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Abstract
Over the years, numerous advancements have been in synthesizing various heterocyclic compounds using pyridinium ylides. 
Imidazo pyridine derivatives are highly valued heterocyclic motifs that are commonly present in various natural and pharma-
ceutical compounds. These can be conveniently synthesized using cyanomethyl salts of pyridine and analogous isoquinolines. 
In this mini-review, we will discuss the latest developments regarding the use of these salts in the creation of annulated hetero-
cycles. Various annulated heterocycles such as chromeno-imidazo pyridines, isoquinolines, imidazothiazine, chromenoimi-
dazocarbolines, imidazo pyridines, chromeno azepines, pyrido indolizine carbonitriles, pyridoindolizines, cyanoindolizinyl 
acetamides, tetrahydroindolizines, indolizinoindol amines, pyridobenzimidazoles, cyclo azines, pyrroloisoquinolines have 
been synthesized under mild reaction conditions. These salts are also used for the synthesis of spirocyclic isoxazolo pyrrole 
isoquinolines and optically active pyrroloisoquinolines, pyrrolophthalazine, and tetrahydropyrrolophthalazinyl pentadienoate 
derivatives.

Keywords Cyanomethyl pyridinium · Ylides · Cycloaddition · Annulated heterocycles · Imidazo[1,2-a] pyridine

Introduction

Pyridinium and its similar salts have proven to be highly 
useful frameworks in natural products and pharmaceuti-
cals due to their structural diversity (Sowmiah et al. 2018). 
Many organic transformations employ these salts as acylat-
ing agents, phase transfer agents, and ionic liquids (He et al. 
2019). Salts like pyridinium ylides are important in indus-
trial applications, as they serve as high-ranking building 
blocks for creating various heterocycles. Pyridinium ylides 
are nitrogen ylides that have a pyridinium N as a cationic 
component. They are created from pyridinium salts. It exhib-
its exceptional stability due to the delocalization of charge 
in the heteroaromatic system (Fig. 1). The first stable pyri-
dinium ylide was generated by Kröhnke in 1935 (Kröhnke 
1935). A widely used technique for creating pyridinium/iso-
quinolinium ylide involves reacting pyridine/isoquinolinium 
(1) with cyanomethyl halides. This creates 1-(cyanomethyl)

pyridinium and isoquinilinium halides (3), which can then 
be treated with a base to form the desired ylide (4) (Fig. 1). 
Pyridinium ylides are also used in the synthesis of many 
significantly important heterocyclic intermediates such as 
indolizines, cyclopropanes, 2,3-dihydrofurans, substituted 
pyridines, nitrones, and azepines (Funt et al. 2020). The 
reactivity of pyridinium ylides is influenced by the charac-
teristics of the reactants employed. In general, it undergoes a 
reaction with different nucleophiles, specifically an addition 
reaction with a Michael acceptor through [3 + 2] cycloaddi-
tion, at room temperature, when a base is present.

Applications of 1‑(cyanomethyl)pyridinium 
and isoquinilinium salts

The pyridinium ylides generated in situ have been widely 
used in the synthesis of annulated heterocycles based on 
chromeno framework such as chromeno-imidazo pyridines 
and isoquinolines, imidazo-thiazines, imidazo-carbolines, 
azepines, etc. It has also been used in the construction of 
pyrido-based scaffolds like indolizine-10-carbonitriles, 
indolizines, cyanoindolizinyl-acetamides, tetrahydroin-
dolizines, indolizino-indolamines, benzimidazoles, 
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cyclazines, and pyrrolo-isoquinolines (Fig. 2). It can also 
be used for the synthesis of spirocyclic isoxazole derivatives 
and optically active pyrroloisoquinolines, pyrrolophthala-
zine, and tetrahydropyrrolo[2,1-a]phthalazin-1-yl)penta-
2,4-dienoate derivatives (Fig. 2).

Synthesis of chromene imidazo derivatives

Chromene derivatives are an important class of heterocyclic 
compounds found in many biological active (Kostova 2006; 
Nayyar and Jain 2005) as well as therapeutic compounds 
(Fylaktakidou et al. 2004; Asres et al. 2005). The substituent 
at three positions of the chromene ring is crucial for good 
biological activity (Chimenti et al. 2009). Consequently, 
the substituted imidazo[1,2-a]pyridines are very significant 
heterocyclic scaffolds (Ismail et al. 2008) found in many 
bioactive compounds.

In this regard, Proença and Costa (2010) reported the 
synthesis of imidazo[1,2-a]pyridines containing chromene 
units (7) by one-pot condensation-cyclization reactions of 
salicylaldehydes (5) and 1-(cyanomethyl)pyridinium chlo-
ride (3) in an aqueous  Na2CO3 solution at room tempera-
ture (Scheme 1). The various mono-substituted cyanomethyl 
pyridinium chloride salts were synthesized and reacted with 
mono-substituted salicylaldehydes under optimized reaction 
conditions. The yields of the novel compounds were moder-
ate (47–71%) due to the various side reactions. The products 
were isolated in high purity by simple filtration from the 
aqueous solution. It was observed that the 4-amino substi-
tuted pyridinium salt didn’t get desired product due to the 
formation of imino-chromene intermediate (8). The reac-
tion of 3-amido-1-(cyanomethyl) pyridinium chloride with 

3-methoxy salicylaldehyde gave a mixture of two isomeric 
tetracyclic products (9a and 9b). The mechanism of the reac-
tion involves the first formation of Knoevenagel product (I) 
from 1-(cyanomethyl)pyridinium chlorides and aromatic 
aldehyde. In the presence of a base, the product (I) under-
goes intramolecular cyclization to form II. Intermediate II 
gets converted into intermediate III via an intramolecular 
nucleophilic attack of imine nitrogen onto C-2 of the acti-
vated pyridinium ring, which rapidly tautomerizes into the 
desired product.

