Vivekanand College, Kolhapur (Empowered Autonomous) Teaching Plan: Academic Year – 2018-19. Subject: Chemistry, Course Title: DSC-1002A: Semester - I Section -II-Organic Chemistry #### Name of the Teacher: Dr. Mrs. S. D. Shirke | Month: August | | | Module/Unit: | Sub-units planned | |-----------------|------------------|--------------|--|---| | Lectures
06 | Practicals
hr | Total
06 | Induction | General Introduction Discussion on Course Structure Discussion on Examination pattern Discussion on Syllabus | | Mor | nth: Septembe | | Module/Unit: | | | IVIOI | iii. Septembe | 1 | 13.0000 | Sub-units planned | | Lectures | Practicals | Total | Stereochemistry of Organic | General introduction –Meaning
Definition, Types of stereoisomerism | | 12 | 16 | 28 | Chemistry | 1.Optical Isomerism 2. Geometrical
Isomerism 3. Conformational
Isomerism | | Mo | onth: October | | Module/Unit: | Sub-units planned | | 12 | 16 | 28 | Stereochemistry
of Organic
Chemistry . | Elements of Symmetry-Ex. of optical isomerism- Lactic acid, Tartaric acid 2,3-butanoic acid. Geometrical isometrism- Dicarboxylic acids Maleic and Fumaric acid 3.Conformational Isomerism- Introduction- Ethane and n-Butane | | Mon | th: Novembe | r | Module/Unit: | Sub-units planned | | 12 | 16 | 28 | Continued 2 Aromatic Hydrocarbons | Cyclohexane – Chair, Boat, Twist boat and Half chair Aromaticity - Definition , Classification, Structure of Benzene- MOT and VBT, Electrophilic Substitution Reactions- Nitration, Sulphonation , Halogenation and Friedal Craft's Alkylation and Acylation with mechanism. | | Month: December | | Module/Unit: | Sub-units planned | | | 06 | 08 | 14 | 3. Alkanes
4. Alkenes | Definition, Reactivity,Preparation methods,and characteristic chemical ReactionsFor both Alkanes and Alkenes | | | | | | 4 | | 10:14 | | | Z . V 1/1826 | | Dr. S. D. Shirke Head of Pepartment Dept. of Chemistry # Vivekanand College, Kolhapur (Empowered Autonomous) Teaching Plan: Academic Year - 2018-19. Academic Year: 2018-19 Semesters: B.Sc. II, Sem- III Department: ChemistrySubject: Chemistry Course Title: DSE-1002 C: Organic chemistry | Mo | nth: August | | Module/Unit: | Sub-units planned | | | |---------------------------|----------------|-----------|---|---|--|--| | Lectures
4 | Practicals | Total 4 | Amino acids, Peptides and Proteins | Introduction Definition, Classification and Examples Electrophoresis, Isoelectric point Zwitterions-Examples Peptides- Structure Strecker's synthesis of amino acids. Gabriel phthalimide synthesis | | | | Month: September | | | Module/Unit: | Sub-units planned | | | | Lectures Practicals Total | | Proteins | Reactions of Amino acids w.r.t. –COOH and –NH2 group., Protein structures – Primary, Secondary and | | | | | 4 | 4 32 36 | | | Tertiary, Edmann Degradationetc. | | | | N | Month: Octob | er | Module/Unit: | Sub-units planned | | | | 4 32 36 | | Continued | Primary, secondary structures of protein Tertiary and Quaternary structures of Proteins. Denaturation of proteins | | | | | | Month: Nove | mber | Module/Unit: | Sub-units planned | | | | - 16 16 | | | - | | | | | | December
32 | 32 | | | | | Dr. S. D. Shirke SING TO STAND STAN Head Of Department # Vivekanand College, Kolhapur (Empowered Autonomous) Teaching Plan: Academic Year – 2018-19. Academic Year: 2018-19 Semesters: B.Sc. III, Sem- V Department: Chemistry Subject: Chemistry, Course Title: DSC-1002E: Organic chemistry Name of the Teacher: Dr. Mrs. S. D. Shirke | M | onth: August | | Module/Unit: | Sub-units planned | | | |------------------|------------------|---|---|---|--|--| | 4 14- 18 | | Natural Products- Terpenoid s and Alkaloids and | Terpenoids - Defination., structures, Classification, Source, Extraction of terpenoids. General methods to determine the structure of Terpenoids | | | | | Month: September | | | Module/Unit: | Sub-units planned | | | | Lectures | Practicals | Total | Terpernoids continued | - 1. Citral – Structure, Properties Analytical and synthetic evidence-reaction | | | | 08 | 08 28 36 Alkaloi | | Alkaloids | Introduction, Extraction and Isolation of alkaloids Classification, Analytical and synthetic evidence of Nicotine | | | | N | Ionth: Octob | er | Module/Unit: | Sub-units planned | | | | 08 28 36 | | Pharmaceuticals- | Introduction, Definition, Characteristics of Ideal Drug, Classification- 1. Functional Drugs and 2.chemotherapeutic drugs, Synthesis of selected drugs- Ethophan, Phenobarbitone | | | | | N. N. | Ionth: Noven | nber | Module/Unit: | Sub-units planned | | | | | - 08
December | | Pharmaceuticals-
Continued | Synthesis of Isoniazid, Benzocaine, Paludrine and. | | | | | | | Continued | Chloramphenicol, Action of sulpha drug. | | | 8Delce Dr. S. D. Shirke Head Of Department Dept. of Chemistry # Vivekanand College, Kolhapur (Empowered Autonomous) Teaching Plan: Academic Year - 2018-19. Subject: Chemistry, Course Title: DSC-1002A: B.Sc.-I: Semester - II **Organic Chemistry** Name of the Teacher: Dr. Mrs. S. D. Shirke In this semester 2018-19: Organic Chemistry syllabus is not involved. # Vivekanand College, Kolhapur (Empowered Autonomous) Teaching Plan: Academic Year – 2018-19. Subject: Chemistry, Course Title: DSC-1002D: B.Sc.-II: Semester - IV **Organic Chemistry** Name of the Teacher: Dr. Mrs. S. D. Shirke In this semester 2018-19: Organic Chemistry syllabus is not involved. # Vivekanand College, Kolhapur (Empowered Autonomous) Teaching Plan: Academic Year – 2018-19. Academic Year: 2018-19 Semesters: B.Sc. III, Sem- V Department: Chemistry Subject: Chemistry, Course Title: DSC-1002F2: Organic chemistry Name of the Teacher: Dr. Mrs. S. D. Shirke | Mo | nth: January | | Module/Unit: | Sub-units planned | | |-------------------------------|---------------|-------------------|--|--|--| | Lectures | Practicals | Total | NMR
Spectroscop | Principle, Terms involved – Spining nuclei, magnetic moment, Precessional frequency, | | | 8 | 28- | 36 | Spectroscop | nuclear resonance Chemical shift and factors affecting to chemical shift | | | N | Ionth: Februa | ıry | Module/Unit: | Sub-units planned | | | lectures Practicals Total | | NMR-
continued | Spin – spin coupling-Splitting-Types Peak area Constant Types | | | | 08 | 28 | 36 | | Coupling Constant- Types Problems | | | | Month: Marc | h | Module/Unit: | Sub-units planned | | | 08 28 36 | | Sugar
Industry | Introduction, Extraction of Juice Clarification of Juice Concentration of juice Centrifugation of juice | | | | Month: April | | Module/Unit: | Sub-units planned | | | | 08 | • | 08 | Sugar
Industry-
continued | Crystallization of sugar, Refining of sugar Byproducts of sugar industry | | Dr. S. D. Shirke Head Of Department Dept. of Chemistry Wekenard Collage Kolhanus #### **Annual Teaching Plan** Academic Year:2018-19 Semesters: B.Sc. I (A+B+C), Sem-I Department: Chemistry Subject: Chemistry Course Title:DSC-1002A: Inorganic & Organic Chemistry Name of the Teacher: Mr. Satish Suresh Kadam | Mor | nth: Novembe | er | Module/Unit: | Sub-units planned | |--------------|---------------|-------|--------------------------------------|--| | Lectures | Practical hr | Total | Induction | General Introduction Discussion on Course Structure | | 06 | | 06 | | Discussion on Syllabus | | Moi | nth: Decembe | er | Module/Unit: | Sub-units planned | | Lectures | Practicals | Total | Fundamentals of | General introduction Reactive intermediates | | 12 | 16 | 28 | Organic Chemistry | Nucleophiles and electrophiles. Electronic Displacements | | M | onth: January | | Module/Unit: | Sub-units planned | | 12 | 16 | 28 | Fundamentals of
Organic Chemistry | Cleavage of Bonds Physical Effects Strength of organic acids and bases. | | Mo | onth: Februar | y | Module/Unit: | Sub-units planned | | 12 | 16 | 28 | Alkenes | Elimination reactions: Introduction Saytzeff's Rule Birch reduction). Partial catalytic hydrogenation) cis-addition (alk. KMnO₄) and trans-addition | | Month: March | | | Module/Unit: | Sub-units planned | | 06 | 08 | 14 | Alkenes | Addition of HX Hydration Ozonolysis oxymercuration-demercuration
Hydroboration-oxidation | Mr. S.S.Kadam (Assistant Professor) Dr. D.B. Patil (Head of Dept) Dept. of Chemistry Vivekenand College, Kolhanus #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. I (A+B+C), Sem-II Department: Chemistry **Subject: Chemistry** Course Title:DSC-1002B: Physical& Organic Chemistry Name of the Teacher: Mr. Satish Suresh Kadam | N | Month: April | | Module/Unit: | Sub-units planned | |--------------------------------|------------------|-------------------------------------|--|--| | Lectures
06 | Practicals
