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Abstract
Owing to the prevalence of nitrogen-containing compounds in natural products and 
important pharmaceutical agents, chemists, have actively searched for the develop-
ment of efficient and selective methodologies allowing for the facile construction 
of carbon–nitrogen bonds. Over the last decade, transition metal-catalyzed C–N 
bond construction via electrophilic amination reaction has emerged as an attractive 
approach for the synthesis of various organic molecules and pharmaceuticals. Par-
ticularly, O-benzoylhydroxylamines as an electrophilic aminating agent have proven 
to be the best and most widely used in both academic and industrial research. In this 
review, we highlight the key contributions to the recent transition metal-catalyzed 
C–N bond formation reactions using O-benzoylhydroxylamines as an aminating 
agent and their relevant mechanistic insights.

 * Rajshekhar Karpoormath 
 karpoormath@ukzn.ac.za

1 Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College 
of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa

2 Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, 
Republic of Korea

3 Department of Chemistry, Vivekanand College, Kolhapur (Autonomous), Maharastra 416003, 
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41061-022-00414-5&domain=pdf
http://orcid.org/0000-0002-1247-5754


 Topics in Current Chemistry           (2023) 381:4 

1 3

    4  Page 2 of 64

Graphical Abstract

BzO N

R2

R1

R3 H

R3 N
R1

R2

R4

R5
I

H

R4

R5
R3

N
R1

R2

OHR3

R3

O

N
R2

R1

Hydroamination reaction

R3
R4

R3

R4

R4

N

H

R3

R2R1

NH
OMe

O

R3

N
O

MeO

R3

N
R2

R1

R3
R4

R3

N

Bpin

R4

R2R1

Ring-closure reaction Ring opening reaction

Catellani reaction
Aminoboration reaction

Cross coupling reaction

O-benzoyl
hydroxylamine

Keywords O-Benzoylhydroxylamine · Electrophilic amination · Transition metal 
catalysis · Cross-coupling · Aminoboration · Hydroamination

1 Introduction

The carbon–nitrogen (C–N) chemical linkage is one of the fundamental bonds, 
widely present in various value-added products such as pharmaceuticals, syn-
thetic intermediates, natural products, coordinating ligands, etc. [1–5]. C–N bonds 
are typically formed via a nucleophilic substitution  (SN2) attack of nucleophilic 
nitrogen on an electrophilic carbon or a reductive amination. Various limitations 
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exist, however, especially in substrate scope with diverse functionalities [6, 7]. 
Several synthetic routes have been proposed to address these challenges, such as 
transition-metal-catalyzed cross-coupling reactions [8], especially Ullman–Gold-
berg [9, 10], and Buchwald–Hartwig [11, 12] type amination/amidation reactions 
(Fig. 1, route A), C–H nitrogen insertion [13], enzymatic reactions [14, 15], and 
nucleophilic addition to imines.

The transformation of the C–H bond into a C–N bond has great significance 
in synthetic chemistry. Especially, the formation of C–N bond via oxidative C–H 
and N–H cross-coupling processes in the presence of transition metal catalysis 
has been also standing as a significant and effective strategy for the synthesis 
of various amines [16–18] (Fig.  1, route B). On the other hand, an umpolung 
strategy-electrophilic amination has remained an attractive area in this field using 
an  R2N+ type electrophilic reagent in which  R2N+ is incorporated as a nitrogen 
source (Fig. 1, route C) [19].

Among the various modern synthetic strategies, electrophilic amination is an 
important and unconventional C–N bond formation process in organic synthesis. 
To date, many electrophilic aminating reagents have been developed and used in  
amination reactions (Fig. 2) [20, 21]. Among all of these electrophilic amination 
reagents, O-benzoylhydroxylamines are the most convenient and broadly used 
electrophilic aminating reagents [22]. Furthermore, these reagents have many 
advantages, such as being easy to synthesize, easy availability, high stability, and 
excellent reactivity in transition metal-catalyzed C–N bond formation reactions. 
Additionally, electrophilic amination reactions using O-benzoylhydroxylamines 
have rapidly evolved and have made some breakthroughs in organic transforma-
tion [23]. The present review aims to highlight the recent advances in C–N bond 
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formation strategies using O-benzoylhydroxylamines an electrophilic aminating 
reagent, covering the period from 2016 to the present day.

2  Transition Metal‑Mediated Approaches

The development of methods for introducing nitrogen functionality into organic 
frameworks is one of the major research topics in synthetic chemistry [24–27]. 
A large number of amino functionalities are present in different natural products, 
synthetic intermediates, and pharmaceutical agents, while traditional approaches 
to constructing carbon–nitrogen bonds often require several steps. Hence, metal-
mediated C–N bond formation has opened a new avenue regarding efficiency and 
applicability. Aside from seminal reports on the transition metal-catalyzed C–N 
bond formation via cross-coupling reactions, especially Ullman–Goldberg, and 
Buchwald–Hartwig amination reactions, independently developed transition metal-
catalyzed electrophilic amination procedures with the help of suitable electrophilic 
aminating agents. This method has been significantly advanced during the past dec-
ades and is now considered one of the most reliable synthetic routes for the con-
struction of C–N bonds. Among the electrophilic aminating reagents, O-benzoyl-
hydroxylamines have received the greatest attention and have been used in a variety 
of aminations, particularly in transition metal-catalyzed processes [28–30]. In this 
regard, this comprehensive review explored the use of Cu, Pd, Ni, and Co-catalyzed 
electrophilic aminations using O-benzoylhydroxylamines as an electrophilic aminat-
ing reagent (Scheme 1).

2.1  Amination of Alkenes and Alkynes

2.1.1  Hydroamination

The net hydroamination of alkenes via the umpolung electrophilic amination strat-
egy was first reported by Hirano/Miura group [37] and Buchwald group [38] using 
O-benzyl hydroxylamine and hydrosilane as a hydrogen source. Later, the same 
groups [38–41] developed newer and superior hydroamination methods. To comple-
ment this some new results and more particular, mechanisms of the reactions are 
discussed in the following section.
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2.1.1.1 Cu Catalyst Cu salts catalyzed net hydroamination of alkenes and alkynes 
with silane and electrophilic amination reagents or amine transfer reagents 
 (R2N-OBz) is a straightforward method for obtaining chiral amines. The scope of 
previously employed electrophilic aminating agents or hydroxylamines was con-
fined to N,N-dialkyl derivatives, but the suitable amendment in leaving group suc-
cessfully broadened their scope. Additionally, the decomposition of amine deriva-
tives with CuH species has predominantly happened in the case of N,N-dialkyl 
hydroxylamine derivatives. The Buchwald group described a modified method in 
2015, in which the diethylamino group was introduced at the para position of the 
benzoate leaving moiety. This alteration resulted in a significant improvement in 
stability and reactivity, allowing for the net hydroamination of secondary and ter-
tiary amines [42].

Simple styrene, cinnamyl alcohol/amine, and its cyclic derivatives have been 
found viable substrates for electrophilic hydroamination. The construction of bio-
logically important chiral N-arylamines (3) using modified electrophilic reagent and 
reaction conditions (N-hydroxylamine ester) was reported by Ichikawa et  al. [43]. 
They observed the reduction of N-hydroxylamine ester with CuH catalyst in prior 
work, thus they improved the approach to allow secondary anilines to be installed 
across the double bonds of styrene, 1,1 disubstituted alkene, and unactivated termi-
nal alkenes (1). The NMR studies indicated that the addition of tBuOH and  PPh3 
additives might reduce the unproductive reduction of N-hydroxylamine ester (2) and 
play a crucial role in this transformation. This modification resulted in a dramatic 
increase in reactivity and yield (Scheme 2).
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Scheme  1  Umpolung-enabled three-component-coupling type aminofunctionalizations of alkenes and 
alkynes



 Topics in Current Chemistry           (2023) 381:4 

1 3

    4  Page 6 of 64

Despite significant progress in Cu-catalyzed hydroamination methods, stere-
oselective hydroamination of strained unactivated alkenes remains a challenge. 
Because of the common stumbling blocks in these reactions, such as electrophile 
reduction with catalyst and the high barrier to reaction with CuH (hydrocupra-
tion). In this regard, the Cu(II)/(R)-DTBM-SEGPHOS-catalyzed diastereo- and 
enantioselective hydroamination of 1-substituted cyclobutenes (4) and cyclopro-
penes was reported by the Buchwald group in 2019 [44] (Scheme 3). The DFT 
calculations demonstrated that strained unactivated alkenes have a faster rate of 
hydrocupration than unstrained unactivated alkenes, allowing for hydroamination. 
1-aryl cyclobutenes delivered the desired product with Markovnikov selectivity 
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and formation of tetrasubstituted carbon in the 1-aryl cyclobutene product. How-
ever, in the case of 1-aryl cyclopropene derivatives, the opposite results (anti-
Markovnikov selectivity) were observed, which could be because selectivity for 
1-aryl cyclobutene derivatives was controlled by distortion energy in the hydro-
cupration transition state, whereas selectivity for 1-aryl cyclopropene derivatives 
was controlled by substrate–catalyst interaction. The key advantages of this reac-
tion are broad substrate scope, good functional group tolerance, and excellent 
stereoselectivity.

