

Industrial Heavy Chemicals

Dr. Sanjay Shivram Ankushrao [DCGA, M.Sc., SET, GATE, Ph]

Assistant Professor, Vivekanand College, Kolhapur.

Introduction

Chemicals consumed on large scale
eg-H₂SO₄, HNO₃, NH₃, Na₂CO₃, etc.

Largely used to Manufacture: Fertilizers, explosive, dyestuff, plastics, lacquers (varnish), paints, pigments, paper & textile industry, petroleum industry, leather industry, metallurgical processes, etc.

Industriliasation of country judged from consumption of heavy chemicals

plays imp. role in economical, commercial & industrial development of country.

Manufacturing Processes to be discussed

Sr. No.	Manufacturing Process	Product Formed
1	Haber's Process	NH ₃
2	Contact Process	H ₂ SO ₄
3	Ostwald's Process Or Ammonia Oxidation Process	HNO ₃
4	Solvay Process or Ammonia Soda Process	Na ₂ CO ₃

Manufacture of Ammonia

Arree different ways

1) From ammoniacal liquor in a coal gas industry

2) From compounds

3) From synthetic method.

But Haber's Synthetic method is best one.

The Haber's Process

 \bigcirc Developed by Carl Bosch & *Fritz Haber*(1904-08) ca Haber got Noble prize 1978 **ca** This reaction make ammonia from hydrogen and nitrogen. a The nitrogen comes from the air (78% N). crew You don't need to worry about where the hydrogen comes from!

THE HABER PROCESS

The Haber process is a <u>**REVERSIBLE</u> & <u>EXOTHERMIC**</u> reaction</u>

Catalytic combination associated with decrease in volume

 $N_{2(g)} + 3H_{2(g)} - 2NH_{3(g)} + 22800 cal$

Maximum yield obtained by Le-Chatelier's principle & optimum reaction conditions

"If a stress is applied to a system at eqm, the system will change to relieve that stress & re-establish eqm".

Physico-Chemical Principles (Technical conditions)

1) <u>Temperature:</u> Reaction exothermic, decrease in tempt. favours formation of ammonia. But it decreases rate of reaction. So use catalyst.

Optimum tempt.: 500-550 °C

- 2) <u>Catalyst</u>: Finely divided Fe + tracer Mo as promoter To form ammonia at low tempt, increases reaction rate.
- 3) **Pressure:** The pressure varies from one manufacturing plant to another, but is always high. The high pressure increases the percentage yield of ammonia at constant tempt. 200-250 atmosphere.
- 3) <u>Concentration</u>: maximum yield when nitrogen and hydrogen is in (1:3) proportion
- 4) <u>Rate of Flow:</u> for good conversion gases recirculated over catalyst. Conversion reaction depends upon time of contact

Haber's Process

It Involves <u>1)Preparation and purification of reactiong gases</u>: H₂ is obtained by mixing water gas(CO+ H₂), producer gas (CO+N₂) & steam

 $CO + H_2O + Fe_2O_3 \longrightarrow H_2 + CO_2 + 10,000 \text{ cal.}$ $CO_2 \text{ removed by dissolving in water and CO removed by NaOH}$

2) <u>Converter</u>: consist of electrical heated catalyst (500-550 °C) When exothermic reaction , temperature controlled by controlling speed of entering gases.

3) <u>Removal of Ammonia</u>: <u>Resulting gases from converter contain 8%</u> ammonia, cooled to -10 to -20 °C and condensed & obtained liq. Ammonia. Unreatced N₂ and H₂ compressed & passed back through circulatory system,

In each step 8% is obtained and nothing is lost

«The Haber Process:

http://nptel.ac.in/courses/103106108/downloads/swf%20file/Ammonia%20by%20habber%20process.sw

The Haber's Process

Key facts

- **1.** N_2 and H_2 are mixed in a 1:3 ratio
- 2. The reaction is reversible, So all the nitrogen and hydrogen will not convert to ammonia.
- **3.** The ammonia forms as a gas but cools and liquefies in the condenser
- 4. The N_2 and H_2 which do not react are passed through the system again so they are not wasted.

2. Contact Process: H, SO Imp heavy chemicals ,known as 'King of Chemicals' **CR** Used in almost every industry *caManufactured by two process* a). The Lead Chamber Process **b).** The Contact Process **Real But now a days Contact Process is mostly preferred** THE CONTACT PROCESS **Developed by Philips (1831)** Steps: 1) Sulphur dioxide by burning high grade sulphur or iron pyrites:

$$+ O_2 = SO_2 + 70920 \text{ Cal}$$

 $4FeS_2 + 11O_2 - Fe_2O_3 + 8SO_2 + 82340 Cal$

<u>1.Effect of Tempt</u>.: Reversible reaction, forword reaction is exothermic, associated with decrease in volume, equilibrium shifts towords right with decrease in tempt. That is low tempt. Favours formation of SO₃. But rate of reaction falls by decrease in tempt. Tempt.= 434 °C, 99% conversion Optimum Tempt. Range: 425-450 ° Even at this tempt. Reaction rate is slow. Therefore Suitable catalyst is used.