hr | Total 06 | Halides | Alkyl Halides :Introduction, Types of Nucleophilic Substitution Preparation of Alkyl Halides | | | | | | Williamson's ether synthesis Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation | | 1 | Month: May | | Module/Unit: | Sub-units planned | | Lectures Practicals Total | | Halides | Aryl Halides :Preparation Sandmeyer & Gattermann reactions | | | 12 | 16 | Reactivity and Relative strength or | | Reactivity and Relative strength of C-Halogen
bond in alkyl, allyl, benzyl, vinyl and aryl | | , 1 | Month: June | | Module/Unit: | Sub-units planned | | 12 | 16 | 28 | Ethers | Preparation Reactions of ethers Cleavage of ethers with HI. Introduction | | | Month: July | | Module/Unit: | Sub-units planned | | 12 | Aldehydes and | | Aldehydes and
Ketones | Preparation Reaction with HCNs Iodoform test. Aldol Condensation, Clemensen reduction and Wolff Kishner reduction | | Month: August | | Module/Unit: | Sub-units planned | | | 06 08 14 Aldehydes and Ketones | | | Cannizzaro's reaction Wittig reaction Meerwein-Pondorff Verley reduction Benzoin condensation | | Mr. S.S.Kadam (Assistant Professor) TO SEE SEE SEE Dr. D.B. Patil (Head of Dept) Ospt. of Chemistry #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. II, Sem-III **Department: Chemistry** Subject: Chemistry Course Title: DSC-1002C Physical & Organic Chemistry Name of the Teacher: Mr. Satish Suresh Kadam | N | Month: May | | Module/Unit: | Sub-units planned | | | |-----------------|--------------|--|---|---|--|--| | Lectures 4 | Practicals - | - 4 and their Carboxylic acids derivatives Preparation: Ac | | Carboxylic acids (aliphatic and aromatic | | | | Month: June | | | Module/Unit: | Sub-units planned | | | | Lectures | Practicals | Total | Carboxylic acids
and their | Reactions: Hell -Vohlard - Zelinsky Reaction. Carboxylic acid derivatives (aliphatic) | | | | 4 | - | 04 | derivatives | Preparation preparation of Esters with mechanism Comparative study of nucleophilicity of acyl derivatives | | | | | Month: July | | Module/Unit: | Sub-units planned | | | | 4 - 04 | | Carboxylic acids
and their
derivatives | Reformatsky Reaction Perkin condensation with mechanism and their applications. | | | | | Month: February | | Module/Unit: | Sub-units planned | | | | | - | | | - | - | | | Mr. S.S.Kadam (Assistant Professor) Dr. D.B. Patil (Head of Dept) ### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. III, Sem-VI Department: Chemistry Subject: Chemistry Course Title:DSE-1002E: Inorganic & Physical Chemistry DSE-1002F: Organic&AnalyticalChemistry Name of the Teacher: Mr. Satish Suresh Kadam | Month: November | | Module/Unit: | Sub-units planned | | | |---------------------------|---------------|----------------|--|---|--| | Lectures 06 | Practicals | Total
06 | Name Reactions | Introduction. Beckmann, Benzilic acid, Baeyer Villiger, Diels -
Alder reaction,. | | | Mo | nth: Decembe | er | Module/Unit: | Sub-units planned | | | Lectures Practicals Total | | Name Reactions | Mannich Reaction, Michael Reaction, Fries,
Dienone-Phenol rearrangement, Problems based | | | | 12 | 52 | 64 | | on reactions | | | Mo | onth: January | | Module/Unit: | Sub-units planned | | | 12 | 52 | 64 | Synthetic
Reagents | DDQ, OsO4, N-bromosuccinamide, Zn-Hg, DCC, | | | . Mor | nth: February | | Module/Unit: | Sub-units planned | | | 12 | 52 | 64 | | LiAlH4, CAN, Raney Ni, Diazomethane | | | M | onth: March | | Module/Unit: | Sub-units planned | | | 06 | 13 | 19 | Combined problems | Problems based on reaction | | Mr. S.S.Kadam (Assistant Professor) Dr. D.B. Patil (Head of Dept) Dept. of Chemistry Vivekanand College, Kolhapur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. III, Sem-V **Department: Chemistry** Subject: Chemistry Course Title:DSE-1002G: Inorganic & Physical Chemistry DSE-1002H: Organic&IndustrialChemistry Name of the Teacher: Mr. Satish Suresh Kadam | 1 | Month: May | | Module/Unit: | Sub-units planned | | | |---------------------------|-------------|---------------------------------|---|---|--|--| | Lectures
09 | Practicals | Total
09 | Introduction to
Spectroscopy | Meaning of spectroscopy, Nature of electromagnetic radiation different units of measurement of wavelength frequency, different regions of electromagnetic radiations, | | | | 1 | Month: June | | Module/Unit: | Sub-units planned | | | | Lectures Practicals Total | | Introduction to
Spectroscopy | Interaction of radiation with matter-absorption,
emission, florescence and scattering, | | | | | 12 | 52 64 | | | Types of spectroscopy and advantages of
spectroscopic methods. Energy types and energy levels of atoms and
molecules | | | | 1 | Month: July | | Module/Unit: | Sub-units planned | | | | 12 | 52 | 64 | Ultra-Violet
(UV)
Spectroscopy | ; Introduction, Beer-Lamberts law, Terms used in U.V. Spectroscopy- Modes of electromagnetic transitions. Effect of conjugation on position of U.V. band, Calculation of λ-max by Woodward and Fisher rules for dienes systems, Colour and visible spectrum, | | | | Month: August | | Module/Unit: | Sub-units planned | | | | | 6 | - | 06 | Ultra-Violet
(UV)
Spectroscopy | Effect of conjugation on position of U.V. band,
Calculation of λ-max by Woodward and Fisher
rules enones systems, Colour and visible spectrum, Applications of
U.V. Spectroscopy | | | Mr. S.S.Kadam (Assistant Professor) Dr. D.B. Patil (Head of Dept) Dept. of Chemistry Vivekanand College. Kolhapus Vivekanand College, Kolhapur (Autonomous) Annual Teaching Plan 2018-19 B. Sc. Sem. I; M.Sc. I Sem I; M.Sc. II Sem. III Department- Chemistry Name of the Teacher – Dr. A. A. Patravale | | | | Month - June | | |----------------|-----------------|------------|--|---| | B.Sc.I Sem I:- | Course Title:- | Chemistr | y | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 01 | 04 | Academic practical | Introduction of Glasswares | | M. Sc. I Sem I | - Course Title | :- Chemis | | <u> </u> | | 02 | 00 | 02 | Aromatic
Electrophilic
Substitutions | Introduction, the arenium ion mechanism, orientation and reactivity in Nitration, Sulphonation, Friedel-Crafts and Halogenation in aromatic systems, energy profile diagrams. | | M. Sc. II Sem | III :- Course T | itle:- Org | anic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 02 | 00 | 10 | Drug design | Development of new drugs, procedures followed in drug design, concepts of prodrugs and soft drugs. Theories of drug activity, Quantitative structure activity relationship. | | M. Sc. II Sem | I :- Course Tit | le:- Organ | nic Chemistry | | | - | 02 | | Organic pratical | 1] Introduction and lab safty concept 2] Fire fiting technique | | | | | Month - July | | |----------------|------------------|------------|--|--| | B.Sc.I Sem I:- | Course Title:- | Chemistr | y | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 04 | 16 | Academic
Practicals | Organic spotting Eudiometer | | M.Sc.I Sem I: | - Course Title:- | Chemist | ry | | | 03 | | 03 | Aromatic
Electrophilic
Substitutions | The ortho/para ratio, ipso attack, concept of aromaticity, orientation in their ring systems. Diazocoupling, Vilsmeir Haak reaction, Von Richter rearrangement. Nucleophilic aromatic substitution reactions SN1, SN2. | | M.Sc.II Sem I | II :- Course Ti | tle:- Orga | nic Chemistry | | |
Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 06 | - | 30 | Drug design | Theories of drug activity, Quantitative structure activity relationship. History and development of QSAR. Concepts of drug receptors | |----|----|----|------------------------|--| | | 24 | | Organic
Preparation | 1] Preparation of Benzene azo beta
napthol2] Preparation of para nitroso N,N
dimethyle aniline | | | | | Month - August | | |----------------|-----------------|----------|--|--| | B.Sc.I Sem I:- | Course Title:- | Chemistr | y | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 04 | 16 | Academic
Practicals | Organic spotting Standardization of HCl Chemical Kinetics | | M.Sc.I Sem I:- | Course Title:- | Chemist | ry | | | 04 | - | 04 | Non benzenoid
aromatic
Compounds | Aromaticity in Non- benzenoids compounds Annulenes and heteroannulenes, fullerence C60,tropone, tropolone, azulene, fulvene, tropylium salts, ferrocene. | | M.Sc.II Sem II | | | | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | M.Sc.II Sem I | :- Course Title | 48 | Study of the Following types of drugs | , | | - | 32 | | Organic
Preparation | 1] Dye preparation -2
P-nitro actanilide | | | | | Month - September | | |---|---------------|---------|------------------------|---| | B.Sc.I Sem I:- Course Title:- Chemistry | | | | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 04 | 16 | Academic