Voskressensky and co-workers synthesized various 
chromeno[2',3':4,5]imidazo[2,1-a]isoquinolines (10) via 
novel domino reactions of isoquinoline-derived immo-
nium salts (3) and various salicylaldehydes (5) in the 
presence  K2CO3 as a base in DMF:H2O mixture at room 
temperature(Voskressensky et al. 2012) (Scheme 2). They 
applied the same methodology for the synthesis of substi-
tuted chromeno-isoquinoline derivatives (11) via domino 
reactions of corresponding isoquinolinium salts (3) and 
aldehydes (5) using 1,8-diazabicyclo-[5.4.0]undec-7-
ene (DBU) as a base in a MeOH:H2O mixture at room 
temperature(Voskressensky et al. 2016). It was observed that 
DBU is a superior base as compared to  Na2CO3. Similarly, 
a novel domino condensation–intramolecular nucleophilic 
cyclization approach was developed for the synthesis of 
annulated thiochromenes (12) under similar reaction condi-
tions (Voskressensky et al. 2013b).

They also obtained benzosilanochromenoimidazopyri-
dines (13) by a domino reaction of 5,5-dimethyl-10-oxo- and 
10-hydroxy-10-allyldihydrobenzosilanopyridinium N-cyano-
methyl salts (3a) with salicylaldehydes (5) in a MeOH:H2O 
mixture at room temperature (Scheme 3). In the case of the 

Fig. 1  Generation of 1-(cyano-
methyl)pyridinium and isoquini-
linium ylides
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10-allyl-10-hydroxy-dihydrobenzosilanopyridinium salts 
(3b), the reaction occurred at both positions of the pyridine 
fragment to form a mixture of the isomeric benzosilano and 
benzosilano-chromeno imidazopyridines (14) (Voskressen-
sky et al. 2013a). Unfortunately, the yields of the reactions 
are very less.

A new route toward the synthesis of chromenes, annu-
lated with an imidazo[5,1-c][1,4]thiazine core (15), was 
also reported by Voskressensky et al. (2015a). The yield of 
N-(cyanomethyl)-1,3-azolium salts significantly increased 

under microwave (MW) irradiation. The reaction involves 
a base-promoted ANRORC (Addition of the Nucleophile, 
Ring Opening, and Ring Closure) domino reaction of cyano-
methyl-azolium quaternary salts (3) with salicylaldehydes 
(5) in MeOH:H2O using different bases at RT to reflux 
(Scheme 4). A few of them showed high cytotoxic activity 
against human tumor cells. It has been shown that cyano-
methyl imidazolium chloride reacts with salicylic aldehydes 
differently, forming coumarin-substituted imidazolium salts. 
It has also been reported that the 1,3-oxazole failed to give 
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the N-cyano methyl quaternary salt. The mechanism involves 
the reaction of thiazolium salts (3) with salicylaldehyde (5) 
under a base-encouraged domino process, involving an 
ANRORC step through intermediate I, II, and III.

Similarly, they reported a novel domino condensation-
intramolecular nucleophilic cyclization approach toward 
the synthesis of an annulated imidazo-pyrrolo-pyridine 
core (Scheme 5). The reactions proceeded through a base-
promoted domino reaction of azaindole quaternary salts. In 
the first report, they synthesized chromenes annulated with 
an imidazo[1,2-a]pyrrolo[2,3-c]pyridine core (16) by reflux-
ing 6-azaindole quaternary salts (3a) with salicylaldehydes 
(5) in ethanol in the presence of  NH4OAc (200 mol%) for 
3 h. The precipitated products were collected by filtration 
in 25–57% yields(Voskressensky et al. 2015b). In continua-
tion with this, N-(cyanomethyl)azaindolium salt (3b) reacts 
with salicylic aldehydes (5) under similar conditions giving 

coumaryl-substituted 7H-7-azaindoles (17). However, per-
forming the reaction under MW irradiation led to the forma-
tion of the desired product 18 in absolute EtOH, molecular 
sieves, and anhydrous  K2CO3 with 27–42% yields (Voskres-
sensky et al. 2017b). Under similar reaction conditions, 
5-azaindolium salt (3c) gave annulated pyrrolopyridines (19) 
in 70–87% yield. While 4-(cyanomethyl)-4-azaindolium salt 
(3d) in the domino process gave isomeric chromenoimidazo-
pyrrolopyridines (20) under similar reaction conditions.

Similarly, they reported the reaction of N2-(cyanomethyl)-
β-carbolinium bromide (3) with different salicylal-
dehydes (5) in the presence of  NH4OAc in refluxing 
EtOH(Voskressensky et al. 2017a). The reaction proceeded 
as a domino reaction that led to the formation of chromeno-
imidazocarbolines (21) in 38–54% yields (Scheme 6).

A similar approach was reported, which involves the 
intramolecular cyclization of 1-(2-imino-2H-chromen-3-yl)

Scheme 1  Synthesis of 
chromeno-imidazo[1,2-a]pyri-
dines via one-pot condensation-
cyclization
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pyridinium chloride (6) in the presence of various 
organic bases such as DABCO, N-methyl piperazine, and 

quinuclidine in ethanol to form compound 22(Costa and 
Proena 2011)(Lima et al. 2015). The method is a simple 

Scheme 4  Synthesis of the 
imidazo-thiazine core via base-
promoted ANRORC domino 
reaction
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one-pot synthesis of chromeno-imidazo-pyridinone (23) 
in the presence of DABCO in ethanol at room temperature 
(Scheme 7). The method also contributed to forming other 
interesting side products. A detailed study of the experimen-
tal conditions allowed a clear understanding of the reaction 
pathways.

Recently, Voskressensky and co-workers (Storozhenko 
et  al. 2018) reported Mn-mediated sequential three-
component domino Knoevenagel/cyclization/Michael 

addition/oxidative cyclization reactions for the synthe-
sis of annulated imidazopyridines (24) (Scheme 8). The 
various nucleophiles, such as nitromethane, indoles, 
pyrroles, phenols, pyrazole, indazole, diethyl malonate, 
etc., were successfully reacted using Mn(OAc)3·2H2O 
or  KMnO4 as stoichiometric oxidants in the presence of 
TEA in trifluoroethanol (TFE) at reflux. The protocol 
offers a broad substrate scope and tolerates a wide range 
of functional groups. The reaction produces a library of 

Scheme 6  Synthesis of chrome-
noimidazocarbolines R6
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chromenoimidazoles with complex substitution and annu-
lation patterns. The mechanism involves the Knoevenagel 
condensation of salicylaldehyde (5) and N-(cyanomethyl)
pyridinium salt (3) to form styryl derivative, which suffers 
intramolecular cyclization to form 2-imino-chromene salt. 
The consequent reaction of with nucleophiles followed by 
cyclization, deprotonation, and oxidation, leads to the final 

product. In continuation with this, they (Storozhenko et al. 
2020) synthesized a novel 2-amino-4-(nitromethylidene)
chromenes (25) from the reaction of 1-(2-imino-2H-
chromen-3-yl)pyridinium perchlorates and nitromethane 
in the presence of DBU at reflux in TFE (Scheme 8).