In the same year, they developed the one-step method for the synthesis of enan-
tioselective α-amino alcohols (10) from the unprotected allyl alcohols (8) and 
hydroxylamine ester (9) [45] (Scheme 4). The optimization studies suggested that 
the undesired product formation, particularly the reduction of allyl alcohol substrate 
can be controlled by using an appropriate solvent. Also, the exclusive formation 
of enantioselective α-amino alcohols instead of β-amino alcohols was due to the 
generation of more stable benzylic copper species in the hydrocupration step. The 
enantioselectivity-determining procedure could be explained by the proposed reac-
tion mechanism in Scheme 5. The dehydrogenative silylation between allylic alcohol 
(8) and silane gives silyl protected allyl alcohol (8a). Subsequent hydrocupration of 
silyl protected allyl alcohol (8a) afforded chiral alkyl copper species (8b), followed 
by electrophilic amination with hydroxylamine (9) ester delivered the desired enan-
tioselective α-amino alcohol product (10).

In 2019, Takata et al. [46] reported the hydroamination of vinyl phosphine borane 
(11) to afford medicinally and pharmaceutically important regioselective α-amino 
phosphine boranes (13) (Scheme 6). The regioselectivity was achieved by screening 
different biphoshine ligands and solvents, with the Cu(OAc)2·OH2/(R)-DTBM-SEG-
PHOS catalyst and the CPME solvent proving to be the most effective. The working 
hypothesis for the catalytic cycle of net hydroamination of vinyl phosphine borane 
includes in situ generation of Cu–H species, alkenes insertion to the Cu–H species 
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generating alkyl copper intermediate, and electrophilic trapping with hydroxylamine 
(Scheme 7).

Chromene scaffold is a privileged structural motif found in many natural products 
and bioactive compounds. Wang’s group [47] reported Cu/(R)-DTBM-SEGPHOS-
catalyzed asymmetric hydroamination of 2H-chromenes (14) to afford optically 
enriched 4-amino chromenes (16) (Scheme 8). The appropriate 4-amino chromene 
(16) derivatives were produced in good yield with excellent enantioselectivity using 
this procedure, which exhibited high functional group compatibility. Furthermore, 
both cyclic and acyclic O-benzylhydroxylamine (15) derivatives underwent the reac-
tion smoothly.

A Cu-catalyzed, regio- and enantioselective electrophilic amination of 1-trifluo-
romethyl alkenes (17) were developed by Miura et al. [48]. The reaction was per-
formed in presence of Cu (OAc)2·H2O (10 mol%) catalyst, p-tBu-dppbz (10 mol%) 
ligand, and CsOAc (2 equiv.) base, afforded corresponding hydroaminated product 
(19) was obtained in moderate-to-good yields (23–77%) (Scheme 9). Remarkably, 
the use of the (R)-DTBM-BINAP instead of p-tBu-dppbz ligand resulted in excel-
lent regio and enantioselectivity. This suggests that a precise ligand selection could 
prevent unwanted β-F elimination, specifically the biphosphine ligand-bearing elec-
tron-rich group on ortho- and -meta positions. Differently substituted trifluorome-
thyl alkene (17) and O-benzoylhydroxylamines (18) could be accepted.

In 2021, Nishino et  al. [49] demonstrated the net hydroamination of α,β-
unsaturated ester (20) with hydrosilane and hydroxylamine (21) to afford corre-
sponding medicinally significant α-amino acid (22a) and β-amino acid derivatives 
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(22b) (Scheme 10). Condition-dependent regiodivergency was seen in this trans-
formation; in the case of the Cu(OAc)2H2O/DTBM-dppbz catalytic system, the 
α-amino acid (22a) product was generated exclusively, whereas the Cu(OAc)2/
(S, S)-Ph-BPE catalytic system provided the β-amino acid derivative (22b) selec-
tively. Furthermore, the control experiments suggested that the appropriate base 
CsOPiv and remote steric hindrance bearing DTBM-dppbz ligand allows chal-
lenging C–N bond formation at the α-position of a carbonyl group. Likewise, the 
chiral ligands Xyl-BINAP or DTBM-SEGPHOS, which have comparable distant 
steric bulkiness, successfully control chirality at the β-position.

The attempts at asymmetric induction at the α-position were unsuccessful in 
the earlier example. However, the β,β-disubstituted substrate (20a) was converted 
to the optically active (22a) with high enantioselectivity but moderate diastere-
oselectivity using the (R)-Xyl-BINAP chiral ligand. This indicates that in the ole-
fin insertion step, effective asymmetric induction occurs at the β-position, but the 
generated copper enolate undergoes electrophilic amination at the α-position with 
poor diastereoselectivity (Scheme 11).

2.1.1.2 Ni Catalyst The selective hydroamination of the terminal and internal 
unactivated alkenes (23) to construct relative β- and γ-aminated products (β- and 
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γ-amino acid derivatives) (25) under the Ni catalyst was demonstrated by Hong 
et  al. [50] (Scheme  12). Notably, the regioselective syn isomeric product was 
obtained in the case of internal alkenes and the stereochemistry was confirmed 
by X-ray crystallographic analysis. The results of this study concluded that the 
coordination of the directing group to the nickel hydride intermediate in the alk-
ene migratory insertion stage via the inner-sphere installation of the amino group 
determines the syn-configuration. Further, the synthetic utility of this transforma-
tion was validated by site-selective late functionalization of the medicinally sig-
nificant complex molecules.

In 2021, the same group extended their methodology to more functionalized 
unactivated alkenes (26) via selective and migratory hydroamination strategy to 
incorporate various amino groups on (sp3) C of long aliphatic chains (Scheme 13) 
[51]. This transformation delivered selective γ-aminated (28) products with excel-
lent regioselectivity. The selectivity could be achieved at the migratory insertion 
stage by stabilizing the six-membered nickelacycle and directing the group complex, 
which further proceeds through oxidative addition followed by reductive elimina-
tion. Furthermore, the selective δ-amination was accomplished by employing picoli-
namide as a directing group to the alkene.

Based on the previous literature and controlled studies a possible mechanistic 
pathway was proposed (Scheme 14). Firstly, the alkyl nickel hydride intermediate 
(III) was produced by the insertion of nickel (I) hydride (I) into the olefins, which 
were formed by the merger of nickel precatalyst and hydrosilane (III), which further 
generates isomeric γ, δ-alkene intermediate (IV). Subsequently, the migratory inser-
tion step leads to the formation of nickelacycle (V). Finally, the stabilized directing 
group and nickel complex undergoes selective cross-coupled amination via oxidative 
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addition followed by reductive elimination to deliver the desired γ-aminated product 
along with BzO-NiILn (VIII) and regeneration of the catalyst.

As a continuous work, the Hong group [52] described Ni-catalyzed terminal 
and internal hydroamination of unactivated alkene (29) bearing weakly coor-
dinating amide or ester directing group with high enantio- and regioselectivity 
(Scheme  15). To improve the reactivity, and stereo selectivity series of modi-
fied bisoxazoline (BOX) chiral ligands and modified hydroxylamine ester was 
employed. The mechanistic studies indicated that chiral bisoxazoline-bound Ni 
species successfully exploit carbonyl coordination to accomplish enantio- and 
regioselective NiH insertion into alkenes. The key advantages of this unified 
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transformation are broad substrate scope, mild reaction conditions, and excellent 
enantio- and regioselectivity.

2.1.1.3 Co Catalyst In the past two decades, intramolecular hydroamination of amino 
alkenes has received much attention and has shown remarkable progress. However, 
intermolecular hydroamination of unactivated alkenes is still challenging, espe-
cially using cobalt salts. In this regard, Song et al. [53] described the intramolecular 
hydroamination of unactivated alkene (32) bearing removable directing group. The 
reaction afforded corresponding regioselective amino acid derivatives (34) under 
earth-abundant and inexpensive cobalt metal catalyst (Scheme 16). Differently sub-
stituted unactivated alkenes, such as β,γ- and γ,δ-unactivated alkenes, as well as even 
more difficult long-chain alkenes were reacted and delivered relative products by fol-
lowing the Markovnikov and anti-Markovnikov rules.

2.1.2  Aminoboration

2.1.2.1 Cu Catalyst In 2013, Hirano and Miura’s group reported the first example of 
Cu-catalyzed aminoboration, incorporating amino and boron groups simultaneously 
in a syn configuration to the styrenes [54]. In the following year, they came up with 
a modified synthetic protocol to achieve selective aminoboration of methyl cyclopro-
pene [55] and dicycloalkenes [56]. In continuation of their work, they further devel-
oped a ligand-controlled regiodivergent Cu-catalyzed aminoboration of unactivated 
terminal alkenes to prepare β-borylalkylamines in the same year [57]. In 2016, the 
same group developed the second-generation Cu and modified bipohosphine ligand 
catalyst to achieve regioselective amino-boration of terminal unactivated alkenes (35) 
(Scheme 17) [58]. A series of biphosphine ligands were modified and examined to 
obtain the desired product with regioselectivity in good yields, confirming that the 
DTBM-dppbz ligand was most effective. This newly developed catalytic system could 
install a readily transformable Bpin group at the hindered position, which allows the 
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aminoboration of the 1,1-disubstituted alkenes, which was previously inaccessible by 
using IPr-CuBr-based first-generation catalyst.