Practicals | Organic spotting Standardization of K2Cr2O7 Viscocity | | M.Sc.I Sem I: | Course Title: | Chemist | ry | j. Viscocity | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | |-----------------------------------|----------------------|---------------------|--|---| | 03 | A description of the | 03 | Non benzenoid
aromatic
Compounds | Annulenes and heteroannulenes, fullerence C60,tropone, tropolone, azulene, fulvene, tropylium salts, ferrocene. | | M.Sc.II Sem III | :- Course Ti | le:- Orga | nic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 12
MS- HS | | 36 | Small ring Heterocycles Benzo fused five membered Heterocycles | Three membered and four membered Heterocycles- synthesis and reactions of aziridines, oxiranes, thiranes, azetidines, oxitanes and thietanes. Synthesis and reactions of benzopyrroles, benzofurans and benzothiophenes | | M.Sc.II Sem I :- | Course Title | :- Organi | c Chemistry | | | - | 24 | | Organic Estimation | 1] Estimation of Aspirin 2] Colorometric analysis | | | | | | | | | | | Month-October | | | M.Sc.II Sem III | :- Course Ti | tle:- Orga | Month-October
nic Chemistry | | | M.Sc.II Sem III
Lectures | :- Course Ti | tle:- Orga
Total | Month-October nic Chemistry Module Unit | Sub-Units Planned | | M.Sc.II Sem III
Lectures
08 | :- Course Ti | | nic Chemistry | Sub-Units Planned Synthesis, chemical reactions of pyridazine, pyrimidine and pyrazine 1,2,3-triazole, 1,2,4-triazole and 1,3,5-triazole. | Dr. A. A. Patravale Dr. D. B. Patil Head Dept. of Chemistry Vivekanand College. Kolhanus. # Vivekanand College, Kolhapur (Autonomous) Annual Teaching Plan Academic Year - 2018-19 Academic Year - 2018-19 B. Sc. Sem. II; M.Sc. I Sem II; M.Sc. II Sem. IV Department- Chemistry Name of the Teacher – Dr.A. A. Patravale | | | | Month - January | | |------------------|-----------------|------------|--|---| | M.Sc.I Sem. II | :- Course Title | e:- Organi | ic Chemistry-II | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 06 | | 06 | Atomic absorption
and Inductively
coupled plasma
(ICP) Spectroscopy | Atomic Absorption Spectroscopy
(AAS) Introduction, Principal
difference between AAS and FES | | M.Sc.II Sem I | V:- Course Ti | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 12 | 00 | 44 | Manufacture of following perfume | Introduction, significance of perfume .2-Phenylethanol, detergents. | | M.Sc.II Sem II | :- Course Tit | le:- Organ | ic Chemistry | | | - | 32 | - | Binary Mixture | Demo of Speration of binary compound Binary mixture -I and II | | B.Sc.I Sem I:- 0 | Course Title:- | Chemistr | v | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 04 | 16 | Academic
Practicals | Organic spotting Chromatography-I Spot test | | | | | Month - February | Y | |----------------|-----------------|-------------|--|---| | M.Sc.I Sem. II | :- Course Title | e:- Organi | c Chemistry-II | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | <u>*-</u> | 08 | Atomic absorption
and Inductively
coupled plasma
(ICP) Spectroscopy | Advantages and disadvantages of AAS, Instrumentation, Single and double beam AAS, detection limit | | M.Sc.II Sem IV | :- Course Ti | tle:- Organ | nic Chemistry | apoutosop). | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 12 | - | 60 | Manufacture of following perfume | 2-Phenylethanol, detergents, vanillin and other food flavours, synthetic | | | | | | musk, Acetic acid and
butenaldehyde from ethanol butyl
acetate. | |----------------|----------------|------------|------------------------|---| | M.Sc.II Sem II | :- Course Tit | le:- Organ | ic Chemistry | | | - | 48 | | Binary Mixture | Demo of Speration of binary
compound
Binary mixture -II and III | | B.Sc.I Sem I;- | Course Title:- | Chemistr | v | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 04 | 16 | Academic
Practicals | Chemical Kinetics-II Chromatography-II Spot test-4,5,6 Estimation of Vinegar | | | 1 | | Month - March | | |----------------|-----------------|------------|--|---| | M.Sc.I Sem. II | :- Course Title | :- Organi | c Chemistry-II | i | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | - | 48 | Atomic absorption
and Inductively
coupled plasma
(ICP) Spectroscopy | Introduction, Nebulisation Torch, Plasma, Instrumentation, Interferences, and Applications. | | | 32 | | Binary Mixture | Binary mixture -IV and V | | M.Sc.II Sem I | V :- Course Ti | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 16 | 00 | 16 | Manufacture of following perfume | furfural, from bagasse, citric acid
from molasses, Application of oro
and marker process. Nicotine from
tobacco waste and citral from lemon
grass, synthetic detergents, glycerol | | B.Sc.I Sem I:- | Course Title:- | Chemistr | у | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 01 | .00 | 00 | Overall Practical discussion | All practicals discussed. | | | 1 | | Month - April | 6 | |---------------|------------------|------------|--|---| | M.Sc.I Sem. I | I:- Course Title | :- Organi | c Chemistry-II | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | | 08 | Atomic absorption
and Inductively
coupled plasma
(ICP) Spectroscopy | Problems: Simple problems based on AAS and ICP | | M.Sc.II Sem I | V :- Course Tit | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 12 | - | 36 | Manufacture of following perfume | Nicotine from tobacco waste and
citral from lemon grass, synthetic | | 1 | | Called Control of the | detergents, glycerol | | |------------|-------------------------
--|--------------------------------------|---| | M.Sc.II Se | em II :- Course Title:- | Organic Chemistry | | • | | | 24 | Binary Mixture | Binary mixture -V and VI
Revision | | Dr. A. A. Patravale TO CONTRACTOR OF THE PARTY T Dr. D. B. Patil Dept. of Chemistry Vivekanand College, Kolhanur # Vivekanand College, Kolhapur (Autonomous) Annual Teaching Plan Academic Year - 2018-19 Academic Year - 2018-19 Sem. I, III, V Department- Chemistry Name of the Teacher – **Dr. Undale K. A.** | | | | Month - July | | |----------------|-----------------|-------------|---------------------------|--| | B.Sc.ISem I | | | | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | | 16 | 16 | | r | | B.Sc.II Sem II | I :- Course Tit | le:- Physic | cal and Analytical Ch | emistry | | Lectures | Practicals | Total | | | | 04 | 32 | 36 | Phase Equilibria | Introduction, Phase, components and degrees of freedom of a system criteria of phase equilibrium, Gibbs Phase Rule, Clausius-Clapeyror equation and its importance, | | B.Sc.III.Sem | V:- Course Titl | e:- Physic | al and Analytical Che | emistry | | Lectures | Practicals | Total | | | | 08 | 28 | 36 | Molecular
Spectroscopy | Introduction, Electromagnetic radiations, Electromagnetic spectrum, Energy level diagram. Rotational spectra of diatomic molecules: Rigid rotor model, Moment of inertia (derivation expected), Energy levels of rigid rotor, selection rules, spectral intensity, Maxwell-Boltzmann population distribution, Determination of bond length, isotopic effect, interaction of radiation with rotating molecules. | | M. Sc. II Sem | | | anic Reaction Mechan | nism | | Lectures | Practicals | Total | | | | 04 | - | 04 | Pericyclic
Reactions | Molecular orbital symmetry, Frontier orbital of ethylene, 1,3- butadiene, 1,3,5-hexatriene and allyl system, | | | | | Month – August | | |---------------|------------------|--------------|---------------------------|--| | B.Sc.ISem I | | Pit Land | No. of the second | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | | 16 | 16 | | | | B.Sc.II Sem I | II :- Course Tit | le:- Physic | al and Analytical Cho | emistry | | Lectures | Practicals | Total | | | | 04 | 32 | 36 | Phase Equilibria | Phase diagrams of onecomponent systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl3-H2O and KI-Water only). | | R Sc.III.Sem | V:- Course Titl | e:- Physica | l and Analytical Che | mistry | | Lectures | Practicals | Total | | | | 08 | 28 | 36 | Molecular