Synthesis of azepines

Recently, Hu et al. (Zhang et al. 2019) developed a new 
approach for the synthesis of chromeno[2,3-d]azepine 
derivatives (27) through base-promoted cascade reactions 
of 3-(1-alkynyl)chromones (26) with pyridinium ylides 
(Scheme 9). The tandem process contains a Michael addi-
tion/deprotonation/alkyne–allene isomerization/cycliza-
tion followed by the subsequent 1,2-addition. The reaction 
provided novel access to a new class of polycyclic hetero-
cycles. This ring system can also be expanded to the xan-
thone skeleton. The screening of various reaction param-
eters for the reaction of 3-(1-alkynyl)-chromone (R = Ph) 
with cyanomethyl pyridinium bromide showed that up to 
93% yield was obtained using TEA as a base in DCM 
at room temperature. The optimized reaction conditions 

Scheme 9  Synthesis of 
chromeno azepines via base-
promoted cascade reactions of 
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were applied for the reaction of various 3-(1-alkynyl)chr-
omones to get desired products with moderate to excel-
lent yields (36–93%). The plausible mechanism involves 
the first formation of intermediate I via Micahel addition. 
The intermediate I undergo ring opening to form I, which 
undergoes alkyne-alkene isomerization for form III. The 
carbanion intermediate IV, which is formed from the cycli-
zation of III, undergoes a 1,2-addition reaction and gener-
ates the desired chromeno azepine skeleton.

Recently, Beeler and coworkers (Mailloux et al. 2021) 
developed a unified method for the synthesis of monocyclic 

(28) and polycyclic (29) azepines by dearomative photo-
chemical rearrangement of aromatic N-ylides (Scheme 10). 
The protocol involves deprotonation of salts with DBU/
TMG under visible light (420–460 nm) with good yields. 
This ring-expansion method opened a new mode for the syn-
thesis of functionalized azepines from N-heteroarenes using 
simple starting materials. The preliminary mechanistic stud-
ies strongly suggest the photochemical excitation of the ylide 
followed by diradical recombination by 6π-electrocyclic ring 
opening.

Scheme 11  Synthesis of 
pyrido-indolizine-carbonitriles 
using dipyridinium dichloride
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Synthesis of substituted pyrido[2,3‑b]indolizine 
derivatives

The indolizine scaffolds are present in many biologically 
active compounds and have been used for the preparation 
of different pharmaceuticals. These derivatives have been 
identified as anticancer, antiviral, anti-inflammatory, anti-
tuberculosis, analgesic, and antioxidant agents (de Fatima 
Pereira et al. 2015; Dawood and Abbas 2020).

As a result, different approaches have been reported 
in the literature for their synthesis. Proenc¸ and Costa 
(Proença and Costa 2011) reported that the reaction of 
cyanomethyl pyridinium chlorides (3) undergoes competi-
tive dimerization in the refluxing acetonitrile to form the 
dipyridinium salt (30). This dipyridinium salt was formed 

by a nucleophilic attack of the methylene carbon atom 
of a pyridinium salt to the cyano group of another mol-
ecule, followed by tautomerization (Scheme 10). As an 
extension, this dipyridinium dichloride was used for the 
synthesis of various substituted pyrido[2,3-b]indolizine-
10-carbonitriles (33 and 34) using 1,3 diketone (31) in 
EtOH in the presence of N-methyl piperazine under reflux 
and various enones (32) in EtOH:H2O mixture in the pres-
ence of NaOAc under reflux (Scheme 11). The approach 
is eco-friendly and regioselective for the construction 
of pyridoindolizine cores. This one-pot procedure gave 
various substituted pyrido-indolizine-carbonitriles from 
β-unsaturated carbonyl compounds with a yield ranging 
from 63 to 91%.

Scheme 12  Synthesis of 
cyanoindolizin-acetamide 
derivatives
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The plausible mechanism involves two pathways. Route 
A involves a nucleophilic attack of the active methylene 
group of dimers (30) on the β carbon as well as the amino 
group of I to the carbonyl carbon of unsaturated carbonyl 
compounds to give intermediate 32 which leads to I. Intra-
molecular cyclization of the intermediate species II which 
on the elimination of HCl and pyridinium chloride leads to 
the desired compound 33. According to route B, dimer 30 
undergoes intramolecular cyclization and generates inter-
mediate III, which subsequently undergoes tautomerization 
and elimination of pyridinium chloride, giving indolizine 
IV. The reaction of IV with the unsaturated carbonyl com-
pound through nucleophilic attack by the enamine moiety 
after dehydration followed by oxidation leads to the final 
product (33).

They extended this protocol for cyclization of the dipy-
ridinium salts (30) in the presence of acetic anhydride that 
generates an indolizine derivative in 80–82% yields (Costa 
et al. 2013) (Scheme 12). The N-(1-cyanoindolizin-2-yl)
acetamides (35) formed initially can be converted into 

the amino group that allowed the successful formation of 
2-aminoindolizine-1-carbonitrile. The C3 ring carbon of the 
indolizine derivative allowed the 76% yield of indolizine 
aldehyde (36) under standard Vilsmeier-Haack reaction 
conditions. In addition, 2-aminoindolizine-1-carbonitrile on 
bromination using NBS, gave indolizine bromide (37), while 
hydroxymethylation using formaldehyde, and dimerization 
reactions give corresponding products (38 and 39) with good 
yields (67 and 90%). All the products were isolated in pure 
form by simple filtration.