In the following year, the same group extended their methodology to a more 
functionalized terminal unactivated olefins (39) by employing modified reaction 
conditions such as the use of CuCl (10 mol%) as a catalyst and (R, R)-PTBP-BDPP 
(10 mol%) as a ligand. This modification enhanced the yield with regio- and enan-
tioselectivity ratios [59]. The bulky tert-butyl group on the para position of (R, R)-
PTBP-BDPP ligand is crucial in achieving high regio- and enantioselectivity. The 
regioselectivity was also dependent on the electronic and steric nature of hydroxy-
lamine (41). The major advantage of this transformation is that it allows the incor-
poration Bpin group at the terminal position, which could be converted into many 
functionalities (Scheme 18).

The plausible reaction mechanism is depicted in Scheme  19. Firstly, the gen-
eration of active boryl species L*Cu-Bpin (B) via σ-bond metathesis between 
L*CuOtBu (A) and Bpin-Bpin (40). Secondly, there is the formation of a C–N bond 
with hydroxylamine (41) via alkene (39) addition into L*Cu-Bpin (B), delivered the 
desired product (42/42′) and regeneration of L*CuOtBu (A).

Liu et al. [60] developed an efficient approach for the synthesis of α-aminoboron 
derivatives (47) via CuH-catalyzed hydroamination/hydroboration of terminal 
alkynes (44). Remarkably, this organic transformation preferentially yields the 
desired 1,1-heterodifunctionalized products rather than the alternative homodi-
functionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized 
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by-products with high regio-, enatio- and chemoselectivity (Scheme 20). This enan-
tioselective reductive 1,1-difunctionalization will be applicable to a wide range of 
transformations, allowing alkynes to act as direct progenitors of chiral scaffolds of 
diverse interest.

The key benefit of this reaction is that it has high enantioselectivity, which prompted 
the author to investigate the reaction mechanism (Scheme 21). Depending on the order 
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of events, the reaction could be possible through two reaction cycles. In Path A, hyd-
roboration occurs first, while in Path B hydroamination is the first sequence, respec-
tively. Then they put each of the potential intermediates, alkenyl Bdan (A) (Path A) and 
substituted enamine (B) (Path B), through the standard reaction conditions to determine 
which path was operative. Based on the results of this experiment, it was discovered 
that alkenyl Bdan (A) could be transformed into the desired product with enantiomeric 
excess, similar to the cascade process, whereas enamine (B) resulted in decomposition. 
Additionally, the kinetic studies concluded that path (A) was operative.

2.1.3  Carboamination

2.1.3.1 Cu Catalyst Wang et al. developed a three-component reaction for the selec-
tive functionalization of 1,2 dienes (48) using O-benzoyl hydroxylamines (50) as an 
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electrophilic amination agent, the carboxylic acid (49) as a nucleophile in presence 
of Cu catalyst [61]. This transformation is operative for both terminal as well as 
internal alkenes and delivers respective amino alcohols (51) via amino oxygenation 
reaction (Scheme 22). After a series of optimization studies and control experiments, 
the authors concluded that the reaction could be initiated by the Cu-catalyzed elec-

R1 OH

O
+ +

R4
N

R5

OBz Cu(OAc)2 (1 mol%)

DCE/2-MeTHF
60 oC, 5h

O

O

R1
N

R5

R4

O

O

Ar
N

50 examples
Yield upto 76%

R2 R3
R2 R3

76%

O O

O

N
O

F
F

F

F
F

65%

O

O

Ar

N

Cl

57%

O

O

O

Ar
N

Cy

Cy

ND

49 48 50 51

Me Me
MeMe

Scheme 22  Cu-catalyzed 1,2 amino oxygenations of 1,3 dienes

R1

R2 + O O
B
R3

+ N R5

OBz

R4

CuCl (5 mol%)
dppbz (6 mol%)

m-CPBA (5 mol%)

NaOtBu (1.5 equiv)
THF, rt,

R1

R2

NR4
R5

R3

63 examples
Yield= 35 to 99%,
upto 91:9 e.r. and
98:2 d.r.

R3=aryl, heteroaryl, vinyl

52 53 54 55

PAr2

PAr2

Ar=Ph

Ligand: dppbz

ArAr
R1

Bneop

+

R2
N
Obz

R3

CuCl (5 mol%)
(R,R)-Ph-BPE (6 mol%)

m-CPBA (5 mol%)
NaOt-Bu (1.5 equiv)
THF, N2, 25 oC

ArAr

N

R1

R2

R3

35 examples
Yield 38 to 92%
Upto 99% ee

56

57

58
59

P P

Ph

PhPh

Ph

Ligand: (R,R)-Ph-BPE

A. Zhao's Cu-catalyzed aryl cyclopropane amine synthesis from cyclopropenes.

B. Zhao's Cu(I)-catalyzed enantioselective alkenylamination of cyclopropene with O-benzoyl hydroxylamine.

Scheme 23  Zhao’s Cu-mediated alkenylamination of cyclopropenes strategy



1 3

Topics in Current Chemistry           (2023) 381:4  Page 19 of 64     4 

trophilic amination of diene followed by the oxidative addition of carboxylic acid. 
The control experiment with BHT radical scavenger indicated that the reaction could 
proceed through the SET radical pathway.

In 2019, Zhao et  al. [62] developed a Cu-mediated multicomponent, 2-ary-
cyclopropyl amine (55) synthetic protocol from cyclopropene (52) with higher 
enantioselectivity (Scheme 23A). This was the first general synthetic route for the 
construction of 2-arycyclopropyl amine (55) via intramolecular olefin carbocu-
pration with organo Cu promoted by organoboron reagents through transmetala-
tion. Notably, the biphosphine ligand with a small bite angle is crucial to achiev-
ing enantioselectivity. Due to the electronic requirement for migratory insertion, 
the organoboron reagent with an electron-withdrawing group or electron-deficient 
species afforded maximum yield as compared to electron-rich species. On the 
other hand, the electrical character of meta- and para-substituted cyclopropenes, 
did not affect the yield of the reaction.

In the following year, the same group came up with a similar strategy with 
improved enantioselectivity by incorporating selective ligand along with Cu cata-
lyst and alkenyl organoboron reagent. To achieve improved enantioselectivity 
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with good-to-excellent yield, the authors examined a series of ligands and 
observed that the (R, R)-Ph-BPE ligand afforded the desired products in moder-
ate to high yields (38–92%) with up to 99% enantiomeric excess. The variously 
substituted cyclopropenes (56), alkenyl organoboronates (57), and O-benzoyl 
hydroxylamines (58) successfully participated in this reaction and delivered the 
corresponding enantiomeric product (59) (Scheme 23B) [63].

Scheme 24 presents the proposed mechanism. The CuOt-Bu (A) is formed in situ 
by a reaction of Cu species with base NaOt-Bu undergoes transmetalation with alk-
enyl boronates (57) to give intermediate (B), subsequent migratory insertion with 
cyclopropene (56) to form (D) via π-complex (C). At step (C), the other diastere-
omeric (C′) complex could form because of a larger alkenyl substituent, which 
occurs in higher-energy intermediate in rapid equilibrium. However, due to the low 
energy of complex (C), it preferentially provides kinetic isomer (D) by undergoing 
faster and irreversible migratory insertion than kinetic isomer (D′). Finally, complex 
(D) reacts with the electrophilic aminating agent (58) to afford the final product (59).

An asymmetric Cu-catalyzed carbometallation of polysubstituted cyclopropenes 
(60) followed by electrophilic oxidation and amination provided rapid access for the 
synthesis of diastereo- and enantioselective cyclopropanol and cyclopropylamine 
derivatives (62) was described by Marek et al. [64]. The reaction proceeds in two 
steps, the first step is transmetalation of cyclopropene followed by subsequent elec-
trophilic amination via transmetalation (Scheme 25). The key feature of this reaction 
is broad substrate scope, good functional group tolerance, retention in configuration, 
and moderate-to-good yields with high diasteroeo- and regioselectivity.

In 2020, Wang et al. disclosed the aminoacyanation of terminal alkene via 1,4 
or 1,5-cyano migration using O-benzoyl hydroxylamine and p-toluene sulfonic 
acid as an additive under Cu-catalyzed conditions [65]. Although the role of 
Brønsted  acid as an additive for increasing the yield was unclear, it may proto-
nate amines and prevent Cu catalyst deactivation. The experimental studies and 
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mechanistic pathway suggested that the reaction could be initiated by Cu-cata-
lyzed amine radical addition to olefin.