Spectroscopy | Vibrational spectra of diatomic molecules: Simple Harmonic oscillator model, vibration. | | | | | | energies of diatomic molecules determination of force constant overtones. Interaction of radiation with vibrating molecules. Raman Spectra: concept of polarizability pure rotational and pure vibrational Raman spectra of diatomic molecules, selection rules. | | | | | Chromatography | Numerical problems Introduction, General Introduction Basic principle of chromatography Classification of Chromatography | | M. Sc. II Sen | III :- Course | Title:- Orga | nic Reaction Mechan | nism | | | Practicals | Total | | | | Lectures | | 04 | Pericyclic | classification of pericyclic reaction, | | 04 | | 04 | Reactions | Wood-ward Hoffman correlation diagrams, FMO and PMO approach, electrocyclic reactions, conrotatory and disrotatary motions, 4n, 4n+2 and allyl systems, cycloaddition, and supra and antara facial additions, 4n and 4n+2 systems, 2+2 additions of ketenes, | | | | N | Ionth - September | | |----------------|----------------|------------|-------------------------|--| | B.Sc.ISem I | | 800 | 等 湯 | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | | 16 | 16 | | | | B.Sc.IISem III | :- Course Titl | e:- Physic | al and Analytical Che | mistry | | Lectures | Practicals | Total | | | | 04 | 32 | 36 | Solutions | Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law, non-ideal solutions, Vapour pressure-composition and temperature composition curves of ideal and non-ideal solutions, Distillation of solutions, Azeotropes, | | B.Sc.III.Sem V | :- Course Titl | e:- Physic | al and Analytical Che | mistry | | Lectures | Practicals | Total | | | | 08 | 28 | 36 | Chromatography | Paper Chromatography: Principle, methodology, types of Papers and treatment, sample loading, choice of solvent, development: ascending, descending, circular; location of spot, determination of R _f value, applications and Advantages and Disadvantages. Thin layer chromatography: principle, solvent system, stationary phases, preparation of TLC plates, detecting reagents, methodology-sample loading, development, detection of spot, determination of Rf value, preparative TLC, applications and Advantages and Disadvantages.Comparison of TLC and paper chromatography. | | | | | anic Reaction Mechar | nism | | Lectures | Practicals | Total | 1,11,14 | | | 04 | - | 04 | Pericyclic
Reactions | 1,3-dipolar cycloaddition and chelotropic reactions, sigmatropic rearrangement, supra and antarafacial shifts of H, | | | | | Month - October | | |---------------|------------------|-------------|-------------------------------|--| | B.Sc.ISem I | | | | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | | 16 | 16 | | | | B.Sc.IISem II | I :- Course Titl | e:- Physic: | al and Analytical Chen | nistry | | Lectures | Practicals | Total | | | | 04 | 32 | 36 | Phase Equilibria
Solutions | Numericals | | | | 1 3 5 | | Unit Test | | B.Sc.III.Sem | V:- Course Titl | e:- Organ | ic and Inorganic Chem | nistry | | Lectures | Practicals | Total | | | | 08 | 28 | 36 | Synthetic Reagents | DDQ, OsO4, N-bromosuccinamide,
Zn-Hg, DCC, LiAlH4, CAN, Raney
Ni, Diazomethane | | | | | | Unit Test | | M. Sc. II Sen | III :- Course T | Title:- Org | anic Reaction Mechan | ism | | Lectures | Practicals | Total | | | | 04 | | 04 | Pericyclic
Reactions | Sigmatropic shifts involving carbon moieties, (3,3) and (5,5) sigmatropic rearrangement and Claisen and Cope and Aza Cope rearrangement, Ene reaction. | | ŧ | | V-100 | | Unit Test | Dr. Undale K. A. Obposition Dr. D. B. Patil Dept. of Chemistry Vivekanand College Kolhanus # Vivekanand College, Kolhapur (Autonomous) Annual Teaching Plan Academic Year - 2018-19 Sem. II, IV, VI Department- Chemistry Name of the Teacher – **Dr. Undale K. A.** | | | N | Month – December | | |-------------------|---------------|------------
--|---| | B.Sc.ISem IPhys | ical Chemist | ry | | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | .16 | 24 | Chemical
Equilibria | Introduction, Concept of free energy, Free energy change in chemical reacti law of chemical equilibrium, Distinct between Gibbs free energy and standa Gibbs free energy, LeChatelier's Principle | | B.Sc.II Sem III: | 19 | | | | | Lectures | Practicals | Total | | | | | 32 | 32 | | | | | | e:- Physic | al and Analytical Cher | nistry | | Lectures
04 | Practicals 28 | 32 | Renewable Energy
Sources | Introduction, Batteries -Primary, Secondary cells, Lithium Ion Cell Fuel Cells- Types of fuel cells, Hydrogen- Oxygen fuel cell, Hydrocarbon – Oxygen fuel cell, Coal fired fuel cell. | | M. Sc. II Sem III | :- Course T | itle:- Org | anic Reaction Mechan | ism | | Lectures | Practicals | Total | | | | 04 | | 04 | Newer methods of stereoselective synthesis | Introduction, Stereoselective,
Stereospecific Reactions | | | | | Month - January | y | |---------------|----------------|-------|------------------------|--| | B.Sc.ISem I P | hysical Chemis | stry | | * | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | -16 | 24 | Chemical
Equilibria | Conditions for maximum yield industrial processes like manufacture ammonia and sulphuric a Relationship between Kp, Kc and Kx reactions involving ideal gases. | | B.Sc.IISem II | I | | | t the second sec | |---------------|-------------------|-------------|--|--| | Lectures | Practicals | Total | | | | | 32 | 32 | | | | B.Sc.III.Sem | V:- Course Title | e:- Physic: | al and Analytical Chen | nistry | | Lectures | Practicals | Total | | | | 04 | 28 | 32 | Renewable Energy | Biomass Energy – Introduction,
Origin of biomass, conversion of
biomass into energy byalcohol
fermentation and anaerobic
digestion method. | | M. Sc. II Sen | n III :- Course T | itle:- Org | anic Reaction Mechan | ism | | Lectures | Practicals | Total | | | | 04 | | 04 | Newer methods of stereoselective synthesis | Enantioselective synthesis (chiral approach) reactions with hydride donors, hydroboration, catalytic hydrogenation | | | | I | Month - February | | |---------------|----------------|-------------|--|--| | B.Sc.ISem I:- | Course Title:- | Analytica | l And Industrial Chem | istry | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | 16 | 24 | Dairy Chemistry | Introduction, Constituents of Milk and their Physicochemical Properties, Mil Processing | | B.Sc.IISem II | П | | | 10.16.7% | | Lectures | Practicals | Total | | | | | 32 | 32 | | | | B.Sc. III Sem | V:- Course Tit | le:- Physic | cal and Analytical Che | mistry | | Lectures | Practicals | Total | | | | 04 | 28 | 32 | Fermentation
Industry | Introduction, importance, Basic requirement of fermentation process, Factors favoring fermentation, fermentation operations. Manufacture of Industrial alcohol (Ethyl alcohol) from a) Molasses b) Food grains, c) manufacture of alcohol from fruits (wine). | | M. Sc. II Sen | | _ | ganic Reaction Mechan | ism | | Lectures | Practicals | Total | | | | 04 | - | 04 | Newer methods of stereoselective synthesis | Catalytic hydrogenation via chiral hydrazones and oxazolines | | | | | Month - March | | |---------------|-------------------|------------|--|---| | B.Sc.ISem I | | | | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | 16 | 24 | Dairy Chemistry | Milk Processing, Definition & Composition of Dairy Products: Crean Butter, Ghee, Icecream, Milk Powder | | B.Sc.IISem I | П | | | | | Lectures | Practicals | Total | | | | | 32 | 32 | | | | B.Sc.III.Sem | | | al and Analytical Cher | mistry | | Lectures | Practicals | Total | | | | 04 | 28 | 32 | Fermentation
Industry | Grades of alcohols: Silence spirit, rectified spirit, absolute alcohol, proof spirit, denatured spirit, duty and duty free alcohol. Importance of power alcohol as fuel | | M. Sc. II Sen | a III :- Course T | itle:- Org | anic Reaction Mechan | ism | | Lectures | Practicals | Total | | | | 04 | - | 04 | Newer methods of stereoselective synthesis | Sharpless epoxidation, Diels Alder selective synthesis. | Dr. Undale K. A. Dr. D. B. Patil Dept. of Chemistry : Vivekanand College, Kolhanur Department of Chemistry Academic Year: 2018-19 #### **Annual Teaching Plan** Name of the teacher: Mr. A. T. Mane Programme: M.Sc. I Semester I Subject: Chemistry Course Title: Inorganic Chemistry | Month August | | | Module/Unit: | Sub-units planned | | | |--------------|---------------------------|-------|--|---|--|--| | Lectures | Practicals | Total | a) Stereochemistry and Bonding in main group compounds | VSEPR theory and drawbacks, bond length, bond angles, bond energies and resonance, $P\pi - P\pi$ and $P\pi - d\pi$ bonds, Bent rule, walsh diagram Back bonding, some simple reactions of covalently bonded molecules | | | | 8 | 12 | 20 | | | | | | Month Se | ptember | | Module/Unit: | Sub-units planned | | | | Lectures | Practicals | Total | Metal ligand equilibria in solution | Definition of stability constant, step wise and overall formation constant | | | | 7 +5 | 12 | 24 | Electroanalytical Techniques | and their interaction, trends in stepwise constants, factors affecting the stability of metal Polarography: | | | | Month O | Oct./ Nov. Module/Unit: | | Sub-units planned | | | | | Lectures | Lectures Practicals Total | | Electroanalytical Techniques | Amperometry: Voltametry: | | | | 10 | 10 | 20 | | | | | Programme: M.Sc. I Semester II Subject: Chemistry Course Title: Inorganic Chemistry . | Month Jar | Month January | | Module/Unit: | Sub-units planned | | | |-------------|---------------|--------------|---|--|--|--| | Lectures | Practicals | Total | Organometallic