In 2019, Voskressensky et al.(Sokolova et al. 2019) pre-
pared a highly fluorescent pyrido[2,3-b]indolizine-10-car-
bonitriles (43–44) through pseudo-three-component reac-
tions of cyanomethyl pyridinium salts (3) (Scheme 13). 
The compounds 40 obtained from dipyridinium salts (30) 
were reacted with enaminones (41) or vinamidinium salts 
(42) were converted into desired carbonitriles (43–44) 
using different bases and solvents, varying the reaction 
time as well as performing the reactions under MW condi-
tions (Scheme 13). Under similar reaction conditions, the 
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Scheme 14  NaH promoted one-
pot three-component domino 
synthesis of indolizines
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pyrido[2,3-b]indolizines (45) also obtained with moderate 
to good yields by the reactions of N-(cyanomethyl)-2-alkyl 
pyridinium salts (3) with enaminones (41) in the presence of 
NaOAc as a base in i-PrOH: water (1:3) mixture at 150 °C 
(Sokolova et al. 2020). The reaction unexpectedly proceeded 
as a domino sequence of cycloisomerization and cyclo con-
densation reactions instead of a 1,3-dipolar cycloaddition. 
The resulting pyrido[2,3-b]indolizines (45) showed green 

light emission with high fluorescence quantum yields. The 
reaction of various N-cyanomethyl-2,3-dimethylpyridinium 
salts with different enaminones has proceeded with low to 
good isolated yields (19–82%). The synthesized compounds 
are effective fluorophores, emitting green light with FQYs 
up to 82%.

Shanmugam et al. (Ramesh et al. 2019) reported a NaH-
promoted one-pot three-component domino synthesis of 
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indolizine derivatives (47) through in situ generated pyri-
dinium ylides with α-oxoketene dithioacetals (AKDTAs) 
(46) (Scheme 14). The reaction protocol involves the use 
of NaH in THF at 65 °C, and the desired products were 
obtained with 63–76% yield. The formation of desired prod-
uct was explained by two different routes (A and B). Route 
A involves the first formation of pyridinium ylide 4, which 
is attacked by AKDTA with the formation of intermediate 
I. The intermediate I on the intramolecular nucleophilic 
attack at ortho-position of pyridine followed by air oxida-
tion to give the desired indolizines (47). Route B involves 
the nucleophilic attack of enolate (IV) on V, followed by the 
elimination of a methylthio group leading to the formation of 
an intermediate II, which is converted into desired products 
via intermediate III.

Kucukdisli and Opatz also reported a modular synthesis 
of polysubstituted indolizines (Kucukdisli and Opatz 2012) 
(Scheme 15). The reaction of pyridinium salts (3) with vari-
ous nitroolefins (48) leads to 2,3-disubstituted indolizines 
(49) in good yields in DMF and KOt-Bu at 0 °C. In addition, 
the 1-(cyanomethyl)pyridinium bromide exclusively yielded 
indolizine-3-carbonitriles (50) with 70–82% yields instead 
of 3-unsubstituted indolizines in the presence of silver (I) 
carbonate in THF at reflux. The applicability of the proto-
col was extended for the synthesis of various indolizines 
(52 and 53) using different N-heterocyclic cyanohydrin 
triflates, such as isoquinoline, benzothiazole, phthalazine 
etc., and 1-chloro-4-[(1E)-2-nitroprop-1-en-1-yl]benzene 

(48) (Method A) or diethyl azodicarboxylate (DEAD) (51) 
(Method B) in presence of KOt-Bu in DMF at 0 °C.

They (Kucukdisli and Opatz 2014) also developed a sim-
ple two-step method for the synthesis of 2-aminoindolizines 
(55) by a 5-exo-dig cyclization of 2-alkyl-1-(1-cyanoalkyl)
pyridinium triflates (3) in presence of KOt-Bu in THF which 
can be converted into compounds 56 and 57 (Scheme 16). 
The protocol was also applied to the two-step synthesis of 
tetracyclic indolizinoindol amine (60) from the β-carboline 
alkaloid harmine salt (59) obtained from the corresponding 
β-carboline alkaloid harmine (58) and reagent 54. The syn-
thesis involves the intramolecular cyclization of 2-(1-cya-
noethyl) triflate (59) to give the tetracyclic indolizinoindol 
amine (60) in 91% yield. In most cases, the products are 
obtained without any chromatographic purification. This 
method allows the formation of 2-aminoindolizines (61) 
with different substituents at the 1, 3, 7, and 8 positions.

Yan et al. (Wang et al. 2009) developed a new one-pot, 
four-component (pseudo-six-component) synthesis of poly-
substituted pyrido[1,2-a]benzimidazole derivatives (62) 
from pyridines (1), aromatic aldehydes (5), malononitrile, 
and chloroacetonitrile (2). The yield of the products is mod-
erate in refluxing acetonitrile, due to the formation of side 
products such as polysubstituted benzene (63) and indole 
(64). The short reaction time and easy-to-use feature make 
this reaction applicable to synthesizing different polysubsti-
tuted pyridobenzimidazole derivatives (Scheme 17).

Scheme 17  A one-pot, four-
component synthesis of pyrido-
benzimidazole derivatives
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The plausible mechanism of the one-pot multi-compo-
nent tandem reaction is illustrated in Scheme 18. In the 
first step, Michael addition of a pyridinium ylide with the 
arylidenemalononitrile gives anion intermediate I. This 
intermediate eliminates one pyridine molecule to afford 
a cyclopropane derivative II, which on deprotonation fol-
lowed by ring-opening, affords an allylic carbanionic inter-
mediate III. In turn, this reacts with a second molecule 
of arylidenemalononitrile to form a new cyano-stabilized 
carbanionic intermediate IV, which concomitantly adds 
to one of the cyano groups to give a six-membered carbon 

ring (V). The intermediate V reacts further in two different 
ways to give two different products. The tautomerization 
of V, followed by the elimination of HCN and aromatiza-
tion, yields the polysubstituted benzene derivative (63). 
On the other hand, the substitution of one cyano group 
in intermediate V forms a new pyridinium ion VI, which 
undergoes intramolecular cyclization to yield intermediate 
VII. This intermediate eliminates HCN and two hydrogen 
atoms to form pyrido[1,2-a]benzimidazole (64). The car-
banionic intermediate (I) reacts with an aromatic aldehyde 
to form an adduct II, which forms carbanion III by proton 
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immigration from carbon to an oxygen atom. The III on 
intramolecular addition forms a cyclohexyl imine interme-
diate IV, which gives the desired polysubstituted indole by 
the elimination of water and HCN.