In continuation of the work on radical-based functional group transformation, 
Wang’s group [66] established a new and simple method for synthesizing hetero-
aryl ethylamine derivatives (65) from unactivated alkenes (63) by electrophilic 
amination using O-benzoyl hydroxylamine (64) followed by distal heteroaryl 
migration (Scheme 26). The attractive advantage of this transformation is, that it 
has the appealing feature of removing a barrier for hydroxyl moiety requirement 
in the field of functional group transformation and applies to a wide range of 
functionalities, including alcohols, amides, and ether-containing alkenes. Addi-
tionally, this protocol could be useful to access the medium-sized ring via the 
ring expansion process, especially for ketone-bearing hetero arene groups.
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Shen et al. [67] reported a novel and convenient Cu (OTf)2-catalyzed oxidative 
amidation of terminal alkynes (66) for the synthesis of α-α-ketoamides (68) by using 
O-benzoyl hydroxylamines (67) as aminating reagent as well as oxidant, DBU as a 
base, in THF at room temperature. This novel synthetic route displayed functional 
group tolerance and provided α-ketoamides in modest to good yields, However, the 
aliphatic alkynes and secondary hydroxylamines could not participate in this reac-
tion. This protocol promoted attractive features including the use of easily available 
O-benzoylhydroxylamine as an oxidant as well as aminating reagent (Scheme 27).

2.1.3.2 Ni Catalyst In 2018, Nickel-catalyzed synthesis of β- and γ-amino acid or 
ester derivatives (71) from non-conjugated alkenes (69), alkyl or aryl zinc nucleo-
philes, and O-benzoyl hydroxylamine (70) electrophiles via intramolecular umpo-
lung carboamination reaction was developed by Engle et al. [68] (Scheme 28). In 
this transformation, 8-amino quinoline was used as a directing group, which plays 
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an important role in regiochemical product formation by controlling two-compo-
nent coupling between N–O electrophiles and zinc nucleophiles. The reaction is 
compatible with a wide range of functional groups. However, sterically hindered, 
and primary amines could not afford the corresponding product. Furthermore, the 
reaction was performed on a gram scale to demonstrate its synthetic utility and 
delivered the corresponding product with an 83% yield.

In 2021, Wang’s group [69] described Ni (II)-catalyzed, picolinamide-directed 
intramolecular syn 1,2 arylamination of unactivated aliphatic alkenes (72) uti-
lizing aryl boronic acids (73) and O-benzoylhydroxylamine (74) electrophile 
(Scheme 29). The control experiments and mechanistic study revealed that biden-
tate picolinamide helps the formation of 4-, 5-, or 6-membered nickelacyles and 
enabled the difunctionalization of an alkene by incorporating the aryl group and 
amino group across the C=C bond. Notably, this transformation delivered a trans-
isomeric product (75a) with great diastereoselectivity in the case of α-substituted 
alkene, even though two stereocenters were remote from each other.

2.2  Amination of Organometallic Nucleophiles

Several synthetic protocols or methods have been developed in which hydroxy-
lamine derivatives are employed in cross-coupling reactions instead of external 
oxidants (air or  O2). Thus, the transition metal-catalyzed amination of various 
organometallic reagents gained attention. Several organometallic species have 
been utilized in recent years, although organoboron derivatives have remained the 
most preferred reagents.

2.2.1  Organoboron Nucleophile

2.2.1.1 Cu Catalyst The amination of organoboron reagents using hydroxylamine-
O-sulfonic acid was first reported by Brown [70–72], however, the uncatalyzed reac-
tion could only be used to form primary amines. Later, in 2012, Hirano and Miura’s 
group reported the first transition metal-catalyzed aminoboration of organoboron rea-
gents via an electrophilic amination strategy using O-benzoyl hydroxylamine as an 
aminating agent [73]. Later, the same group [54, 55] and others [74–77], disclosed 
advanced methodologies with increased yield and chemo- and regioselectivity.

In 2016, Miura et al. [78] developed the aminoboration of alkenyl dan boro-
nates (76) with diboron reagents (77) and O-benzoylhydroxylamines (78), using 
Cu(OAc)2 (10 mol%) and dppp ligand (10 mol%) in presence of LiO-tBu base in 
THF at room temperature (Scheme 30). This reaction provided desired stereose-
lective β-boryl-α-aminoboronates (79) in good yields (57–92%) in 4 h. A series 
of sterically demanding substrates such as benzyl, isopropyl, cyclohexyl were 
compatible under these reaction conditions. However, styrylboronate substrates 
delivered a mixture of regio and stereoisomers (79a) with standard conditions 
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(Scheme 30). It is worth mentioning that the application of asymmetric catalysis 
was achieved by using chiral biphosphine ligands [(R,R)-Ph-BPE].

Although the detailed mechanistic pathway was unclear, based on previous 
literature a preliminary reaction mechanism was proposed in Scheme 31. Based 
on the mechanistic studies, they predicted that the stereochemistry of the prod-
uct (79aa) could be determined at the C–N bond-forming step and could be 
dependent on the external ligand. Further, the hyperconjugation between Cu-C 
sigma bond and vacant p orbital of boron could control the subsequent regiose-
lective syn-borylcupration.
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2.2.1.2 Pd Catalyst Tu group [79] described the one-pot synthesis of sulfonamides 
(82) in excellent yields from readily available boronic acids (80), DABSO, and O-ben-
zoyl hydroxylamine (81) using Pd–Cu bimetallic catalytic system in the following 
year (Scheme 32). Good-to-excellent yields (54–97%) were obtained with a variety 
of functionalized compounds. Based on the mechanistic study, the reaction could 
proceed through the radical pathway. The proposed reaction mechanism is shown 
in Scheme 32. Initially, the addition of aryl boronic acid (80) on Pd(II), followed by 
transmetalation and  SO2 insertion gives Pd (II) species (A). The sulfinylation cata-
lytic cycle was restored in presence of TBAB resulting in the formation of ammo-
nium sulfinate, followed by sodium carbonate addition to give sodium sulfinate. CuBr 
was made from  CuBr2 and sodium sulfinate through a free radical approach. Then, 
Cu(I) species (B) was formed by a reaction between CuBr and sodium sulfinate in 
the second transmetalation process. Subsequent oxidative addition with O-benzoyl-
hydroxylamine (81) generates Cu(III) species (C), and further reductive elimination 
delivers desired product (82) and regenerates the catalyst.

2.2.2  Organozinc Nucleophiles

2.2.2.1 Co Catalyst The electrophilic amination using aryl or heteroaryl zinc piv-
alates (83) with O-benzylhydroxylamine (84) in presence of Co catalyst has been 
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developed by Knochel et al. [80], forming a series of corresponding tertiary arylated 
and hetero arylated amines (85) at room temperature (Scheme 33). The strong coor-
dination of the TMP base with cobalt deactivates the catalyst, hence the organozinc 
pivalates are synthesized by direct metalation using TMPMgCl.LiCl was not applied 
to this reaction. However, the addition of 5% TMEDA avoided the deactivation of 
the catalyst. The synthetic utility of this reaction was explored for the synthesis of 
potential anti-tubercular agent Q203.

In the following year, the same group described the general method for the syn-
thesis of polyfunctional hydroxylamine benzoates (87). These compounds were 
further used for electrophilic amination of aryl, alkyl, and heteroaryl zinc chlorides 
(86), which delivered corresponding tertiary aminated products (88) in the presence 
of a  CoCl2 catalyst. Good functional group compatibility of both aryl zinc chloride 
and hydroxylamine benzoate was observed in these studies. The synthetic utility of 
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this protocol was proved by the synthesis of complex target amines such as penfluri-
dol and gepirone (Scheme 34) [81].

2.2.3  Organoaluminium Nucleophile

2.2.3.1 Cu Catalyst Cu-catalyzed electrophilic aminations of organometallic rea-
gents with O-benzoyl hydroxylamines have emerged as an attractive method for the 
formation of C–N bonds. In this connection, Yoon et  al. [82] investigated a new 
facile method for the synthesis of 1,2-diaryl-substituted enamines (92) via Cu-cata-
lyzed electrophilic amination reaction of O-benzoyl hydroxylamines (91) with vinyl 
aluminum reagent (90). The reagent (90) was formed in situ from the Ni-catalyzed 
hydroalumination of readily available internal aryl acetylenes (89). This method 
opened a new platform for the preparation of novel diaryl, dialkyl, and heteroaryl 
substituted enamines with excellent yields and stereoselectivity (Scheme 35).
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2.2.4  Organosilane Nucleophiles

2.2.4.1 Cu Catalyst In 2020, Shimokawa et  al. [83] reported a Cu-catalyzed elec-
trophilic amination of aryl silanes (93) to afford corresponding tertiary anilines (95) 
under mild conditions. In this transformation, silver fluoride plays a crucial role and 
serves as a base as well as an activator in the catalytic process (Scheme 36). Good-to-
moderate yields were obtained with a variety of functionalized compounds.

