Thermometric Enthalpy Titrations (TET)

Dr. Sanjay Shivram Ankushrao

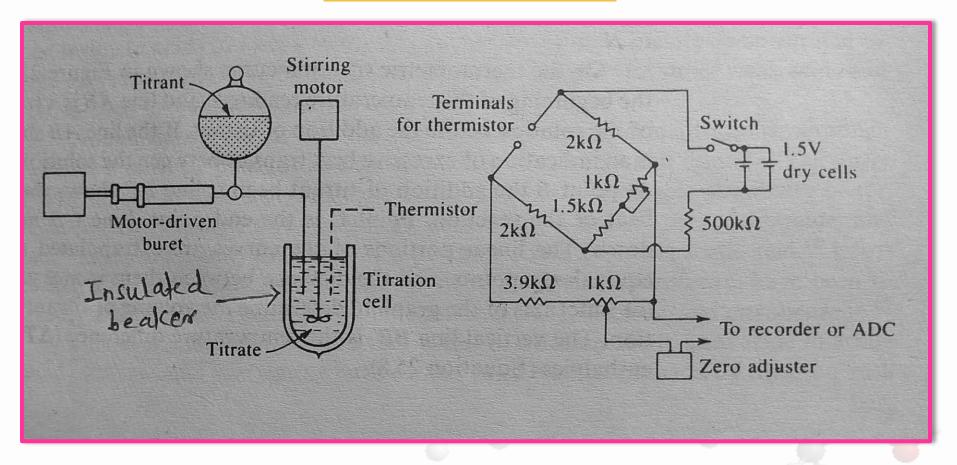
(M.Sc., SET, GATE, PhD)

Assistant Professor,

BY

Vivekanand College, Kolhapur (Autonomous)

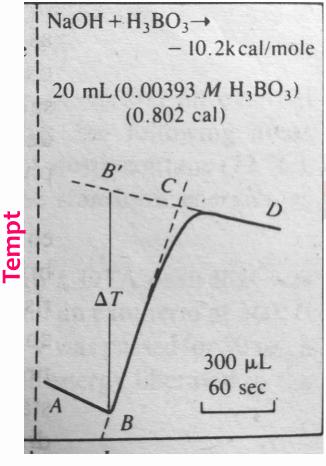
- 1. Concept of TET
- 2. Instrumentation & Methodology of TET
- 3. Interpretation of TET Curve
- 4. Factors Affecting to TET
- 5. Advantages
- 6. Applications


1. Concept of Thermometric Enthalpy Titrations (TET)

- Type of Enthalpimetric Analysis: Use of enthalpy change of reactⁿ to locate end point.
- Proposed by Bell & Cowell (1913)
- titrant is added at a known constant rate into analyte until the completion of the reaction is indicated by a change in temperature.
- Tempt changes during titration are due to the heat evolved or absorbed by the reaction betⁿ titrant & analyte
- Also defined as titration in an adiabatic system gives a plot of tempt. Vs vol.
 of titrant
- The graph is similar to the graph of conductometric, potentiometric, amperometric titrations etc.

2. Instrumentation of TET

- Precision fluid dispensing devices: Burette for adding titrant and other reagent.
- **Thermistor** based thermometric sensor
- **Titration vessel** (100-250 ml): Adiabatic & closed
- **Stirring device:** efficient stirring without splashing.
- Wheatstone Bridge: Measure unknown resistance in the form of tempt
- **Computer** with thermometric Operating system.
- Thermometric titration interface module: Regulates the flow (0.1-1.0 mL/min) betⁿ burette, sensor & computer.


Schematic of TET

Once switch is turn on , 1.5 V voltage applied across the bridge, then bridge measure unknown resistance in the form of tempt

- Take analyte into flask: Amt. of analyte selected such that a required vol. of titrant not exceeding 1-3 ml.
- Tempt of Sample & Titrant should be within 0.2°C before titration is begun. (Use of heating element in the flask)
- The titrant is delivered at flow rate of 0.1 to 1ml/min untill completion of reactⁿ is indicated by change in tempt
- Keep concⁿ of titrant usually 100 times greater than reactant: To avoid volume corrections & to minimize tempt variations between Sample & titrant.
- **Range of tempt change is 0.1-0.2°C**,
- □ Accuracy of thermistor to measure tempt Should be 10⁻⁴ °C.

Interpretation of curve obtained n TET

• Point A observed at beginning of tempt reading.

- Line AB is trace tempt of solⁿ before addition of titrant.
- If line AB shows marked slope, indicates excess transfer of heat betⁿ Solⁿ and Surrounding.
- At **B** addⁿ of titrant begins.
- Line BC shows gradual evolution of heat of the reaction
- **Point C** is the End point of titration.
- Line CD may slope up or down.
- Linear extrapolated portion of curve gives initial and equiv. point & its distance gives vol. of titrant consumed

Titrant Vol. μL Time, Sec

• The vertical line BB' is the tempt. (ΔT)used to evaluate enthalpies

Factors affecting to TET

- Heat Losses or gains from outside the system via vessel
- Diff in tempt bet titrant and titrand
- Evaporative losses from surface of rapidly mixed fluid
- Heat of solution when titrant mixed with analyte
- Heat introduced by the mechanical action of stirring
- Heat produced by thermistor itself.

- **Thermometric titration not depend on free energy**
- □ It has a well defined end point for weak acid
- □ The change in tempt depends on enthalpy of reaction
- □ The lowest limit of concⁿ that can be successfully titrated is 0.0001M.
- □ All acids with $Ka \ge 10^{-10}$ can be titrated in 0.01 M

Solⁿ with precision of 1 %.

6. Applications

Sr. No.	Type of titration	Applications
1.	Acid-base titrations	Titration of weak acids , Titration of complex alkaline solutions, Titration of acid mixtures, Non-aqueous acid-base titrations, etc.
2	Redox titrations	Titrations with permanganate and dichromate, titration with thiosulfate, etc.
3	Complexometric titrations	EDTA Titrations with various metal ion
4	Precipitation titrations	Titration of sulfate, Titration of nickel, Titration of anionic and cationic surfactants, Titration of non- ionic surfactants
5	Miscellaneous methods	Titration of fluoride with boric acid , Determination of formaldehyde , Thermometric titration of water, etc.

::::Thank You::::