Feng and co-workers (Xu et al. 2016) carried out cata-
lytic asymmetric inverse-electron demand (IED)1,3-dipo-
lar cycloaddition of isoquinolinium methylides (4) with 
enecarbamates (65) by using a chiral N, N'-dioxide/Ag(I) 
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Scheme 19  Synthesis of optically active pyrroloisoquinolines, pyrrolophthalazine, and tetrahydropyrrolo phthalazinyl pentadienoate derivatives

Scheme 20  Synthesis of 
pyrrolo isoquinolines by the 
domino reaction of isoquino-
linium ylides and electrophilic 
indoles
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catalytic system (Scheme 19). The present catalytic system 
was more efficient than Sc(OTf)3, Cu(OTf)2, and Ni(OTf)2 
showed excellent enantioselectivities in THF at 0 °C. The 
yield of the optically active pyrroloisoquinolines and pyr-
rolophthalazine (68) were up to 99% with d.r. > 19:1 and 
95% ee. The  AgBF4/L-TQ-(S)-Eph (67) (10 mol %) catalytic 

system also showed good utility for a gram-scale synthesis 
of 69 using isoquinolinium dicyanomethylide (4) and (per-
fluorophenyl)methyl vinyl carbamate (66). The yield of the 
gm scale synthesis was 71% with 93% ee and > 19:1 d.r. The 
proposed transition state of the reaction was supported by 
fluorescence, ESI–MS, and X-ray structure analysis.

Similarly, Guo et al. (Jiang et al. 2020) reported a regio 
and stereoselective [3 + 2] cycloaddition of phthalazinium 
dicyanomethanides (4) with 2,4-dienals (70) using a com-
mercially available MacMillan’s catalyst. This catalyst 
afforded chiral tetrahydro pyrrolophthalazinyl pentadienoate 
derivatives (71) in high yields with excellent diastereoselec-
tivity and enantioselectivity. Moreover, the synthetic utility 
of this protocol was developed for gram scale asymmetric 
reaction of phthalazinium dicyanomethanide with (2E,4E)-
hexa-2,4-dienal in the presence of 20 mol % of catalyst. 

Scheme 21  Direct synthesis 
of pyrrolo[2,1-a]isoquinolines 
by 1,3-dipolar cycloaddition of 
isoquinolinium N-ylides with 
vinyl sulfonium salts
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Scheme 23  Synthesis of 
indolizines using recyclable 
[Omim]Br ionic salt
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The desired chiral product was obtained in 72% yield with 
90% ee. As enal cycloadducts were found to be unstable, 
the treatment of the cycloadduct with  TiCl4, the aldehyde 
group was transformed into the dimethyl acetal group (68% 
yield) with excellent d.r. in methanol at room temperature 
in 12 h (Scheme 22).

John et al. (Babu et al. 2021) reported unprecedented 
access for functionalized pyrrole isoquinolines (73) from 
the domino reaction of isoquinolinium ylides (3) and indoles 
as electrophilic benzannulated heterocycles (Scheme 20). 
The reaction of isoquinolinium bromide and N-tosyl-3-ni-
tro indoles (72) was carried out in the presence of KOH in 
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DMF at room temperature. All the products were obtained 
in moderate to good yields (40–91%) in 1 h. This protocol 
also attempted a gram-scale synthesis of pyrrolo-isoquino-
line (74) by treating the CN compound with concentrated 
 H2SO4 for two h with a 72% yield. A plausible mechanism 
is depicted in Scheme 20. Initially, the deprotonation of the 
activated methylene group of the isoquinolinium generates 

the corresponding N-ylide (I), which undergoes a 1,3-dipo-
lar cycloaddition with the dipolarophile (N-tosyl-3-nitro 
indole) and generate the cycloadduct II. The adduct II sub-
sequently eliminates  HNO2 and generates intermediate III, 
which undergoes a strain-induced cleavage of the C–N bond 
to furnish the pyrrolo[2,1-a]isoquinoline compound.

Scheme 26  Synthesis of poly-
cyclic annulated indolizines via 
one-pot tandem reactions
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Direct synthesis of pyrrolo[2,1-a]isoquinolines (76) was 
carried out by 1,3-dipolar cycloaddition of stabilized isoqui-
nolinium N-ylides with vinyl sulfonium salts (75) (An et al. 
2013). The yield of the product was 48% in the presence of 
DABCO in acetonitrile at RT (Scheme 21). The reported 
method can be used for the preparation of biologically rel-
evant compounds with a simple workup under mild reaction 
conditions.

Yang and coworkers (Yang et  al. 2011) synthesized 
2-aryl-1-haloindolizines (78) from pyridinium salts (3) and 
2-aryl-1,1-dihaloalk-1-enes (77) using a DBU as a base 
in THF at 90 °C with good yields. The reaction proceeds 
through the 1,3-dipolar cycloaddition (Scheme 22).

Lu et  al. (Zhang et  al. 2017) synthesized vari-
ous indolizines through one-pot, two-step 1,3-dipolar 

cycloadditions in recyclable 1,2-dimethyl-3-octyl-1H-imida-
zolium bromide ([Omim]Br) with high yields (Scheme 23). 
Using NMR experiments they studied the non-covalent 
interactions such as hydrogen bonding, π–π+, and elec-
trostatic interactions between [Omim]Br and substrates or 
intermediates in the reaction. The protocol involves 1,3-
polar cycloadditions of alkene (81) with pyridinium ylide 
to give indolizine (82) with 82% yield in [Omim]Br  Na2CO3 
and TBHP at 110ºC. In addition, the 1,3-polar cycloaddi-
tions of alkynes (79) with pyridines and organic bromides 
gave 81% indolizine (80) in [Omim]Br at 50ºC in the pres-
ence of  Cs2CO3 as the base.

Meyer and coworkers (Allgäuer et al. 2013) carried out 
kinetic studies of the reactions of pyridinium, isoquino-
linium, and quinolinium ylides with diaryl carbenium ions, 
quinone methides, and arylidene malonates in DMSO by 
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UV –vis spectroscopy. In connection with this, they studied 
quantification and theoretical analysis of the electrophilic 
reactivities of common Michael acceptors (Allgäuer et al. 
2017) (Scheme 24), the study involves reactions of substi-
tuted olefins (83) and pyridinium salts (3) in the presence 
of a base in DMSO/DCM at 20 °C, followed by oxidation 
by Chloranil to form indolizines (85–86). All the reac-
tions proceed via a common rate-determining step. The 
(3 + 2)-cycloadditions (Huisgen reactions) of Michael accep-
tors with pyridinium ylides involve six electrons [4π + 2π], 
concerted (kconc) or stepwise (k2) proceed via a common 
rate-determining step. In stepwise processes, the formed 
(k2) betaines intermediate cyclizes (krc) to give tetrahydroin-
dolizines (84).