Chemistry of transition | Ligand hapticity, electron count for different types of organometallic compounds, 18 and 16 electron rule | | | | 8 | 12 | 20 | elements | exceptions, synthesis, structure and bonding, organometallic reagents in organic synthesis and in homogeneous catalytic reactions, | | | | Month Fe | bruary | | Module/Unit: | Sub-units planned | | | | Lectures | | | Reaction mechanism of transition metal | Classification of inorganic reactions, ligand substitution reaction and their | | | | 7 | 12 | 19 | complexes | mechanisms of octahedral complexes,
Acid hydrolysis, factors affecting the acid
hydrolysis, Base hydrolysis, square plana
complexes, trans effect | | | | Month March | | Module/Unit: | | | | | | | | | | | | | |
Lectures | Practicals | Total | Spectroscopic term symbols | Terms, Inter-electronics repulsion, spin orbit coupling, ground terms, determination of terms symbol of d1 to d5 Configuration / complexes, Energy | | | | .8 | 12 | 20 | | ordering of terms, microstates, Weak
and stronger field approach, Orgel diagram | | | | Month A | pril | | Module/Unit: | | | | | Lectures | Practicals | Total | Nuclear and radiochemistry | Nuclear stability and nuclear binding energy, radioactivity and radioactive decay, radioactive equilibrium, classification of nuclear reactions, Q value | | | | 7 | 12 | 19 | | | | | Mr. A. T. Mane TO THE WAY Dr. D.B.Patil. Head Dept. of Chemistry Vivekanand College, Kolhapur ### Vivekanand College, Kolhapur (Autonomous) Annual Teaching Plan 2018-19 B. Sc. Sem. I; M.Sc. I Sem I; M.Sc. II Sem. III Department- Chemistry Name of the Teacher – Dr. D. S. Gaikwad | | | 1 | Month - June | | |----------------|-----------------|------------|--|---| | B.Sc.I Sem I:- | Course Title:- | Chemistr | у | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 01 | 04 | Academic practical | Introduction of Glasswares | | M. Sc. I Sem 1 | :- Course Title | :- Chemis | try | 1 | | 02 | 00 | 02 | Stereochemistry | Introduction of stereochemistry, Symmetry, Chirality, Prochiral relationship, homotopic, enantiotopic and disteriotopic groups and faces. | | M. Sc. II Sem | III :- Course T | itle:- Org | anic Chemistry | l. | | Lectures | Practicals | Total | | | | 02 | 02 | 10 | Applications of following metal in organic synthesis | Introduction to organometallic chemistry, applications of metals in organic synthesis such as Pd, Mg, Rh, Tl, Si, use of Cu in Click chemistry. | | | | | Month - July | | |----------------|-----------------|------------|---------------------------|---| | B.Sc.I Sem I:- | Course Title:- | Chemistr | у | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 04 | 16 | Academic
Practicals | Organic spotting Eudiometer | | M.Sc.I Sem I:- | Course Title: | Chemist | ry | | | 03 | - | 03 | Stereochemistry | Recemic modifications and their resolution, Geometrical isomerism, R, S and E, Z nomenclature, Threo and Erythro isomers. Allenes and spiranes, | | M.Sc.II Sem I | II :- Course Ti | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | | Telegraph of | | 06 | 24 | 30 | Drugs and
Heterocycles | a) Six membered Heterocycles with two and more Heteroatoms (8) Synthesis and reactions of diazines & triazines. b) Seven membered Heterocycles (7) Synthesis and reactions of azepines, oxepines & thiepines. | | Mon | th – | AL | ıgı | ıst | |-----|------|----|-----|-----| |-----|------|----|-----|-----| | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | |----------------|----------------|------------|--|--| | 00 | 04 | 16 | Academic
Practicals | Organic spotting Standardization of HCl Chemical Kinetics | | M.Sc.I Sem I:- | Course Title:- | - Chemistr | y | | | 04 | - | 04 | Stereochemistry | Stereochemistry of the compounds containing Nitrogen, Sulphur and phosphorous. Conformationa analysis: Cyclohexane derivatives stability and reactivity Conformational analysis of Mondand disubstituted cyclohexanes. | | M.Sc.II Sem II | I :- Course Ti | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | | | | 16 | 32 | 48 | Aplications of following metals in organic synthesis | Pd, Rh, Tl, Si metals in organic synthesis. | | | | | Combined spectral problems | Structural problems based or combined spectroscopic technique (including reaction sequences) | | | District Inc | | Month - September | | |----------------|------------------|-----------|-------------------------------|---| | B.Sc.I Sem I:- | Course Title:- | Chemistr | y | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | . 00 | 04 | 16 | Academic
Practicals | Organic spotting Standardization of K2Cr2O7 Viscocity | | M.Sc.I Sem I: | - Course Title:- | - Chemist | ry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 03 | - | 03 | Stereochemistry | Conformational analysis of Mono
and disubstituted cyclohexanes
Previous year Question pape
discussion. | | M.Sc.II Sem | Practicals | Total | nic Chemistry | | | 12 | 24 | 36 | Carbon-13 NMR
Spectroscopy | General introduction to 13C NMF spectroscopy; chemical shift value [aliphatic, olefinic, alkyne, aromatic heteroaromatic and carbony compounds]; proton coupled, proton | | V | - And Step | 444 | THE PERSON NAMED IN COMME | problems associated with 13C NMR. | |---------------|-----------------|------------|---|--| | , yall | | 47.4 | Combined spectral problems | Structural problems based on combined spectroscopic techniques (including reaction sequences) | | | • | | Month-October | | | M.Sc.II Sem I | II :- Course Ti | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | | | | 08 | 16 | 24 | Six and seven
membered with
two and more
heteroatoms | Synthesis, chemical reactions of pyridazine, pyrimidine and pyrazine. 1,2,3-triazole, 1,2,4-triazole and 1,3,5-triazole. | | - No. | | | Combined spectral problems | Structural problems based on combined spectroscopic techniques (including reaction sequences) | Dr. D. S. Gaikwad Obposil Dr. D. B. Patil # Vivekanand College, Kolhapur (Autonomous) Annual Teaching Plan Academic Year - 2018-19 B. Sc. Sem. II; M.Sc. I Sem II; M.Sc. II Sem. IV Department- Chemistry Name of the Teacher – Dr. D. S. Gaikwad | | | | Month - January | | |-------------------|---------------|------------|------------------------------|--| | M.Sc.I Sem. II:- | Course Title | :- Organi | c Chemistry-II | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | . 06 | | 06 | Study of following reactions | a) Study of following reactions Mechanism of condensation reaction involving enolates, Dieckmann, Wagner-Meerwein, Robinson annulation, Reimer-Tieman, Chichibabin, Pummerer, Payne rearrangment, SimonSmith, Ulmann, Mc-Murry, Dakin. | | M.Sc.II Sem IV: | - Course Ti | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 12 | 32 | 44 | Vitamins | Introduction of Vitamins,
Classification and nomenclature of
Vitamins, Sources of vitamins and
their deficiency, Synthesis,
structure. | | B.Sc.I Sem I:- Co | ourse Title:- | Chemistr | у | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 00 | 04 | 16 | Academic
Practicals | Organic spotting Chromatography-I Spot test | | | | | Month - February | | |---------------|------------------|------------|------------------------------|---| | M.Sc.I Sem. I | I:- Course Title | :- Organi | c Chemistry-II | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | | 08 | Study of following reactions | Alkylation and Acylatic
Introduction, Types of alkylation
and alkylating agents: C-Alkylation
and Acylation of active methylene
compounds and their applications. | | M.Sc.II Sem I | V :- Course Ti | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 12 | 48 | 60 | Vitamins | Biological functions of vitamin B1, B2, B5, B6 and Biotin (Vitamin H). | | | | | Alkaloids | Introduction, occurrence, isolation and functions of alkaloids, Structure, stereochemistry and synthesis of the following: Morphine, Reserpine. | | B.Sc.I Sem I:-
Lectures | Practicals | Total | Module Unit | Sub-Units Planned | |----------------------------|------------|-------|------------------------|---| | 00 | 04 | 16 | Academic
Practicals | Chemical Kinetics-II Chromatography-II Spot test-4,5,6 Estimation of Vinegar | | | | | Month - March | 1 - | |----------------|-----------------|-----------|------------------------------|---| | M.Sc.I Sem. II | :- Course Title | :- Organi | c Chemistry-II | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | | 08 | Organometallic compounds | Study of Organometallic compounds
Organo-lithium, organo cobalt,
Ce,