2. Effect of pressure:

As per Le-Chatelier's principle high pressure required for better yield. But high pressure is not suitable:

SO3 strongly adsorb on catalyst due to high pressure therefore conversion slows down

Corrosion also takesplace.

Optimum pressure: 1.515* 10⁵ to 1.717*10⁵ pa (1.5 to 1.7 Atm.)

3. Effect of Concentration:

High concⁿ of reacting gases favours high yield Molecular proportion : 2:3 ($SO_2 : O_2$) **<u>4. Effect of Catalyst:</u>** Enhances rate of reaction Catalyst Used: Ferric oxide(Fe₂O₃), vanadium pentaoxide (V₂O₅), Platinum(best results but expensive) V₂O₅ mostly preferred, efficient, cheap, dosen't get poisoned *Role of V*₂O₅:

<u>5. Effect of Space Velocity:</u>

no. of cubic feet gases pass over one cubic feet catalyst space per hour

Time of contact between catalyst and gas must be controlled.

Manufacturing of Sulfuric acid(Contact Process)

http://nptel.ac.in/courses/103106108/downloads/swf%20file/Sulfuric%20acid%20by%20contact%20process.swf

Superiority of contact process

Realigh improvement in engineering & catalyst performance Extremely pure, high strength acid Cheap, good economy Wide use.

Ostwald Process of Nitric Acid: Also known as Aqua fortis, Two Processes: **1).** Birkeland-Eyde's Arc process 2). Ostwald's Process : Modern process mostly preferred 2). Ostwald's Process : Steps i)Production of nitric oxide: $4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O} \Delta H= -216.6 \text{ kcal}$ ii) Conversion of nitric oxide to nitrogen dioxide: 2 NO +O₂ ------ 2 NO₂ ΔH=-27.1 kcal Exothermic reaction with decrease in volume, So According to Le-

Chatelier's principle reaction is favoured by low temperature (below 150°C) & high pressure, Reaction is slow, so sufficient contact time for oxidation is

required. Smaller quantity of $N_2O_3 \& N_2O_4$ also formed.

iii) <u>Reaction between NO₂ and water:</u>

 $4 \text{ NO}_2 + 2 \text{ H}_2\text{O} + \text{O}_2 \longrightarrow 4 \text{ HNO}_3 \Delta \text{H=}32.2 \text{ kcal}$ <u>Physico-chemical Principle(technical condition):</u> <u>1)Effect of temperature</u>: Exothermic

Tempt.= 750-900 °C, 95% coversion NH_3 to NO

2) <u>Effect of Pressure</u>: In Reaction increase in volume is observed, so no need of pressure, just use of slightly above atmospheric pressure to maintain flow, contact, rate of reaction, catalytic effect and combustion temperature

$$4 \text{ NH}_3 + 5 \text{ O}_2 \xrightarrow{\text{Pt-Rh}} 4 \text{ NO} + 6 \text{ H}_2\text{O}$$

$$(10\%)$$

$$4 \text{ Vol} + 5 \text{ Vol} \xrightarrow{} 4 \text{ Vol} + 6 \text{ Vol}.$$

- 3) <u>Effect of Concentration</u>: Proportion of NH₃ & Air is 10% & 90% If O₂ used instead of Air then 1: 1.25, But practically O₂ is used little excess
- 4) <u>Effect of Catalyst:</u> Alloy of 10% Pt-Rh is used, O₂ is adsorbed on catalyst, According to Bodenstein(1934) reaction are as

$$NH_3 + (O) \longrightarrow NH_2OH$$

 $NH_2OH + O_2 \longrightarrow HNO_2 + H_2O$

 $4 \text{ HNO}_2 \longrightarrow 2 \text{ H}_2 \text{ O} + \text{O}_2 + 4 \text{ NO}$

5) Rate of flow of gases: Appropriate flow to get more yield.

CRABSORPTION OF NO2 INTO WATER

- *caNitric oxides on oxidation gives different oxides of nitrogen.*
- *comparent Mixture of oxides react with water*
- **Reactions controlled by cooling gases,**
- **R**Produced NO again oxidized to NO₂ and absorbed by water to convert nitric acid.

Real Antipacturing of Nitric Acid

- ce Catalyst: Alloy Pt-Rh
- ∝ *NH*₃+ *Air* =11:89;
- R Oxidation Chambers :Iron lined with acid proof stone

Manufacturing Process

http://nptel.ac.in/courses/103106108/downloads/swf%20file/Nitric%20acid%20by%20oswalds%20process.swf

Fig. 1.3 : Manufacture of HNO₃ by Ostwald's process.

Manufacture of Sodium carbonate Solvay Process

- \bowtie Na₂CO₃ is used in glass, paper, textile, soap, chemical industries. \bowtie Also Called as washing soda.