As pyrrolo[2,1-a]isoquinoline scaffolds have been 
found as a good candidate in drug discovery, these deriva-
tives were synthesized by tandem reaction of isoquinoline, 
α-halogenated methylene compounds, aromatic aldehydes, 
and cyanoacetamide in the presence of TEA in EtOH at 
RT. The obtained tetrahydropyrrolo[2,1-a]isoquinolines on 
oxidation with DDQ give the corresponding pyrrolo[2,1-a]
isoquinolines and dihydropyrrolo[2,1-a]isoquinolines with 
good yields at RT (Han et al. 2011).

In connection with this, Allgäuer and H. Mayr reported 
a one-pot, two-step synthesis of indolizines (89 and 91) 
via pyridinium/isoquinolinium ylides (Scheme 25) (All-
gäuer and Mayr 2013). The reaction proceeds at 20 °C in 
the presence of NaOH to give cycloadducts by stepwise 
[3 + 2]-cycloaddition of the ylides in DCM. The obtained 
tetrahydro products (90) on oxidation with chloranil give 
the corresponding indolizines with good yields (48–89%) 
in DCM at 20 °C.

Xu et  al. (Liu et  al. 2007) synthesized polycyclic 
1,2-annulated, and 1,2-, 5,6- and 1,2-, 7,8-bis annulated 
indolizines via one-pot tandem reactions of N-ylides with 
dichloro substituted α, β-unsaturated carbonyl compounds 
(95–98) (Scheme 26). These polycyclic indolizines are 
interesting target compounds for screening biological 
activity. In addition, they also show strong fluorescence 
in the visible region. The protocol reaction of correspond-
ing salts with 2,3-dichloroindenone (92), 2,3-dichloro-
1,4-naphthoquinone (93), and 4a,6,7,8a-tetrachloro-
1,4-methanonaphthalene-5,8-dione (94) in presence of 
DBU in THF at 90 °C. Most of the products were obtained 
via a [2 + 3] cycloaddition followed by the elimination of 
two hydrogen chloride molecules with good yields.

Tsuge et al. (Tsuge 1986) reported the synthesis of isox-
azole fused tetrahydroindolazine (102) (Scheme 27). The 
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protocol involves stereoselective and regioselective cycload-
dition reactions of in situ-generated pyridinium ylide with 
olefinic dipolarophile (101) in the presence of TEA to form 

tetrahydroindolazine (100). This tetrahydroindolazine sub-
sequently undergoes cycloaddition with nitrile oxide to form 
the desired product with a 45% yield.

Scheme 34  Functionalized 
2-fluoroindolizines by base 
mediated [3 + 2]-annulation 
of gem-difluoro alkenes and 
pyridinium ylides

Scheme 35  Oxidative 
[3 + 2]-annulation of nitroalk-
enes and pyridinium ylides for 
functionalized indolizines
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They (Tsuge et al. 1987) developed a new sequential 
method of alkylation or hydroalkylidenation of olefins 
(Scheme 28). The method involves reactions of pyridinium 
salts (3) with a variety of olefins (103 and 105) carrying 
two electron-withdrawing groups at both carbons such as 
N-substituted maleimides, citraconimide, dimethyl maleate, 
dimethyl fumarate, and 1,2-dibenzoyl ethene and N-(p-
tolyl)citraconimide to give mixtures of two regioisomeric 
cycloadducts (104). Major regioisomers carry the methyl 
moiety at the 3a-exo position. The stereoselectively formed 

cycloadducts readily undergo the elimination of pyridines by 
passing with silica gel in a glass column to form itaconimide 
derivatives (107).

Kanemasa and Tsuge reported that either pyridinium 
or isoquinolinium methylides could participate in tandem 
1,3-dipolar double cycloadditions to form cycle[2,2,3]azines 
(109) (Scheme 29) (Tsuge and Kanemasa 1989)(Kanemasa 
et al. 1989). The protocol involves the reaction of pyridinium 
methylides (4) with two molecules of N-methyl maleimide 
(108). The cyclic[3.2.2]azines were obtained in a highly 

Scheme 36  Synthesis of 
dimethyl 3-cyanoindolizine-l,2-
dicarboxylate
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regioselective, stereoselective, and face-selective manner. 
The yield of the reaction was 30% in chloroform at room 
temperature. The various dipolarophiles were successfully 
utilized for this reaction with good yields. The reaction 
sequence involves first the cycloaddition of ylide (4) with the 
first molecule of N-methyl maleimide (108) to form interme-
diate I. The intermediate I was converted into ylide II, which 
further undergoes cycloaddition with the second molecule 
of N-methyl maleimide (108) yielding the intermediate III, 
which on deprotonation gave the desired cyclic[3.2.2]azines 
(109).

Hu et al. (Wang et al. 1999) synthesized indolizine-3-car-
boxamides (111–113) and indolizine-3-carbonitriles (114) 
by reaction of pyridinium ylides to alkenes (110) in the pres-
ence of tetrakis-pyridine cobalt (II) dichromate (TPCD) or 
manganese(IV) oxide (Scheme 30). The reaction proceeds 
via 1,3-dipolar cycloaddition of N-(cyanomethyl)pyridinium 
ylides to alkenes followed by aromatization and hydration 
reactions. When the reaction was carried by using TPCD the 

reaction proceeded via 1,3-dipolar cycloaddition followed by 
aromatization reaction, but without hydration of nitrile gave 
indolizine-3-carbonitriles (114).