2.2.5  Organomagnesium Nucleophile

2.2.5.1 Cu Catalyst In 2019, the Lee group [84] demonstrated a one-pot, multicom-
ponent synthesis of 2-amino benzoxazole (99) via Cu-catalyzed electrophilic amina-
tion. This reaction proceeds through in situ magnesation with i-PrMgCl (97) followed 
by electrophilic amination using O-benzoyl hydroxylamine (98) of benzoxazole 
derivatives (96) to deliver the desired product. The key features of this method are 
wide substrate scope, functional group compatibility, and milder reaction conditions 
(Scheme 37).
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2.3  Annulative Amination

2.3.1  Cu Catalyst

Xu et al. reported [85] Cu(I)-catalyzed interrupted click reaction for the synthesis of 
various 5-functionalized triazoles (103). The proposed reaction proceeds under very 
mild conditions with the help of a small catalytic amount of inexpensive Cu catalyst 
without the need for external ligands (Scheme 38). The reaction was also tested for 
building different-sized rings by intramolecular cyclization. They also demonstrated 
the two-step synthesis of the antifungal medication thiadiazole. The reaction feature 
includes a broad substrate scope and good functional group compatibility.

In continuation of their work on Cu-catalyzed electrophilic amination, Wang’s 
group [86] described a novel strategy for the amino etherification of a variety of 
alkenes (104) to afford diverse amino- oxygen-containing cyclized skeletons (106). 
Indeed, the mechanistic investigation revealed that electrophilic amination might 
trigger the reaction, providing a unique platform for introducing electron-rich amine 
directly into the alkenes. The key feature of this methodology includes amination 
with in situ cyclization, broad substrate scope, good functional group tolerance, and 
good regioselective (Scheme 39).

Based on experimental results, a possible mechanistic pathway was proposed as 
shown in Scheme 40. The active amino-Cu (III) intermediate (B) generated by the 
reaction of Cu and O-benzoylhydroxylamine (105), was subsequently triggered by 
an electrophilic amination of olefins (104) to give Cu (III) intermediate (C). The 
intermediate (C) leads to the formation of an amino oxygenated product (106). 
Meanwhile, this reactive intermediate (C) could undergo β-hydride elimination to 
deliver allylamine and generate radical species (D) via homolytic cleavage, which 
may be trapped by TEMPO.
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In 2019, Wei et al. [87] described novel and rapid access for the synthesis of 
dihydroquinolinones (109) from readily accessible isocyanides (107) and O-ben-
zoyl hydroxylamines (108) under Cu catalysis. Based on the control experiments 
and mechanistic studies, they concluded that the reaction might proceed through 
the isocyanide insertion into the N–O bond, Mumm-type rearrangement, and 
intramolecular nucleophilic substitution (Scheme 41).
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2.3.1.1 Pd Catalyst In 2018, Wolfe et al.  [88] disclosed a new and facile strategy for the 
synthesis of the diastereoselective dialkylamino-methyl group bearing cyclic urea (112) 
or guanidines (112′) derivatives from N-allylurea (110) or N-allyguanidines (110′) and 
O-benzoyl hydroxylamines (111) as electrophilic amination partner via Pd-catalyzed 
deamination reaction (Scheme 42). Cyclic hydroxylamines performed well under stand-
ard conditions. However, acyclic hydroxylamine derivatives especially derived from 
N-methyl benzylamine gave a complex mixture of products. Likewise, the allyl methyl 
bearing allylguanidines (110) and allylurea (110′) substrates delivered the N-aminated 
products in good yields with moderate diastereoselectivity (3:1 dr).

The mechanistic pathway indicated that this transformation proceeds through the 
 sp3C and  sp3N bond formation (Scheme 43), which was facilitated by bulky, electron-
deficient JackiePhos ligand. The anti-addition of alkene-bearing β-hydrogen atom on 
amino-Pd complex undergoes  sp3C-sp3N bond-forming, followed by reductive elimina-
tion afforded corresponding cyclic urea or guanidines derivatives.

2.4  Aminosulfonation

2.4.1  Cu Catalyst

A novel and convenient cascade strategy to synthesize N-aryl sulfonamides (116) 
through Cu(II)-catalyzed transsulfinamidation of sulfinamide with O-benzoyl 
hydroxylamine was explored by Bolm et  al. (Scheme  44) [89]. Subsequent oxida-
tion with m-CPBA gives corresponding sulfonamides in higher yields (35–89%). The 
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substituents such as halo, cyano, methoxy, carboxyl group, etc., on N-aryl sulfinamides 
exhibited good compatibility even though the steric effect could not alter the reaction 
outcome. Additionally, reactions with various hydroxylamines were performed well 
and delivered the product in good-to-excellent yields. On the other hand, increased 
steric hindrance around the amino group decreases the reaction yield.

2.4.2  Pd Catalyst

In 2017, Le and Tu’s group [90] developed a method for direct aminosulfonylation of 
aryl iodides (117) through ligand-free bimetal-mediated one-pot reaction (Scheme 45). 
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Moderate-to-good yields (52–81%) were obtained with a variety of functionalized 
compounds. Based on the mechanistic route of this reaction, Cu(I) species could be 
accountable for the electrophilic amination of sulfinate, which was generated in  situ 
from CuBr. The key features of this transformation are one-pot, ligand-free, broad sub-
strate scope, good functional group transformation, low catalyst loading, and straight-
forward access to structurally diverse sulfonamides.

A plausible reaction mechanism was proposed as shown in Scheme 46. Initially, the addi-
tion of aryl iodide (117) on Pd (II), followed by transmetalation and  SO2 (118) insertion gave 
Pd (II) species (A). The sulfinylation catalytic cycle was restored in the presence of a base 
resulting in the formation of ammonium sulfinate, followed by sodium carbonate addition to 
give sodium sulfinate. CuBr is made from  CuBr2 and sodium sulfinate through a free radical 
approach. Then, Cu(I) species (B) was formed by a reaction between CuBr and sodium sulfi-
nate in the second transmetalation process. Subsequent oxidative addition with O-benzoylhy-
droxylamine (119) generates Cu(III) species (C), and further reductive elimination delivers 
desired product (120) and regenerates the catalyst.

2.5  Decarboxylative Amination

2.5.1  Cu Catalyst

Wang et  al. transformed the conjugated β,γ-unsaturated carboxylic acids (121) 
into respective allylic amines (123) by employing Cu catalyst and O-benzoylhy-
droxylamines (122) via decarboxylation (Scheme  47) [91]. Under the standard 
condition, both electron-donating and -withdrawing groups performed success-
fully to give corresponding allylic amines in good-to-excellent yields. How-
ever, the steric hindrance at the γ-position of carboxylic acid, as well as pyrro-
lidine-based and acyclic hydroxylamines, delivered the desired product in low 
yields. Notably, the reaction did not proceed in the case of substituted aliphatic 
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substrates. This reaction is also applicable for decarboxylative alkylation and sul-
fonylation of β,γ-unsaturated carboxylic acids.

The proposed reaction mechanism pathway is displayed in Scheme 48. Firstly, 
the active Cu(I) catalyst was generated by the deprotonation of Cu (II) complex 
(A) followed by the oxidative addition of radical precursor O-benzoylhydroxy-
lamine (122) to Cu(I) to give complex (B). This could exist in equilibrium with 
a Cu (III) species (B’). Secondly, the intermediate (D) and (F) were obtained 
by the following addition to olefins (E) that could occur at the γ-position of β, 
γ-carboxylic acids (121). Finally, the intermediate (D) and (F) undergo decarbox-
ylation giving the desired product (123) with the regeneration of Cu (I).

In 2018, a general one-pot strategy for the construction of diverse sulfona-
mides (126) was developed by Zhang et al. using in situ generated sulfenate anion 
(124) and O-benzoyl hydroxylamine (125) as an electrophilic aminating agent 
[92]. After a series of optimization studies, they observed that using 10 mol% of 
CuI catalyst, 10 mol% of bpy ligand, and 2 equiv. of  LiOtBu base afforded maxi-
mum yield (up to 96%) in toluene at 10 °C. Some highlights of this reaction were 
wide substrate scope, easily available precursors, mild conditions, and good func-
tional group tolerance (Scheme 49).
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In 2021, the Larionov group [93] described the decarboxylative amido sulfona-
tion strategy for the direct access of sulfonamide (129) from carboxylic acid (127). 
The reaction involves the electrophilic and nucleophilic amination of carboxylic 
acid to sulfonic acid under the dual catalyzed system, i.e., photocatalyst acridine and 
Cu catalyst in a one-pot fashion. This protocol showed the wide substrate scope for 
both carboxylic acids and hydroxylamines and good functional group compatibility. 
Remarkably, not only Cu(I) but also Cu (II) catalysts such as  CuF2 could also pro-
mote this transformation (Scheme 50). In the absence of light and photocatalyst, the 
acridine reaction did not proceed. Other classes of photocatalysts such as Ir and Ru-
based failed to deliver the desired sulfonamides. Certainly, the slight modification in 
standard reaction conditions could promote the amino sulfonation of anilines.
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2.6  Ortho Amination

2.6.1  Cu Catalyst

Jana et al. [94] achieved Cu(II)-catalyzed, ortho-selective amination by employing 
O-benzoyl hydroxylamines (131) as a nitrogen source at 80  °C. The amino group 
was installed at the ortho position of arenes or polycyclic arenes (130) involving 
naphthalene, quinoline, etc., with the assistance of 2-picolinamide as a directing 
group. This reaction showed a broad range of substrates scope and afforded corre-
sponding anilines, napthylamines, and heterocyclic amines (132) in good-to-excel-
lent yields. Both cyclic and acyclic hydroxylamines were well tolerated, however, 
except for six-membered cyclic amines, other cyclic compounds showed compara-
tively low yields. Notably, this reaction is air and oxygen-sensitive, in presence of 
air or oxygen product decomposition or over oxidation may occur, lowering the 
yields. It is worth noting that this reaction could deliver a corresponding aminated 
product in  H2O (Scheme 51).