Ti, Use of lithium dialkyl cuprate,
their addition to carbonyl and
unsaturated carbonyl compounds. | | M.Sc.II Sem I | V :- Course Tit | le:- Orga | nic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 16 | 32 | 48 | Stereochemistry | Stereochemistry of compounds containing no chiral carbon atoms and diastereoisomerism (Geometrical isomerism). a) Stereochemistry of Allenes, Spiranes and Biphenyls | | | | | Alkaloids | Introduction, occurrence, isolation
and functions of alkaloids, Structure,
stereochemistry and synthesis of the
following: Atropine and Conin. | | B.Sc.I Sem I:- | Course Title:- | Chemistr | у | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 01 | 00 | 00 | Overall Practical discussion | All practicals discussed. | | | | | Month - April | | |---------------|------------------|------------|------------------------------------|---| | M.Sc.I Sem. I | I:- Course Title | :- Organi | c Chemistry-II | | | : Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 08 | | 08 | Methodologies in organic synthesis | Ideas of synthones and retrones,
Functional group transformations
and inter conversions of simple
functionalities. | | M.Sc.II Sem I | V :- Course Ti | tle:- Orga | nic Chemistry | | | Lectures | Practicals | Total | Module Unit | Sub-Units Planned | | 12 | 24 | 36 | Stereochemistry | Assignment of configuration b) Configuration of diastereomers (Geometrical isomerism) based on physical and chemical methods. | (1400) Dr. D. S. Gaikwad #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. I (A+B+C), Sem-I Department: Chemistry Subject: Chemistry Course Title: DSC-1002A: Inorganic & Organic Chemistry Name of the Teacher: Dr. Sanjay Shivram Ankushrao | Month: June | | | Module/Unit: | Sub-units planned | |------------------|--------------|--------------|-------------------|---| | Lectures
06 | Practicals | Total
06 | Induction | General Introduction Discussion on Course Structure Discussion on Examination pattern Discussion on Syllabus | | Month: July | | Module/Unit: | Sub-units planned | | | Lectures 12 | Practicals | Total 28 | Ionic Bonding | General introduction Types of Bond Formation of ionic Solid Factors Governing to Formation of ionic Solid | | М | onth: August | | Module/Unit: | Sub-units planned | | 12 | 16 | 28 | Ionic Bonding | Born-Haber Cycle Applications of Born-Haber Cycle Fajan's Rule Applications of Fajan's rule % of Covalent Character in Ionic Comp. | | Month: September | | Module/Unit: | Sub-units planned | | | 12 | 16 | 28 | Covalent Bonding | Valence Bond Theory: Introduction,
Assumptions, Applications and
Limitations. Concept of hybridization, different types
of hybridization and geometry of
molecule. Linear geometry BeCl₂ (sp hybridization Planer trigonal geometry BF₃ (sp²
hybridization) Tetrahedral geometry SiCl₄ (sp³
hybridization) | | M | onth: Octobe | r | Module/Unit: | Sub-units planned | | 06 | 08 | 14 | Covalent Bonding | Trigonal bipyramidal geometry PCl₅ (sp³d hybridization) Octahedral geometry SF₆ (sp³d² hybridization) Pentagonal bipyramidal geometry(IF₇) (sp³d³ hybridization) Valence Shell Electron Pair Repulsion (VSEPR) Theory H₂O, ClF₃, ICl₄⁻ | Name and Signature of Teacher Name and Signature of HoD Head Dept. of Chemistry Vivekanand College. Kolhanur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. I (A+B+C), Sem-II Department: Chemistry Subject: Chemistry Course Title: DSC-1002B: Physical & Organic Chemistry Name of the Teacher: Dr. Sanjay Shivram Ankushrao | Month: November | | Module/Unit: | Sub-units planned | | |-----------------|---------------|---------------|--------------------------|--| | Lectures 06 | Practicals | Total
06 | Chemical
Energetics | Introduction Enthalpy of reaction Standard enthalpy changes various types of enthalpy changes viz, enthalpy of formation, enthalpy of neutralization | | Mo | nth: Decemb | er | Module/Unit: | Sub-units planned | | Lectures
12 | Practicals 16 | Total
28 | Chemical
Energetics | Enthalpy of ionization, enthalpy of solution
(integral and differential enthalpy of solutions),
enthalpy of hydration ,enthalpy of phase
transitions; Calculation of bond energy, bond | | M | onth: January | , | Module/Unit: | dissociation energy and resonance energy from
thermochemical data, Variation of enthalpy of
reaction with temperature- Kirchoff,s equation.
Sub-units planned | | | | The Laborator | Wioduic/Oint. | | | 12 | 16 | 28 | Thermodynamics | Introduction, Spontaneous and nonspontaneous
process with examples, Statements of second law
of thermodynamics, Carnot's cycle and its
efficiency | | Mo | onth: Februar | у | Module/Unit: | Sub-units planned | | 12 | 16 | 28 | Entropy and
Third law | Concept of entropy, physical significance of entropy, entropy as a state function of V & T, P & T, entropy of mixing of gases, entropy change accompanying phase transition | | M | Ionth: March | | Module/Unit: | Sub-units planned | | 06 | 08 | 14 | Entropy and
Third law | Third law of thermodynamics, calculation of absolute entropies. | Name and Signature of Teacher THE STATE OF S Shopping Name and Signature of HoD Dent o Chemistry #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. II, Sem-IV Department: Chemistry Subject: Chemistry Course Title: Physical & Organic Chemistry Name of the Teacher: Dr. Sanjay Shivram Ankushrao | racticals - n: Decemberracticals | Total | Crystal Field Theory Module/Unit: Crystal Field | Introduction Assumptions of CFT Crystal field stabilization energy (CFSE) Sub-units planned Crystal field splitting of d' orbital in octahedra | |----------------------------------|-------------|--|---| | | er
Total | Module/Unit:
Crystal Field | Sub-units planned • Crystal field splitting of d' orbital in octahedra | | | Total | Crystal Field | Crystal field splitting of d' orbital in octahedra | | racticals | | | | | | 04 | Theory | Complexes. | | | . 04 | | Crystal field splitting of 'd' orbital in Tetrahedral and
square planar complex | | Month: January | | Module/Unit: | Sub-units planned | | - | .04 | Crystal Field
Theory | Comparison of CFSE for Oh and Td complexes Crystal field effects for weak and strong fields ligands, Tetrahedral symmetry, Factors affecting the Magnitude of 10 Dq, Spectrochemical series | | h: Februar | y | Module/Unit: | Sub-units planned | | | 02 | | Jahn-Teller distortion, Limitations of CFT. | | Month: March | | Module/Unit: | Sub-units planned | | - | - | 7 | | | ŀ | r: Februar | - 04 n: February - 02 | - 04 Crystal Field Theory 1: February Module/Unit: - 02 | Name and Signature of Teacher appali Name and Signature of HoD Dept. of Chemistry Vivekanand College, Kolhagur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. III, Sem-V **Department: Chemistry** Subject: Chemistry Course Title: Paper-X: Inorganic Chemistry Paper-XII: Industrial Chemistry Name of the Teacher: Dr. Sanjay Shivram Ankushrao | N | Month: June | | Module/Unit: | Sub-units planned | |----------------|--------------|--------------|--|---| | Lectures
06 | Practicals | Total
06 | Hard and Soft Acids and Bases | Classification of acids and bases as hard and soft. Theoretical bases of hardness and softness Pearson's HSAB concept. Acid-Base strength and hardness and softness. Application and limitations of HSAB principle. | | N | Month: July | | Module/Unit: | Sub-units planned | | Lectures | Practicals | Total | Corrosion and Passivity | Introduction of corrosion Electrochemical theory of corrosion | | 12 | 52 | 64 | | Factors affecting on corrosion, i. Position of
metals in the electrochemical series on the basis of
standard reduction potential ii. Purity of metal iii.
Effect of moisture iv. Effect of oxygen
(differential aeration principle) | | Month: August | | Module/Unit: | Sub-units planned | | | 12 | 52 | 64 | Corrosion and
Passivity | Hydrogen overvoltage Methods of protections of metals from corrosion
Passivity i. Definition ii. Types of passivity iii. Oxide film theory and evidences iv. Applications of passivity | | Mon | nth: Septemb | er | Module/Unit: | Sub-units planned | | 12 | 52 | 64 | Manufacturing
of Heavy
Chemicals | Introduction Manufacture of Ammonia (NH3) i. Physicochemical principles ii. Manufacture by Haber's process Manufacture of Sulphuric acid (H2SO4) i. | | | 4 | | | Physico-chemical principles ii. Manufacture by
Contact process Manufacture of Nitric acid (HNO3) i. Physico-
chemical principles ii. Manufacture by Ostwald's
(Ammonia oxidation process) | | Month: October | | Module/Unit: | Sub-units planned | | | 06 | 13 | 19 | Manufacturing
of Heavy
Chemicals | Manufacture of Sodium carbonate (Washing soda)
(Na ₂ CO ₃) i. Physico-chemical principles ii.