Recently, Ofial et al. (Mayer et al. 2021) synthesized 
diastereomeric tetrahydroindolizines (116) by the treat-
ment of a 1:1-mixture of the pyridinium ylides with cyclic 
Michael acceptors such as 5–7 membered cycloenones and 
α,β-unsaturated lactones (115). The yield of the products 
was good in with a DMSO solution at 20 °C (Scheme 31). 
The reaction occurs via a (3 + 2)-cycloaddition. As tetrahy-
droindolizines are highly sensitive toward oxidation, oxida-
tion with chloranil gave aromatic indolizine (117 and 118) 
72–86% isolated yields. A combination of the electrophilic-
ity parameters E with tabulated nucleophilicity descriptors 
N was used to predict the rate constants for the reactions of 
cyclic Michael acceptors with various C-nucleophiles. This 
work nurtures the development of medicinal and pharma-
ceutical drug discovery.

Scheme 39  Synthesis of 
various compounds using cyno-
methylpyridinium salt
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Zhang and Huang (Zhang and Huang 1998) synthe-
sized fluroalylated indolizine derivatives (120 and 121) 
by cycloaddition reactions of N-(cyanomethyl)pyri-
dinium ylides with 2,2-dihydropolyfluoroalkanoates 
 (RFCF2CH2CO2Et) (119) in presence of  K2CO3/TEA in 
DMF at 65 °C (Scheme 32). The products' yields ranged 
from 20 to 90% depending on the polyflouoroalkyl groups. 
The indolizine derivatives based on isoquinolinium were 
obtained with 48–64% isolated in yields.

Similarly, Zhu et al. (1999) synthesized 1-trifluoroacetyl 
indolizine derivatives (123 and 124) via the cycloaddition 
of pyridinium N-ylides with 4–4-ethoxy1-1,1,1-trifluorobut-
3-en-one (122) (Scheme 33). The protocol involves the reac-
tions of 4-ethoxyl-1,1,1-trifluorobut-3-en-2-one (122) with 
the corresponding salt in DMF at 70 °C.

Recently, Ren et al. (Zhang et al. 2021) accessed vari-
ous functionalized 2-fluoroindolizines (127 and 128) by 
base mediated [3 + 2]-annulation of gem-difluoro alkenes 
(125) and pyridinium ylides using ambient air as the sole 
oxidant (Scheme 34). The protocol involves the reaction 
of pyridinium salt with fluoro alkenes in the presence 
of  K2CO3 in DMF:Dioxane (1:1) mixture at 60 °C. The 
3-cyano-2-fluoroindolizine-3-carbonitrile (126) can be fur-
ther functionalized into different derivatives. The reaction of 
2-fluoroindolizines in refluxing alcoholic KOH gave the cor-
responding 2-fluoroindolizine-3-carboxylic acid (128) with 

93% yield, while Pd catalyzed coupling with phenylboronic 
acid gave the corresponding biaryl compounds (127) with 
95% yield. The stepwise anionic mechanism involves the 
first formation of pyridinium ylide 4, which attacks the gem-
difluoro alkene 125 to form an intermediate I. Subsequently, 
I undergoes an intramolecular ring-closure process to form 
tetrahydro indolizine II which undergoes β-F elimination 
delivering intermediate 127. Lastly, the 2-fluoroindolizine 
is formed through spontaneous oxidation process via path A. 
Alternatively, path B involves the formation of the product 
via sequential oxidation and β-F elimination process.

The 1-fluoroindolizines (130 and 131) were obtained with 
good yields by reacting various fluoronitroalkenes (129) and 
pyridinium ylides in the presence of 2,6 lutidine in DCE 
at 0 °C to RT (Motornov et al. 2019). The 3-cyano-substi-
tuted derivatives (134) were converted into 3-unsubstituted 
indolizines (133) using KOH, EtOH, and reflux, followed by 
treatment with conc. HCl, 80 °C. The resultant compounds 
on treatment with  EtO2CC =  CCO2Et, Cu(OAc)2·H2O 
(20 mol.%) in toluene and air at 90 °C gave fluorinated 
cyclizine (134). In continuation with this, they used cop-
per acetate (Scheme 35) for the synthesis of functionalized 
pyrrolo[1,2-b]pyridazines and pyrrolo[1,2-a]phthalazines 
(135) by oxidative [3 + 2]-annulation reactions of nitroalk-
enes and pyridazinium ylides (Motornov et al. 2021).

Scheme 40  Synthesis of 
4,5-disubstituted 1,2,3-(NH)-
triazoles
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Various pyridinium monosubstituted methylides were 
smoothly converted into pyridinium substituted cyanometh-
ylide (4) in low-moderate yields by the attacked of cyano 
group from ethyl thiocyanatoacetate or ethyl 2-thiocyanato-
propionate (138) in presence of  K2CO3 in  CHCl3 (Kakehi 
et al. 1996). Subsequently, these substituted cyanomethylide 
(4) undergo the 1,3-dipolar cycloadditions with dimethyl 
acetylenedicarboxylate (DMAD) (136) in various solvents 
delivering only dimethyl 3-cyanoindolizine-l,2-dicarboxy-
late (137) in moderate yields at RT (Scheme 36).

Iodine was also used as a promoter for the synthesis 
of acylindolizine derivatives from acetylene carboxylates 
and pyridinium ylides in DMSO at room temperature 
via 1,3-dipolar addition (Liu et al. 2014). Bicu and co-
workers (Moise et al. 2020) synthesized cyanoindolizines 
or cyanoazaindolizinyl-indolizines from cyanomethyl 

pyridinium salts through the 1,3-cycloaddition condi-
tions with alkyl propiolates (139). It was observed that the 
cycloadducts (140) were obtained at room temperature, 
while ethyl or methyl 3-(3-cyanoimidazo[1,2-a]pyridin-2-yl)
indolizine-1-carboxylates (141) was obtained in refluxing 
 CH3CN in the presence of TEA (Scheme 37). Thus, the 
reactions at room temperature favor the classical reactiv-
ity to form cyanoindolizines (140) while the formed bis 
pyridinium salts formed at heating tempted the formation 
of cyanoazaindolizine-indolizine by tandem 1,3-cyclization 
to form (141).