A preliminary mechanistic pathway for Cu(II)-catalyzed amination is shown in 
Scheme  52. The Cu(II) catalyst coordinated with bidentate 2-picolinamide (130) 
generates Cu-complex (A). This intermediate further undergoes single-electron 
reduction via the SET process to form Cu(I) complex (B′), which could be more 
stable for naphthalene form (B″). Subsequent oxidative addition with O-benzoyl 
hydroxylamine (131) generates Cu (III) complex (C) followed by amine allocation 
(D) deprotonation offers desired aminated product (132) with catalyst recyclization.

Guo et al. [95] described an efficient approach that furnishes α-aminocyclohexa-
2,4-dienones (135) from simple phenols (133) and O-benzoyl hydroxylamines (134) 
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with the aid of Cu(II) catalysis (Scheme  53). Based on the optimization studies, 
10 mol% of Cu(OTF)2, 2 equiv. of LiO-tBu gave moderate-to-excellent yields (26 
to 96%) in THF at 40  °C under a nitrogen atmosphere for 12 h. This transforma-
tion showed excellent functional group tolerance and broad substrate scope. Fur-
thermore, when ortho- and para-substituted phenols were used, the reaction pro-
duced selective ortho-aminated compounds concerning the hydroxyl group with 
good yields. Additionally, both cyclic and acyclic O-benzoyl hydroxylamines were 
performed well under the standard conditions. Though the preliminary mechanis-
tic pathway of this transformation is unclear, based on the control experiments and 
kinetic studies the authors suggested that the reaction could proceed in two possible 
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ways. Either by SET with N center radical attack on phenol or through an inner 
space process involving nucleophilic addition of phenol to an electrophilic Cu (III)-
amino complex.

In 2021, the same group disclosed a protocol for the synthesis of selective ortho-
amino azuenols (138) under mild reaction conditions. In this reaction 2-azuenols 
(136) react smoothly with O-benzoylhydroxylamines (137) under Cu(I) catalyst, 
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10  mol% Cu (OAc), 2 equiv. LiOtBu affording 3-amino azuenlos with moderate-
to-good yields (up to 75%) in DCM at 40 °C for 12 h. The mild reaction conditions, 
a simple approach, good functional group tolerance, and a scalable strategy are the 
key features of this methodology [96] (Scheme 54). Notably, even when the reaction 
was carried out in an open atmosphere, the yield was unaffected.
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The plausible reaction mechanism (Scheme 55) involves the formation of Cu(I) 
azulenolate species (A) from the ligand exchange of Cu(I) with azulenolate (136). 
Cu (III) species (B) is formed by the oxidative addition of O-benzoylhydroxylamine 
(137) to Cu(I). The equivalent Cu (II)N-centered radical form (C) Cu (II)·NRR′, 
is formed by the quick equilibration of (B). Then, the inner space electron transfer 
process would generate intermediate (D) by the attack of N-centered radical on the 
ortho position of azuenols via the pseudo-five-membered ring and recyclization of 
Cu (I). Finally, dearomatization of (D) offers the final product (138).

In 2021, Rao et al. [97] reported a Cu-catalyzed electrophilic amination of benza-
mides (139) to form selective mono-aminated products (141) using 8-aminoquino-
line as a directing group (Scheme 56). The benzamides with a variety of functional 
groups underwent the reaction smoothly and delivered the product in good yields. 
Likewise, diverse hydroxylamines (140) performed well, However, the five-mem-
bered cyclic pyrrolidine hydroxylamines could not be achieved under this reaction 
condition. On the other hand, acyclic hydroxylamines participated in this transfor-
mation with relatively low yields. Further, the preliminary mechanistic pathway 
of this reaction was investigated by control experiments with radical scavengers 
(TEMPO) and competitional experiments of benzamide and O-benzoyl hydroxy-
lamines. These results revealed that C–H activation might be preferable in the rate-
determining step and that the reaction might not follow the radical pathway.

2.7  Catellani Reaction

The Catellani reaction was discovered by Marta Catellani [98] and is a strong 
method to synthesize highly substituted aromatic compounds and fused aromatic 
rings due to its ability to functionalize both ortho- and ipso-positions of aryl 
iodides in a single transformation [99–103]. Dong et  al. introduced the first Pd/
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norbornene-catalyzed C–H amination of aryl halides in 2013, incorporating amino 
group on the ortho-position of the halogen substituent [104]. Later, Chen group 
[105, 106], and others [107–110] reported novel and modified synthetical protocols 
with broad substrate scope and high selectivity. In this section, we are discussing 
recent breakthroughs made in Catellani C–H amination.

In 2016, Wang et  al. [111] demonstrated a Pd/norbornene-catalyzed selective 
ortho amination of iodoarenes (142) using O-benzoyl hydroxylamine electrophile 
(143) via Catellani-type reaction. The ortho electrophilic amination followed by ipso 
vinyl ether termination delivered the corresponding diverse ortho aminated O-acetyl 
aniline derivatives (145) in moderate-to-excellent yields (44–94%). The series of 
control experiments and mechanism studies suggested that the benzyl vinyl ethers 
could serve as an alternative for carbonyl sources in Pd/norbornene catalysis for final 
termination reaction to deliver the desired product with selectivity (Scheme 57).

The mechanistic hypothesis of Pd/norbornene-catalyzed ortho amination reac-
tion is illustrated in Scheme  58. Primarily, the aryl Pd (II) species gives the 
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five-membered Pd complex (A) via NBE insertion and C–H palladation which was 
formed by oxidative addition of 2-iodotoluene (142) with Pd (0). Subsequently, the 
generation of Pd (IV) complex (B) by the oxidative addition of Pd complex (A) with 
O-benzoyl hydroxylamine (143), further forms a C–N bond through reductive elimi-
nation. Finally, the Heck reaction of ortho-aminated Pd (II) species (D) formed by 
norbornene ejection of complex (C) and gave the final product (145).

In 2016, Ranu et al. [112] reported an ortho C–H amination followed by the ter-
minal C–C cross-coupling/ipso cyanation of iodoarenes under Pd/norbornene catal-
ysis to afford the respective 2-amino benzonitriles (149) (Scheme 59). Notably, this 
synthetic protocol provided Hexa-substituted product bearing two cyano and four 
amino functionalities under standard conditions (Scheme 60). The major advantage 
of this reaction was the wide substrate scope, mild reaction conditions, good func-
tional group tolerance, and applicability on a gram scale with good yields.

Lauten’s group [113] described Pd-catalyzed, norbornene-mediated synthesis of 
diverse ortho-aminated benzonitriles utilizing Zn(CN)2 (152) as a terminating agent 
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via tandem C–C and C–CN bond formation in the same year (Scheme 61). The same 
group reported the first example of the terminating agent with Zn(CN)2 in 2006. The 
optimization studies indicated that the stoichiometric amount of norbornene and the 
selection of an appropriate bidentate ligand had a substantial impact on the reaction. 
A wide range of functional groups was compatible with this synthetic strategy and 
corresponding O-aminated benzonitrile (153) were obtained in good-to-excellent 
yields (29–93%).

The proposed catalytic cyclic is presented in Scheme  62. A five-membered Pd 
complex (B) was generated by oxidative addition and copalladation of norbornene 
which led to the formation of intermediate (A), followed by the base-assisted ortho 
C–H activation and HI elimination. Subsequently, the amination complex (C) was 
formed by direct ortho amination of Pd complex (B) via N–O bond cleavage. In the 
end, the elimination of norbornene followed by the ipso cyanation offered the final 
product along with the Pd (0). In the case of aryl iodides with no ortho substitution, 
repeated C–H activation at both Ortho positions of complex (C) may occur, result-
ing in the formation of a five-membered Pd complex (E) and an amination com-
plex (F). Lastly, the final deaminated product was obtained by following the same 
pathway.

