FACTORS AFFECTING TO CHEMICAL SHIFT IN ¹H NMR SPECTROSCOPY

BY Dr. Sanjay S. Ankushrao M.Sc., SET, GATE, PhD Assistant Professor in Chemistry Vivekanand College, Kolhapur (Autonomous)

Chemical (Shifts ¹H-NMR

Type of	Chemical	Type of	Chemical
Hydrogen	Shift (δ)	Hydrogen	Shift (δ)
(CH ₃) ₄ Si	0 (by definition)	0	
RCH ₃	0.8-1.0	RCOCH3	3.7-3.9
RCH ₂ R	1.2-1.4	Q	
R ₃ CH	1.4-1.7	RCOCH ₂ R	4.1-4.7
$R_2 C = CRCHR_2$	1.6-2.6	RCH ₂ I	3.1-3.3
RC≡CH	2.0-3.0	RCH ₂ Br	3.4-3.6
ArCH ₃	2.2-2.5	RCH ₂ CI	3.6-3.8
ArCH ₂ R	2.3-2.8	RCH ₂ F	4.4-4.5
ROH	0.5-6.0	ArOH	4.5-4.7
RCH ₂ OH	3.4-4.0	$R_2 C= CH_2$	4.6-5.0
RCH ₂ OR	3.3-4.0	$R_2 C = CHR$	5.0-5.7
R ₂ NH	0.5-5.0	ArH	6.5-8.5
	2.1-2.3	O RCH	9.5-10.1
O RCCH ₂ R	2.2-2.6	O RCOH	10-13

- Deshielding- If induced field align to Applied Field-
- Shielding- If induced field align opposite to applied field-

1) Electronegativity, inductive and resonance effects

• Electronegative Group- deshields proton- Proton shift moves towards downfield (higher **d** values)

CH ₃ F	> CH ₃ Cl	> CH ₃ Br	> CH ₃ I :	> CH ₃ -CH ₃	> CH ₄ >	CH ₃ SiMe ₃ >	CH ₃ Li
4.26	3.05	2.69	2.19	0.96	0.2	0.0	-0.4

• More H atoms- more shielding- lower **d** values

 $\begin{array}{c|cccc} R_2 CHCl &> & RCH_2 Cl \\ \hline 4.0 & & 3.4 & & 3.0 \end{array}$

• As e- withdrawing group goes away shielding increases- lower d values

$$-*CH_2-Br > -*CH_2-C-Br > -*CH_2-C-C-Br$$

3.30 1.69 1.25

• Electron withdrawing group increases- increases d values

CHCl ₃ >	CH ₂ Cl ₂	> CH ₃ Cl >	R-CH ₃
7.24	5.28	3.0	0.9

- 2) Van der Waal's Deshielding- increases **d** values
- In overcrowded molecule H occupying hindered position gives higher d values
- It is due to e- cloud of bulky group tend to repel e- cloud of surrounding proton.

3) ANISOTROPIC EFFECT OR SPACE EFFECT

- The opposite of isotropy which means uniformity in all directions.
- *So, anisotropy is non-uniformity.
- Now for different compounds this anisotropy is different as different distribution of electrons around nuclei.

Anisotropy effect of

- Alkene
- Alkyne
- Benzene
- ketone/Aldehyde

ALKENES:

protons adjacent to alkene (C=C-H)are deshielded by anisotropy effect, so, chemical shift will be induced.

Alkyne -C≡C-H

82

hence the

SIRaJ/MSc/NMR

Ring Current in Benzene

Benzene rings have the greatest anisotropic effect.

6H -1.9 δ Highly Shielded
12H 8.2 δ Highly Deshielded
Good evidence of a ring current.
Deshielded protons are a property of Aromatic Compounds.

Aldehyde proton

HYDROGEN BONDING O-H and N-H Signals HYDROGEN BONDING DESHIELDS PROTONS

Alcohols vary in chemical shift from 0.5 ppm (free OH) to about 5.0 ppm (lots of H bonding). The chemical shift depends on how much hydrogen bonding is taking place (observed in high concentrated solutions).

Hydrogen bonding lengthens the O-H bond and reduces the valence electron density around the proton

It is deshielded and shifted downfield in the NMR spectrum.

D₂O-exchangeable (peak for OH proton in alcohol and NH in amines disappears upon shaking with D₂O)

::::Thank You::::

::::Keep Learning:::::