Physico-chemical Principles:

- 🛯 Catalyst : Ammonia
- Conditions: Low Tempt.,
- comparison may arise.
- **CR TO overcome these difficulty conditions vary little bit as**
- 1) 4.9 mol/litre of NaCl & 4.5 mol/litre NH₃ instead of equimolar.
- 2) 2) Relatively high Tempt(60-65°C)in beginning is applied to form good crystal, then gradual cooling and filtration. ²²

Reactions of Formation of Na₂CO₃

a) $CaCO_3 \longrightarrow CaO + CO_2$	ΔH = + 43.4 kcals				
b) C + O ₂ \longrightarrow CO ₂ +	ΔH = - 96.5 kcals				
c) CaO + H_2O — Ca(OH) ₂	ΔH = - 15.9 kcals				
d) $NH_3 + H_2O \longrightarrow NH_4OH$	ΔH <mark>= - 8.4 kcals</mark>				
e) $2NH_4OH + CO_2 \longrightarrow (NH_4)CO_3 + H_2O$	$\Delta H = -22.1 \text{ kcals}$				
$f(NH_4)CO_3 + CO_2 + H_2O - 2 NH_4 H_2O$	CO ₃				
g) NaCl + NH ₄ HCO ₃ \longrightarrow NH ₄ Cl + NaHCO	O ₃				
h) 2 NaHCO ₃ \longrightarrow Na ₂ CO ₃ + CO ₂ + H ₂ C	ΔH = + 30.7 kcals				
i) $2 \operatorname{NH}_4\operatorname{Cl} + \operatorname{Ca(OH)}_2 \longrightarrow 2 \operatorname{NH}_3 + \operatorname{CaCl}_2 + 2 \operatorname{H}_2\operatorname{C}_2$	$\Delta H = + 10.7$ kcals				
Overall reaction for entire process					
$CaCO_3 + 2NaC1 \longrightarrow Na_2CC$	$D_3 + CaCl_2$				
Role of NH₃ & CO₂ is important, determines yield of product. The reactions d, e, f can be written as,					
$2 NH_3 + CO_2 + 2H_2O = 2 N$	$\rm JH_4~HCO_3$				

Manufacture of Sodium carbonate

Steps

<u>1.Saturation Tank:</u> Brine (NaCl) solution is Saturated by NH_3 (Brine top-down & NH_3 bottom -top),

Brine Should be free from impurities (calcium, magnesium and iron compounds) Na₂CO₃ & NaOH added to remove impurity. exothermic reaction, water cooling system is fitted in saturator.

2. Carbonation of Ammoniacal Brine:

- Carbonation tower 75 feet,
- 🖙 Ammoniacal brine is trickling down,
- Ammoniacal brine reacts with upcoming CO_{2.}
- Cooling coils fitted at 20 feet to control temp, as reactions are exothermic in nature & to precipitate NaHCO₃ formed in process by cooling.
- ∝ During pptation, tempt at Bottom & Top of tower: 20-25°C
- **CR** Tempt. at middle: **45-55°C** (maintained by cooling coil)
- 🖙 The tower gradually becomes flooded as sodium bicarbonate cakes formed.
- ∝ After precipitation solid NaHCO₃ is dissolved in formed (NH₄)₂CO₃
- exothermally. *(NH₄)*₂CO₃ also reacts with CO₂ to form NH₄HCO₃ exothermally. 25

Again NH₄HCO₃ further reacts with NaCl to form NaHCO₃.

Milky liquid collected in vessel & allowed to cool, then NaHCO₃ crystallized by cooling, filtered & pressed. Then NaHCO₃ calcined to get Na₂CO_{3.}

 Filtrate contain NaCl, NH4Cl, 10 % NaHCO3 and NH4HCO3 treated with lime to generate NH₃ & CO₂ in Ammonia recovery tower.
 The hot Na₂CO₃ from calciner is cooled & packed in bags.

Manufacturing of Sodium Carbonate:

http://nptel.ac.in/courses/103106108/downloads/swf%20file/Sodium%20carbonate%20Solvays%20process.swf

Figure: Manufacturing of Sodium Carbonate by Solvay's Process

Conclusion

Sr.	Manufacturing Process	Product Formed	Starting Materials Used	Reaction Conditions		
No.				Catalyst	Tempt. ⁰ C	Pressure(At m.)
1	Haber's Process	NH ₃	$N_2 + H_2$	Fe/Mo	500-550	200-250
2	Contact Process	H ₂ SO ₄	S or Fes & O ₂	V ₂ O ₅ , or Pt	425-450	1.5-1.7
3	Ostwald's Process Or Ammonia Oxidation Process	HNO ₃	NH ₃ & O ₂ , H ₂ 0	Alloy Pt- Rh (10%)	750-900	Slight more than Atmosphere
4	Solvay Process or Ammonia Soda Process	Na ₂ CO ₃	CO ₂ , NaCl, H ₂ O	NH ₃	60-65, 40-45, 20-25	Atmospheric

"Black' Colour is Sentimentaly Bad" But "Every Black Board Makes The Students life Bright" APJ Abdul Kalam