In the following year, the same group [114] described a novel method for the 
synthesis of diverse ortho-aminated dihydroquinolinones (156) via sequential 
intermolecular amination followed by intramolecular cyclization (Scheme  63). 
Several control experiments were performed to reduce the amount of by-prod-
uct (156a) (intramolecular cyclization lacking ortho-amination) formation, sug-
gesting that equiv. of norbornene and its ratio with a Pd catalyst plays a crucial 
role. The 4 equiv. of norbornene and 1:5 Pd:norbornene ratio were found to be 
optimal. Additionally, the formation of the by-product (156a) was preferential in 
more polar solvents. This reaction exhibits broad substrate scope and good func-
tional group tolerance.
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In 2017, Luan et al. [115] reported a three-component coupling reaction to afford 
highly functionalized spiroindenes (160) via C–H amination and phenol dearoma-
tization under the Pd/norbornadiene catalytic system (Scheme  64). This approach 
allowed the simultaneous formation of one C–N and two C–C bonds in a single 
transformation. A variety of bipohosphine ligands were evaluated with a Pd(OAc)2 
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catalyst to limit by-product creation; the electron-rich P(p-MeO-C6H4)3 ligand was 
determined to be the best. Notably, asymmetric phenol could be accommodated in 
this reaction, yielding diastereo- and enantioselective spiroindenes.

In 2018, Dong’s group [116] reported chemoselective mono ortho substitution of 
unsubstituted aryl iodides (161) (Catellani-type reaction) and ipso functionalization 
utilizing a newly designed norbornene co-catalyst that worked as cooperative with a 
Pd catalyst, which could avoid the ortho constraint (Scheme 65). Introducing a spe-
cific sterically hindered group at a bridgehead carbon of NBE  (C1 or  C4) could pro-
mote β-carbon elimination by destabilizing second C–H metalation in TS through 
the steric interaction between the R group of aryl iodide and O-benzoyl hydroxy-
lamine (163) or with a ligand that would provide the mono ortho-substituted prod-
uct. The alkyl group on bridgehead carbon of norbornene afforded the final prod-
ucts in good yields, and n-heptyl-substituted norbornene was found ideal. Several 
optimization studies suggested that Pd, norbornene, and ligand are essential for this 
transformation and the mixed solvent system proved superior to a single solvent. 
The synthetic utility of this protocol was explored by the selective ortho- amination 
of the drug oestrone and loratadine in good yields.

Dong et al. [117] described a multicomponent reaction in which they enhanced 
the reactivity of aryl bromides (165) by substituting different electrophiles (167) 
at  the ortho position using Pd/norbornene catalysts (Scheme  66). Based on the 
mechanistic studies, it was found that this cross-coupling methodology worked for 
the ipso/ortho functionalization of aryl bromide. For ortho functionalization, this 
method performed well with amination, acylation, and alkylation. Also, they have 
reported alkynylation, arylation, and borylation of aryl bromides.

The Pd-catalyzed, norbornene-mediated ortho amination and C(sp3)-H arylation 
of unactivated alkanes (168) was achieved by Liang et  al. [118] in 2018. After a 
series of optimization studies, they found that using a catalytic amount of pivalic 
acid as an additive could promote C–H activation of unactivated alkanes such as the 
C–H bond of the tert-butyl methyl group. Additionally, it could activate C–H bonds 
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of other groups such as isopropyl, isoamyl, isobutyl, etc. O-iodianiles with various 
alkane groups as well as neutral and electron-withdrawing groups on aromatic rings 
underwent the reaction smoothly, However, electron-donating groups could not 
yield the desired product (Scheme 67).

The mechanistic hypothesis for this ortho amination and C(sp3)-H arylation is 
described below (Scheme 68). The traditional oxidative addition of Pd(0) to iodo-
benzene (168) (intermediate A) and norbornene insertion followed by oxidative 
C–H activation generates ANP intermediate (B). Following the oxidative addition 
of N-benzoyloxyamine (169) to the intermediate (B), Pd (IV) intermediate (C) was 
formed. Next, ortho-aminated arene intermediate (D) was obtained by reductive 
elimination. Direct electrophilic amination of N-benzoyloxyamine (169) with ANP 
intermediate (B) may also produce ortho-aminated arene intermediate (D). Further, 
the β-C elimination of intermediate (D) yielded the  k2-benzoic acid intermediate 
(F). When the pivalic acid/Pd ratio surpasses 4:123, a quick acid exchange can build 
a 2-pivalic acid intermediate (G) by substituting benzoic acid with cesium pivalate 
created in  situ from pivalic acid and  Cs2CO3. Finally, intermediate (G) is depro-
tonated via a CMD process, yielding intermediate (G′), which is then reductively 
eliminated to get the desired product (170).

Chen et  al. [119] reported palladium/norbornene co-operative catalysis selec-
tive redox neutral ipso protonation followed by ortho C–H amination of pina-
col aryl borates (171) with the help of amine benzoates (172) (Scheme  69). The 
redox-neutral ipso protonation of this transformation was confirmed by preliminary 
deuterium-labeled experiments. The synthetic utility of this reaction was explored 
by performing a scale-up experiment (9 mmol) and by synthesizing EphB4 kinase 
inhibitors in good yields. It is worth noting that the presence of air may help the 
reaction by preventing other Pd-catalyzed side reactions and enhancing the yield.
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In 2020, Lauten et al. [120] described the Catellani reaction for the synthesis of 
aminated phenanthridinones (176) via ortho-amination followed by ipso-C–H aryla-
tion. This single-step procedure provides a novel strategy for the synthesis of sub-
stituted aminated phenanthridinones as shown in Scheme 70 [59]. The optimization 
studies indicated that base  K2CO3 plays an important role in ortho-amination and 
intramolecular cyclization. Hydroxylamines other than piperazine and morpholine 
delivered the products in relatively low yields.

A postulated reaction course is shown in Scheme  71. Initially, the palladcy-
cle-I (step A) would be generated by successive oxidative addition of benzamide 
(174) to Pd (0), followed by, the insertion of norbornene resulting in interme-
diate-II (Step B). Further, a base  K2CO3-assisted concentration metalation pro-
cess (CMD) gives aryl-norbornyl-palladacylcle (ANP) III (Step C) as a key 
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intermediate. Subsequently, oxidative addition of intermediate III (Step C) with 
hydroxylamine (175) transformed the Pd(II) species into Pd(IV) intermediate 
IV (Step D), which underwent reductive elimination to produce amination com-
plex V (Step E). On the other hand, the direct electrophilic amination mechanism 
could also be responsible for amination complex VI (Step F). Next, the Pd (II) 
species VII (Step G) resulting from expulsion of norbornene underwent second 
base  K2CO3-assisted concentration metalation process (CMD) as shown in tran-
sition state VIII (Step H), generating the seven-membered palladacycle IX, fol-
lowed by reductive elimination afforded the final product (176) (Step I) with the 
regeneration of the catalyst.
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In 2020, another Pd-catalyzed, norbornene-mediated synthesis of various dihy-
drophenanthridines (180), phenanthridines, and 6H-benzo[c] chromenes (181) was 
reported by Liang and coworkers [121] (Scheme  72). The reaction proceeds with 
benzyl carbamate (177) and O-benzoyl hydroxylamines (179) through Catellani 
ortho-amination and unactivated C–H arylation. Most of the benzyl carbamates with 
various substitutions performed well, leading to broad substrate scope. Due to steric 
hindrance, substitution at para position concerning o-iodoanilines failed to deliver 
the final product. Additionally, both cyclic and acyclic hydroxylamines underwent 
the reaction and afforded the corresponding products with moderate-to-good yields. 
The possible reaction mechanism may involve norbornene insertion, formation of 
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palladacycle, oxidative addition, and reductive elimination as described earlier in 
this article.

In 2020, Cheng et al. [122] disclosed a Pd-catalyzed three-component Catellani-
type reaction of haloarenes (182), O-benzoylhydroxylamine (183), and allylic esters 
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(184). This one-pot amination strategy provided multiple functionalized 2-amin-
ocinnamyl ester derivatives (185) via sequential electrophilic C–H amination and 
Heck-type termination using allyl esters as a terminating agent. Chemo selectivity 
and good functional group compatibility provided good applicability to this reac-
tion. However, acyclic amination reagents were not feasible under standard condi-
tions, and the diaminated products were obtained when para-substituted aryl halides 
were employed (Scheme 73).

In the same year, Liang et al. [123] reported the novel ortho C–H amination and 
ipso functionalization strategy of aryl iodides (186) aided by DMAP and PivOH 
using Pd/norbornene catalytic system, O-hydroxylamines (187) as an aminating 
reagent, and terminal alkynes (188) as an allenization agent (Scheme 74). After a 
series of control experiments, it was concluded that the triphenylphosphine or biden-
tate ligand, as well as the base, were crucial for this transformation. Notably, the 
reaction has been affected by the nature of the alkyl substituent, which selectively 
drives on alkane in the presence of an aromatic group present on the other side of 
the alkyl substituent. The mechanistic pathway suggested that the allenization could 
be promoted by concentrated metalation deprotonation (CMD) and β-hydrogen 
elimination.