Manufacture by Solvay process | Name and Signature of Teacher WALL OF THE PARTY Obs afel Name and Signature of HoD #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. III, Sem-VI Department: Chemistry Subject: Chemistry Course Title: Paper-XIV: Inorganic Chemistry Paper-XVI: Analytical Chemistry Name of the Teacher: Dr. Sanjay Shivram Ankushrao | Month: November | | Module/Unit: | Sub-units planned | | | |-----------------|----------------------|--------------|--------------------------------------|--|--| | Lectures 09 | Practicals | Total | Iron and Steel | Introduction, Occurrence, Extraction of iron by
Blast furnace. Steel: Definition and types. | | | 09 | - | 09 | | Conversion of cast iron into steel by i) Bessemer process. ii) L.D. process, Heat treatment on steel. | | | Mo | nth: Decemb | er | Module/Unit: | Sub-units planned | | | Lectures | 1 Idelicais I Otal | | Bio-inorganic
Chemistry | Introduction. Essential and trace elements in biological | | | 12 | 52 | 64 | | Metalloporphyrins with special reference to hemoglobin and myoglobin. Biological role of alkali and alkaline earth metal ions with special reference to Na+, K+ and Ca2+ | | | Month: January | | Module/Unit: | Sub-units planned | | | | 12 | 52 | 64 | Theory of
Titrimetric
Analysis | Introduction Neutralization Indicators (Acid-Base Indicators) Theory of indicators w.r.t. Ostwald's colour change interval and Ostwald's Quinoid theory Neutralization curves and choice of indicators for the following titration, i. Strong acid-strong base ii. Strong acid-weak base iii. Strong base - weak acid | | | Month: February | | Module/Unit: | Sub-units planned | | | | 6 | | 06 | Theory of
Titrimetric
Analysis | Complexometric titration: General account Types of EDTA titration Metallochromic indicators w.r.t. Eriochrome
Black-T indicator | | Name and Signature of Teacher Obpati) Name and Signature of HoD Dept. of Chemistry Vivekanand College. Kalhapur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. I (A+B+C), Sem-I **Department: Chemistry** Subject: Chemistry Course Title: DSC-1002A: Inorganic and Organic Chemistry Name of the Teacher: Dr. Mrs. Sarita Dattajirao Shinde | | Month: June | | Module/Unit: | Sub-units planned | |------------------|--------------|---------|-----------------------------------|--| | Lectures 4 | Practicals | Total 4 | Periodicity of elements | Introduction of the syllabus, Introduction to the topic | | | | 7 | | | | | Month: July | | Module/Unit: | Sub-units planned | | Lectures | Practicals | Total | Periodicity of elements | a) Electronic configuration b) Atomic radii c) Ionic radii d)Ionization energy e) Electronic configuration energy e) | | 10 | 8 | 18 | | affinity • f)Electronegativity g) Metallic characters h) Reactivity i) Oxidation state j) melting and boiling points k) chemical properties of s block elements | | M | onth: August | | Module/Unit: | Sub-units planned | | 14 | 16 | 30 | Periodicity of elements | a) Electronic configuration b) Atomic radii c) Ionic radii d)Ionization energy e) Electron affinity f) Electronegativity g) Metallic characters h) Reactivity i) Oxidation state j) melting and boiling points k) chemical properties of p block elements, Oxoacids of nitrogen, phosphorus and sulphur (HNO₂, HNO₃, H₃PO₃, H₃PO₄, H₂SO₃, H₂SO₄) | | Month: September | | | Module/Unit: | Sub-units planned | | 14 | 16 | 30 | Molecular orbital
theory (MOT) | Introduction: Atomic Orbital's and Molecular Orbital's, LCAO method, formation of bonding, anti bonding and nonbonding molecular orbitals. conditions of successful overlap, Types of overlaps - S-S, S-Px, Px-Px, Py-Py/ Pz-Pz overlaps. Bond order and its significance. | | Month: October | | | Module/Unit: | Sub-units planned | | 14 | 16 | 30 | Molecular orbital
theory (MOT) | Energy level sequence for molecular orbital when n=1& 2. MO diagrams for homonuclear diatomic molecules of 1st & 2nd period elements (He₂, Li₂, B₂, N₂, O₂). Molecular orbital diagrams for heteronuclear diatomic molecules. (CO, NO, NO⁺) | Frads Dr. Mrs. S. D. Shinde Dr.D.B.Patil Dept. of Chemistry Vivekanand College, Kolhapur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. I (A+B+C), Sem-II Subject: Chemistry **Course Title: Chemistry Practicals** Name of the Teacher: Dr. Mrs. Sarita Dattajirao Shinde | Month: December | | | Module/Unit: | Sub-units planned | |-----------------|---------------|-------|--------------|---| | Lectures - | Practicals 16 | Total | • | To study the reaction rate of hydrolysis of methyl acetate in presence of 0.5N HCl. To determine viscosity of given liquid A and B. To determine equivalent weight of Mg by Eudiometer. Estimation of Aniline | | Month: January | | | Module/Unit: | Sub-units planned | | Lectures | Practicals 16 | Total | | Spot Tests Detection of following cations using spot tests: Cu^{2+,} Co²⁺, Ni²⁺, Fe³⁺, Al³⁺, Zn²⁺. Mg⁺², Pb²⁺ Paper Chromatography Detection of following cations using Paper Chromatography: Cu²⁺ + Co²⁺, Co²⁺, Ni²⁺, Ni²⁺, Cu²⁺ | | Month: February | | | Module/Unit: | Sub-units planned | | | 8 | 8 | - | Determination of enthalpy of neutralization of
HCl with NaOH Organic Spotting | Dr. Mrs. S. D. Shinde Dr.D.B.Patil **Department: Chemistry** Head Dept. of Chemistry Vivekanend College. Kolhanur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. II, Sem-III **Department: Chemistry** Subject: Chemistry Course Title: VI: Analytical Chemistry Name of the Teacher: Dr. Mrs. Sarita Dattajirao Shinde | Month: July | | | Module/Unit: | Sub-units planned | | | |-----------------|---------------|----------|--|---|--|--| | Lectures 2 | Practicals 32 | Total 34 | Inorganic
Semi-Micro
Qualitative
Analysis | Introduvtion, Theoretical principles involved in qualitative analysis, To determine the unknown concentration of given coloure compounds (KMnO₄/ CuSO₄) colorimetrically. Estimation of (i) Mg²⁺ or (ii) Zn²⁺ by complexometric titrations using EDTA. Preparation of Hexamine Nickel Chloride. Estimation of total hardness of a given sample of water be complexometric titration. Determination of the relative and absolute viscosity of a liquity or dilute solution using an Ostwald's viscometer. To investigate the reaction between potassium per sulphate and KI (Equal Concentration) To investigate the reaction between potassium persulphate and KI (Unequal Concentration) To study the hydrolysis of methyl
acetate in presence of HC and H₂SO₄ and to determine relative strength. | | | | Month: August N | | | Module/Unit: | Sub-units planned | | | | 4 | 40 | 44 | Inorganic
Semi-Micro
Qualitative
Analysis | Applications of solubility product and common ion effect in separation of cations into groups, Application of complex formation in a) Separation of II group into IIA and IIB sub-groups. b) Separation of Copper from Cadmium. c) Separation of Cobalt from Nickel. Organic Spotting: Carboxylic acids, phenolic, aldehydic ketonic, amide, nitro, amines Estimate the amount of metal present in a given solution gravimetrically-Ni as Ni-DMG, Ba as BaSO₄, Fe as Fe(OH)₃ To determine volumetrically the amounts of sodium carbonate and sodium hydroxide present together in the given solution. | | | | Mon | th: Septemb | er | Module/Unit: | Sub-units planned | | | | 4
Mo | 32 | 36 | Inorganic
Semi-Micro
Qualitative
Analysis | d) Separation of Cl - , Br - , I e) Detection of NO2 - , NO3 (Brown ring test), Application of oxidation and reduction in a) Separation of Cl , Br - , I - in mixture b) Separation of NO2 - and NO3 - in mixture, Spot test analysis. Determination of alkali content of antacid tablet using HCl. To estimate H2O2 by Iodometric method. Preparations of Ferrous ammonium sulphate (Mohr's salt). Preparation of Potash Alum. Estimation of Acetone Estimations of Vitamin-C from tablets Preparation of methyl orange Preparation of p-nitro acetanilide | | | | Mo | nth: October | | Module/Unit: | Sub-units planned | | | | - | 40 | 40 | | To determine Cell Constant of the given Conductivity cell and to verify Ostwald dilution law using acetic acid Solution Conductometrically. To determine the normality of given strong acid and weak acid | | | | by titrating it against strong base Conductometrically. Semi-micro qualitative analysis using H₂S of mixtures - out of the following: Cations: NH₄⁺, Cu²⁺, Cd²⁺, Fe³⁺, Al³⁺, Co²⁺, Cr³⁺, Ni²⁺, Mn²⁺, | |---| | Zn ²⁺ , Ba ²⁺ , Sr ²⁺ , Ca ²⁺ , K ⁺ , Mg ²⁺ . | | Anions: CO ₃ ²⁻ , S ²⁻ , SO ²⁻ , S ₂ O ₃ ²⁻ , NO ₃ -, CH ₃ COO ⁻ , Cl ⁻ , Br ⁻ , l ⁻ , SO ₄ ²⁻ , C ₂ O ₄ ²⁻ , F | Dr. Mrs. S. D. Shinde Obpah J Dr.D.B.Patil - Head Dept. of Chemistry Vivokanand College. Kolhapur. #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. II, Sem-IV **Department: Chemistry** Subject: Chemistry Course Title: VIII: Inorganic Chemistry Name of the Teacher: Dr. Mrs. Sarita Dattajirao Shinde | Month: November | | | Module/Unit: | Sub-units planned | |-----------------|---------------|----------|---|--| | Lectures 4 | Practicals - | Total 4 | Transition Elements (3d series) | Introduction General group trends with special reference to electronic configuration, variable valency, color magnetic and catalytic properties and ability to form complexes. | | Mo | nth: Decemb | er | Module/Unit: | Sub-units planned | | Lectures | Practicals · | Total | Lanthanoids and
