ce
				properti	
				es	
1	19.22	7.81	Squale	Drug	Fox,
			ne	and	2009
				vaccine	Reddy
				deliver	and
				у,	una
				Inhibit	
				the	
				develo	
				pment	
				of	
				various	
				tumors,	
				Rich	
				Antioxi	
				dant	
				properti	
				es	
2	19.82	5.68	3,7,11		
			,15-		
			Те		
			tra		
			me		
			th		
			yl-		
			2-		
			he		
			xa		
			de		
			ce		
			n-		
			1-		

Figure No. 6: Chromatogram of GC-MS/MS analysis of *Amaranthus hypochondricus* leaves.

Conclusion

In GC-MS/MS results indicated various phytochemical constituents have been identified from ethanolic extract. Several compound showing antioxidant activity, antibacterial activity anticancerous activity, nematicidal Activity while some compound used in drugs delivery. The presence of these phytochemicals in *Amaranthus cruentus* (Stem, leaves, root), *Amaranthus viridus* (Stem), *Amaranthus* Κ

hypochondricus (Leaves) is a significant finding in this present study.

Reference

1.

im B., H. M. Kim, C. H. Jin, S. Kang, J. Kim, Y. G. Jeon , K. Y. Park, I. Lee ,A. Han (2020). Composition and Antioxidant Activities of Volatile Organic Compounds in Radiation-Bred Coreopsis Cultivars. Plants. 9 (717): 1-9. 2. В

renner DM, Baltensperger DD, Kulakow PA, Lehman JW, Myers RL, et al. (2000) Genetic resources and breeding of Amaranthus. In Janick Jules (Ed.), Plant breeding reviews 19: 227-285.

3. Rana JC, Pradheep K, Yadav S K, Verma VD, Sharma PC (2007) Durga: A new variety of grain amaranth for cultivation in hill regions. Indian Farming 57: 27-28.

4. Khurana, D.S., Singh, J. and Kaur, B. (2014). Genetic variability, correlation and path coefficient anlaysis in Amaranthus, Veg. Sci., 40 (2): 238-240.

5. Sumner LW, Mendes P, Dixon RA. Plant Metabolomics: large-scale Phytochemistry in the Functional Genomics era. Phytochemistry. 2003; 62(6): 817-836.

6. Weckwerth W. Metabolomics in System Biology. Annual Review Plant Biology 2003; 54: 669-689.

7. Kopka J, Fernie A, Weckwerth W, Gibon, Y, Stitt M. Metabolite Profiling in Plant Biology: Platforms and Destinations. Genome Biology. 2004; 5(6): 109.

8. Escudero N. L., Zirulnik F., Gomez N. N., Mucciarelli S. I., Giménez M. S. (2006). Influence of a Protein Concentrate from Amaranthus cruentus Seeds on Lipid. Metabolism. Experimental Biology and Medicine 231(1):50-9.

9. Ravi L. and Krishnan K. (2016). Cytotoxic Potential of N-hexadecanoic Acid Extracted from Kigelia pinnata Leaves. Asian Journal of Cell Biology 12(1):20-27.

10. Zyakun A. M., Kochetkov V. V., Boronin A. M. (2012). The Waste Oil Resulting from Crude Oil Microbial **Biodegradation** in Soil. Management of Organic Waste. 69-86.

11. Xing Q., Song J., You X., Xu D., Wang K., Song J., Guo Q., Li P., Wua C., Hu H. (2016). Microemulsions containing long-chain oil ethyl oleate improve the oral bioavailability of piroxicam by increasing drug solubility and lymphatic transportation simultaneously. International Journal of Pharmaceutics. 511 (2): 709-718.

12. Olofsson P., Foody G. M., Herold M., Stehman S. V., Woodcock C. E., Wulder M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment. 148: 42-57.

13. Islam M. T., Alic E. S., Uddin S. J., Shawe S., Islam A., Ahmed I., Shill M. C., Karmakar

U. K., Yarla N. S., Khan I. N., Billahi M., Pieczynskaj M. D., Zengink G., Malainer C., Nicoletti F., Gulei D., Berindan-Neagoenop I., Apostolov A. I., Banach M., Yeung A. W. K., El-Demerdash A., Xiaox J., Dey P., Yele S., Jozwikj A., Strzałkowskaj N., Marchewkaj J., Rengasamy K. R. R., Horbanczukj J., Kamal M. A., Mubarak M. S., Mishra S. K., J. Shilpi A., Atanasov A. G. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology. 121: 82-94.

14. Fox C. B. (2009). Squalene Emulsions for Parenteral Vaccine and Drug Delivery.

Molecules, 14 (9): 3286-3312.

15. Reddy L. H. and Couvreur P. (2009). Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery Reviews. 61 (15): 1412-1426.

16. Kim B., Kim H. M., Jin C. H., Kang S., Kim J., Jeon Y. G., Park K. Y., Lee I., Han A. (2020). Plants. 9 (717): 1-9.

17. Caboni P., Ntalli N. G., Aissani N., Cavoski I., Angioni A. (2012). Nematicidal Activity of (E,E)-2,4-Decadienal and (E)-2-Decenal from Ailanthus altissima against Meloidogyne javanica. J. Agric. Food Chem. 60 (4): 1146-115.