Carbon–carbon σ-bonds cleavage has been a prodigious task in organic chemis-
try, since its thermal stability and kinetic inertness. In this regard, Liang and cow-
orkers [124] investigated a new and simple approach for exploiting the cyclobutanol 
(192) as a terminating agent via the ring-opening process in the Catellani reaction. 
The reaction involves β-carbon elimination followed by electrophilic amination with 
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O-benzoyl hydroxylamine (191) under Pd/NBE cooperative catalysis (Scheme 75). 
Notably, the phenyl-substituted cyclobutanol did not undergo the reaction. This 
reaction opened a new platform for the preparation of novel polysubstituted hydro-
carbons (190) in good-to-excellent yields.
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In 2021, Sun et al. [125] reported the Pd-catalyzed, norbornene-mediated proto-
col to afford structurally diverse benzosultams (196) via sequential ortho C–H ami-
nation and ipso arylation of sulfonamide tethered aryl iodides (194) (Scheme 76). 
To understand the role of ligands several ligands were examined, and it was found 
that the tri-2-furylphosphine (TFP) gave optimal yields, which was further enhanced 
by the addition of pivalic acid as an additive. The reaction exhibited excellent func-
tional group compatibility, however, sterically hindered and pyrrolidine-based 
hydroxylamines might result in lower yields.

The possible catalytic cycle is depicted in Scheme 77. The successive oxidative 
addition of (194) to Pd(0) gives Pd(II) species (A). Insertion of norbornene, and 
base-mediated ortho C–H activation produce crucial aryl-norbornyl-palladacycle 
(B). Subsequently, two possible reaction pathways could reach intermediate Pd(IV) 
species (D) in the presence of N-based oxidant (O-benzoyl hydroxylamines) (195). 
Path A provided cyclic Pd (IV) complex (intermediate B) by oxidative addition and 
then reductive elimination afforded Pd (II) species (Intermediate C). It could also be 

Pd(0)Ln

194

Pd(II)

N
R S

Ph

O O
A

Cs2CO3

CsI + CsHCO3

Pd

N
R S

Ph

O O

L

B

195

N SR
Ph

OO

N

O

Pd
O O

Ph
C

N

O

N
S

R
Ph

O O
Pd O
O

Ph

D

tBuCOOCs

PhCOOCs

N

O

N
S

R
Ph

O O
Pd O
O

tBu

E

N

O

Pd

N
R

S
O

O

O
H

O

tBu

F

196

N

O

N S

Pd

R
O

O

L

G

Scheme 77  The possible catalytic cycle for ortho C–H amination and ipso arylation



 Topics in Current Chemistry           (2023) 381:4 

1 3

    4  Page 56 of 64

achieved by path B through direct electrophilic substitution. After the liberation of 
norbornene,  K2 benzoic acid (intermediate D) was formed via β-carbon elimination. 
The reaction between PivOH and base  Cs2CO3 gives cesium pivalate which replaces 
benzoic acid rapidly to deliver (intermediate E). This intermediate E, further under-
goes acid-initiated CMD leading to the formation of (intermediate G) through tran-
sition state (F). Finally, reductive elimination provides desired product (196) and 
regeneration of Pd(0).

2.8  Ring‑Opening Reactions

In 2020, Liang’s group [126] demonstrated electrophilic ring-opening amination 
of benzothiazoles. This redox-neutral, one-spot ring-opening process yielded a 
variety of 1-amino-N-(2-(phenylthio)phenyl)methanimines (200) (Scheme 78). In 
this reaction, C–S and N–O bonds are cleaved, and new C–S and C–N bonds are 
formed in one spot fashion. Furthermore, benzoxazole could undergo this ring-
opening reaction with modified conditions. The mechanistic study showed that 
the chemical route may include the Heck reaction and a secondary amine inter-
mediate combination, but it eliminates the free radical method and benzothiazole 
dehydroisomerization mechanism.

3  Conclusions

In conclusion, electrophilic amination using O-benzoylhydroxylamines has 
become a straightforward and practical way for the construction of C–N bonds. 
In this review, we have highlighted some of the important recent advances in 

N

S
+

I

R1
R2

+
R3

N
R4

OBz
CuI (5 mol%),

Cs2CO3 (2 equiv)

PivOH (20 mol%), PhMe,
120 oC, 18h

S

N N
R3

R4
R1

R2

197 198 199 200

S

N N

CO2CH3

O

96%

S

N N

29%

S

N N

50%

S

N N
O

NC

88%

34 examples
Yield= 23 to 96%

Scheme 78  Cu(I)-catalyzed redox-neutral electrophilic ring-opening amination of benzothiazoles



1 3

Topics in Current Chemistry           (2023) 381:4  Page 57 of 64     4 

O-benzoylhydroxylamine involving electrophilic amination methods for the 
construction of C–N bond, which could be exploited to build various phar-
maceutically important nitrogen-containing heterocycles. Furthermore, we 
categorically mentioned the significance, challenges, and future scope of 
O-benzoylhydroxylamine.

3.1  Significance and Applications

 i. One of the long-standing study areas in synthetic organic chemistry has been 
the addition of nitrogen functionality to carbon skeletons and the development 
of C–N bond-forming processes. Particularly, the transition metal-catalyzed 
addition-type reaction is attractive because it converts simple alkenes and 
alkynes into medicinally important N-containing molecules.

 ii. Utilizing the nitrogen umpolung concept, the fundamental nitrogen of the amino 
group can serve as the nitrogen electrophile to accomplish challenging amino 
functionalization like hydroamination, aminoboration, and carboamination in 
conjunction with the hydride, boryl, and carbon external nucleophiles, respec-
tively.

 iii. An efficient enantioselective induction in various organic moieties is accom-
plished by the appropriate choice of catalysts and ligand combinations. This 
would produce intricate alkylamines or arylamines of important pharmacologi-
cal and therapeutic utility.

 iv. Cu, Pd, and Ni are used as the most common transition metals for electrophilic 
amination through ortho-C–H activation, C–H amination, and Catellani-type 
reactions to offer various amino functionalized compounds and diverse difunc-
tionalized anilines.

 v. The normally challenging synthesis of sterically hindered α-branched aniline 
is made much easier by the iron-based catalytic method. Asymmetric catalysis 
is still being developed though.

 vi. Other transition metals, such as Rh, and Ru, have also been reported for these 
transformations. However, they have received less attention.

3.2  Challenges

Despite the significant advances in this field, there are still several challenges or 
gaps that need to be addressed in the future.

 i. One of the major obstacles encountered in electrophilic amination, especially 
Cu-catalyzed hydroamination, is electrophile reduction side reaction leading 
to reduced yields or resulting in no product formation.

 ii. The scope for hydroxylamine electrophile is still limited to N,N-dialkyl 
amines, or O-acylated hydroxylamine. Furthermore, the direct use of primary 
amino groups (R2N-X) as an electrophilic amination reagent still needs to 
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be addressed because of the widespread occurrence of chiral primary amino 
groups in medicine and bioactive compounds.

 iii. Enhancement in the regioselectivity of sterically and electronically unbiased 
or less biased internal alkenes.

 iv. Only copper catalysts have been utilized in aminoboration reactions, and the 
range of intramolecular aminoboration is still restricted to simple alkenes. To 
broaden the focus and address the remaining issues, the development of dif-
ferent and versatile amino-boration catalysts with other transition metals may 
pave way for the discovery of new synthetic methodologies.

 v. 8-amino quinoline as a directing group is extensively used for Ni-catalyzed 
hydroamination reactions. However, further research is still required on the 
usage of other directing groups. Nowadays, for many alkene substrates, free 
alcohol, amine, and ketones can serve as a directing group. In light of this, it is 
preferable to use those functional groups as directing groups.

 vi. It is still difficult to achieve a fully intermolecular three-component coupling in 
palladium-catalyzed aza-Heck reaction-enabled carboamination. Additionally, 
in Co-based catalyst systems, the scope of electrophilic amination reagents is 
limited to only diazo compounds. Additional development of amine partners 
is strongly anticipated.

3.3  Future Scope

The aforementioned challenge would be accomplished by additional rational 
design of catalyst, electrophilic amination agents, and external nucleophiles. 
Additionally, using proper directing groups and chiral ligands might increase 
the regioselectivity of sterically hindered unactivated, or less activated 
alkenes.

We predict that in the future, umpolung strategy-based aminative difunction-
alization reactions will be developed, opening the door to the discovery of novel 
N-containing drugs and valuable chemical compounds. One of the most effective 
and practical synthetic tools in the amination toolkit is expected to be O-benzo-
ylhydroxylamines, and in the near future we might expect to see many additional 
developments of unique approaches. This elaborate and extensive review will 
benefit several researchers in this field to find and address the gaps by developing 
more efficient synthetic strategies.
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