Actinoids | A] Lanthanoids: Introduction, electronic configurations, oxidation states, | | 8 | 32 | 40 | | colour and spectra, magnetic properties,
lanthanide contraction, Occurrence and separation of lanthanides (ion
exchange method only). | | M | onth: January | Y | Module/Unit: | Sub-units planned | | 10 | 40 | 50 | Coordination
Chemistry: A]
Valence Bond
Theory | Definition and formation of co-ordinate covalent bond in BF₃-NH₃ and [NH₄]*, Distinguish between double salt and complex salt, Werner's theory i) Postulates, ii) theory as applied to cobalt amines complexes; Description of the terms: ligands, co-ordination compounds, Coordination number; IUPAC system of nomenclature, Structural and stereoisomerism in complexes with coordination numbers 4 and 6; Geometrical isomerism, Optical isomerism, structural isomerism, Ionization isomerism, hydrate isomerism, coordination isomerism, linkage isomerism and co-ordination position isomerism, | | Mo | onth: Februar | у | Module/Unit: | Sub-units planned | | 8 | 40 | 48 | Coordination
Chemistry: A]
Valence Bond
Theory and B]
Crystal Field
Theory | postulates of VBT, Inner and outer orbital complexes w. r.t. coordination numbers 4 and 6; Drawbacks of VBT. Assumptions of CFT, Crystal field splitting of 'd' orbital in octahedral, tetrahedral and square planar complex, | | M | onth: March | | Module/Unit: | Sub- units planned | | 5 | - | 5 | Coordination
Chemistry: B]
Crystal Field | Crystal field stabilization energy (CFSE), Comparison of CFSE for Oh and Td complexes, Crystal field effects for weak and strong fields | | | Factors affecting the Magnitude of 10 Dq,
Spectrochemical series, Jahn-Teller distortion, Limitations of CFT | |--|---| |--|---| Dr. Mrs. S. D. Shinde abposil Dr.D.B.Patil Head Dept. of Chemistry Vivekanand College. Kolhanus #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. III, Sem-V Department: Chemistry Subject: Chemistry Course Title: X: Inorganic Chemistry Name of the Teacher: Dr. Mrs. Sarita Dattajirao Shinde | Month: June | | | Module/Unit: | Sub-units planned | |------------------|--------------|---|--|---| | Lectures | Practicals | Total | Inorganic
Polymers | Introduction of the syllabus, Introduction to the topic | | 2 | - 1 | 2 | | | | 1 | Month: July | | Module/Unit: | Sub-units planned | | Lectures | Practicals | Total | Inorganic
Polymers | Introduction, Basic concept and definition. Classification of polymers - Organic and | | 6 | 28 | Inorganic polymers, Comporganic and inorganic polybone. Homoatomic polymer con | Inorganic polymers, Comparison between organic and inorganic polymers, Polymer back bone. Homoatomic polymer containing – (i) Phosphorus. (ii) Fluorocarbons. | | | M | Ionth: Augus | t | Module/Unit: | Sub-units planned | | 8 | 35 | 43 | Metals, Semiconductors and Superconductors | Heteroatomic polymers - (i) Silicones (ii) Phosphonitrilic compounds. Introduction, Properties of metallic solids. Theories of bonding in metal. i) Free electron theory. ii) Molecular orbital theory (Band theory). | | Month: September | | Module/Unit: | Sub-units planned | | | 8 | 28 | 36 | Metals, Semiconductors and Superconductors | Classification of solids as conductor, insulators and semiconductors on the basis of band theory. Semiconductors. Types of semiconductors - intrinsic and extrinsic semiconductors. Applications of semiconductors. | | Month: October | | | Module/Unit: | Sub-units planned | | 6 | 14 | 22 | Metals, Semiconductors and Superconductors | Superconductors: Ceramic superconductors -
Preparation and structures of mixed oxide
YBa2Cu3O7 - x 4.7 Applications of
superconductors. | -finds Dr. Mrs. S. D. Shinde WAR ESTD Dr.D.B.Patil Dept. of Chemistry Vivatianand College, Kolhanur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: B.Sc. III, Sem-VI Department: Chemistry Subject: Chemistry Course Title: XIV: Inorganic Chemistry Name of the Teacher: Dr. Mrs. Sarita Dattajirao Shinde | Month: November | | Module/Unit: | Sub-units planned | | |-----------------|-------------|--------------|------------------------------------|--| | Lectures 2 |
Practicals | Total 2 | Inorganic
Reaction
mechanism | Introduction Classification of Mechanism | | ì | | | | | | Mo | nth: Decemb | er | Module/Unit: | Sub-units planned | | Lectures | Practicals | Total | Inorganic
Reaction
mechanism | Study of Mechanism Association, dissociation, interchange and the rate determining steps SN1 and SN2 reaction for inert and labile complexes Mechanism of substitution in cobalt (III) octahedral complexes Trans effect and its theories Applications of trans effect in synthesis of Pt (II complexes. | | 8 | 28 | 36 | | | | Month: January | | Module/Unit: | Sub-units planned | | | 6 | 35 | 41 | Surface
Chemistry | Introduction, Adsorption as a surface phenomenon (mechanism), Definition of important basic terms: absorption, adsorption, adsorbant, adsorbate, interface etc., Distinction between adsorption and absorption, Characteristics of adsorption, | | Month: February | | Module/Unit: | Sub-units planned | | | 4 | 14 | 18 | Surface
Chemistry | Factors affecting adsorption, Types of adsorption, Distinction between physical (8) 18 adsorption and chemical adsorption, Adsorption isotherms: Freundlich, Langmuir adsorption isotherm, BET equation (derivation not expected), determination of surface area using Langmuir method and BET equations. | | M | onth: March | | Module/Unit: | Sub-units planned | | - | 48 | 48 | | Practical Examination | Dr. Mrs. S. D. Shinde Dr.D.B.Patil Dept. of Chemistry wekenand College, Kolhapur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: M.Sc. I, Sem-I **Department: Chemistry** Subject: Chemistry Course Title: CP-1131A: Inorganic Chemistry- I Name of the Teacher: Dr. Mrs. Sarita Dattajirao Shinde | Month: July | | | Module/Unit: | Sub-units planned | |---------------------------------|--------------|--|--|--| | Lectures 3 | Practicals - | Total 3 | Introduction to Research Methodology and Nano materials | Print: Sources of information: Primary, secondary, tertiary sources; Journals: Journal abbreviations, abstracts, current titles, reviews, monographs. Digital: Web resources, E-journals, Journal access, Citation index, Impact factor, H-index, UGC infonet, | | M | onth: Augus | t | Module/Unit: | Sub-units planned | | Lectures Practicals Total 6 - 6 | | Introduction to
Research
Methodology and
Nano materials | Search engines: Scirus, Google Scholar,
ChemIndustry, Wiki- Databases, ChemSpider,
Science Direct, SciFinder, Scopus. Fundamentals of Nanoscience and
Nanotechnology, Classification of nanomaterials into 0D, 1D, 2D
and 3D, Relationship between dimension and shape of
nanomaterials (Quantum dots,. | | | Month: September | | | Module/Unit: | Sub-units planned | | Lectures | Practicals | Total | Introduction to Research | Quantum wires, Carbon nanotubes, Bucky ball Fullerenes). | | 6 | - | 6 | Methodology and
Nano materials | Introduction to size effect on electronic and optical properties (Quantum confinement), possible hazards and health effects of nanomaterials, Preparative chemical methods of Nanomaterials: sol-gel, thermal, microwave, SILAR, chemical bath deposition, Applications in the field of semiconductors and solar cells | Dr. Mrs. S. D. Shinde Dr.D.B.Patil Dept. of Chemistry Vivekanand College, Kolhapur #### **Annual Teaching Plan** Academic Year: 2018-19 Semesters: M.Sc. I, Sem-II Department: Chemistry **Subject: Chemistry** Course Title: CP 1131 B: Inorganic Chemistry - II Name of the Teacher: Dr. Mrs. Sarita Dattajirao Shinde | Mo | nth: Decembe | er | Module/Unit: | Sub-units planned | |------------|---------------|---------|--|--| | Lectures 2 | Practicals - | Total 2 | Nuclear
Magnetic
Resonance
(NMR) and Mass
spectroscopy
(MS) | Introduction, principles, Magnetic and non magnetic nuclei, precessional motion, Larmor frequency, absorption of radio frequency. | | Me | onth: January | | Module/Unit: | Sub-units planned | | Lectures | Practicals | Total | Nuclear | Instrumentation (FT-NMR). Sample preparation, | | 7 | - | 7 | Magnetic
Resonance
(NMR) and Mass
spectroscopy
(MS) | shielding and deshielding effects, chemical shift, internal standards, factors influencing chemical shift, solvents used, peak area and protonratio, anisotropic effect, spin-spin coupling, coupling constant, applications to simple structural problems Introduction, Principle, Instrumentation, working of mass spectrometer (double beam). | | Mo | nth: February | , | Module/Unit: | Sub-units planned | | Lectures | Practicals | Total | Nuclear
Magnetic | Determination of molecular formula, Formation of different types of ions, | | 6 | - | 6 | Resonance
(NMR) and Mass
spectroscopy
(MS) | Mclafferty rearrangements, metastable ions or peaks, The nitrogen rule, Mass spectrum of alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, cycloalkynes, and applications. | Dr. Mrs. S. D. Shinde Opp all Dept. of Chemistry Vivekanand College, Kolhapur