Similarly, Airinei et al. (Gherasim et al. 2020) synthe-
sized compounds with pyrrole-isoquinoline (144) and imi-
dazo-isoquinoline (143) skeleton using the [3 + 2] cycload-
dition of the several in situ generated cycloimmonium ylides 
and ethyl propiolate (142A) or ethyl cyanoformate (142B) 

Scheme 41  Tandem double 
[3 + 2] reported a three-compo-
nent cycloaddition reaction
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Scheme 43  One-pot three-
component diastereoselective 
synthesis of novel regioisomers 
of furo[2,3-d]pyrimidines
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(Scheme 38). Both the compounds were studied by UV–VIS 
absorption as well as steady and time-resolved fluorescence 
methods. These derivatives displayed an intense emission 
between 360 and 420 nm. In addition, the emission quantum 
yields (Φ) of pyrroloisoquinoline derivatives were 0.54–0.64 
in dimethylsulfoxide (DMSO), which are significantly higher 
than those of imidazoquinolines (Φ = 0.03–0.16).

Cynomethylpyridinium salt (3) can readily be coupled 
with benzenediazonium chloride to yield the phenylhy-
drazonylpyridinium bromides (145) in good yields, which 
were further converted into the 1,4-di-hydro-1,2,4,5-
tetrazines (146) in the presence of ammonium acetate in 
refluxing acetonitrile. The resultant compound 145 was 
converted into the cyano indazole (149) when refluxed 
into DMF (Abdel-Khalik et al. 2000). The fusion reaction 
of 145 with the enaminone (147) afforded the pyrazole 
(148) at 250 °C with a 68% yield (Scheme 39).

Wu et al. (Wu and Wu 2018) carried out a synthesis 
of 4,5-disubstituted 1,2,3-(NH)-triazoles (150) by the 
sequential reaction of pyridinium salts (3) with aldehydes 
(5) and sodium azide in presence of l-Proline (10 mol %) 
(Scheme 40). All the products were obtained in 87–93%. 
The proposed reaction mechanism involves coupling 
pyridinium ylide I, with aldehyde/protonated aldehyde 
to form β-hydroxypyridinium salt II. This salt is trans-
formed into the key intermediate III via dehydration. 
Intermediate III on [3 + 2] cycloaddition with azide ion 
followed by elimination of pyridine produce the 4,5-dis-
ubstituted 1,2,3-triazole (150).

Other reactions

Yan et al. (Shi et al. 2017) developed a tandem double 
[3 + 2] three-component cycloaddition reaction of cyano-
methyl isoquinolinium chloride (3) with 2-arylidene-
1,3-indane diones (151) and different aldehydes (5). The 
reaction produces the spiro indene pyrrole isoquinoline 
derivatives (152) in the presence of TEA in acetonitrile 
at room temperature in 63–92% yields (Scheme 41). The 
reaction occurs both at C-1 and C-3 atoms of cyanomethyl 
isoquinolinium chloride. The plausible mechanism based 
on the experimental results is depicted in Scheme 41. Ini-
tially, isoquinolinium ylide reacts with 2-arylidene-1,3-in-
danedione formed by the Knoevenagel condensation of the 
aldehyde and indanedione in the presence of TEA. Next, 
Michael addition of a ylide on 2-arylidene-1,3-indanedi-
one (I) afforded an intermediate II. Next, intermediate 
II reacted with the second molecule of 1,3-indanedione 
and afforded zwitterionic intermediate (III), which on 
the intermolecular cyclization, delivered the desired spiro 
compound.

Similarly, Yan et al. (Liu et al. 2019) reported the diaste-
reoselective synthesis of spirocyclic isoxazolopyrrolo iso-
quinolines via cascade double [3 + 2] cycloaddition reactions 
of cyanomethylisoquinolinium chloride (3) with (E)-3-ar-
ylideneindolin-2-ones and (E)-N-hydroxybenzimidoyl 
chloride. All the reactions were carried out using DABCO 
in DCM at room temperature (Scheme 42). A novel poly-
cyclic spiro indoline-isoxazolopyrrolo isoquinolines (161) 
were obtained in good yields with high diastereoselectivity 
N-ethoxycarbonylmethyl isoquinolinium bromide under the 
same reaction conditions gave a mixture of two diastereoi-
somers. Similarly, 4-arylidene-5-methyl-2-phenylpyrazol-
3-ones (162) gave corresponding spiro compounds (164) 
in 48–68% yields. In addition, the reaction of 2-arylidene-
1,3-indane diones (156) gave the corresponding spiro deriva-
tives (158) in 55–63% yield, while arylidene malononitriles 
(153) were converted into corresponding spiro compounds 
(155) with 60–73% yields under similar reaction conditions. 
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The stereochemistry of the spiro compounds was elucidated 
by single-crystal analysis.

Bhuyan et al. (Dutta et al. 2016) reported the one-pot 
three-component diastereoselective synthesis of novel 
regioisomers of furo[2,3-d]pyrimidines (166) using bar-
bituric acids (165), aryl aldehydes (5), and pyridinium 
bromides (3) in the presence of TEA in refluxing acetoni-
trile (Scheme 43). The reaction occurred via Knoevenagel 
condensed Michael addition route. There is involvement 
of nitrogen ylides in [4 + 1] annulations as well as [2 + 1] 
annulation followed by intramolecular ring transformation 
in the presence of a base to afford two isomeric products.

Khlebnikov and co-workers (Galenko et  al. 2021) 
reported the synthesis of water-soluble α-amino pyrroles 
(1-(2-amino-1H-pyrrol-3-yl)pyridinium chlorides) (168) 
by the reaction of 1-(cyanomethyl)pyridinium chloride (3) 
with alkyl 3-aryl-2H-azirine-2-carboxylates (167) in the 
presence of TEA in DCM at RT (Scheme 44).

Recently, Chen and co-workers (Tang et al. 2023) syn-
thesized a novel reactivity annulated 4-oxothiazolidin-
5-ylidenes (170) via a cascade of Michael addition/elimi-
nation reactions. The method gives an excellent yield of 
the desired products using TEA as a base in DCM at RT 
(Scheme 45).

Conclusion

In this account, we have highlighted the feasibility of 
cyanomethyl pyridinium, isoquinolinium, and related salts 
as useful reagents to synthesize many important annulated 
heterocycles. Although this reagent has witnessed several 
advances, its application in organic synthesis is yet to be 
seen in a broader range. The presented analysis shows that 
the application of cyanomethyl pyridinium salts and their 
related derivatives is less. In addition, the ready access of 
these salts from easily available reagents will certainly make 
them an appealing class of promoters for the development in 
the synthesis of many other classes of heterocycles.
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