Date: 27/12/2021

Vivekanand College, Kolhapur (Autonomous) Department of Mathematics M. Sc. I Sem. I and M.Sc. II Sem III Internal Examination 2021-22

All the students of M.Sc. I and M.Sc. II are hereby informed that their Internal Examination of Mathematics will be conducted on as given below timetable. The examination will be conducted only one time, students are directed to attend the examination without fail. Syllabus and timetable for examination will be as mentioned in following table.

Timetable

Date	Time	Class	Subject
06/01/2021	02:00 PM to 03: 00 PM	M.Sc. I	Algebra
	02:00 PM to 03: 00 PM	M.Sc. II	Functional Analysis
08/01/2021	02:00 PM to 03: 00 PM	M.Sc. I	Advanced Calculus
	02:00 PM to 03: 00 PM	M.Sc. II	Advanced Discrete Mathematics
10/01/2021	02:00 PM to 03: 00 PM	M.Sc. I	Complex analysis
	02:00 PM to 03: 00 PM	M.Sc. II	Lattice Theory
12/01/2021	02:00 PM to 03: 00 PM	M.Sc. I	Ordinary Differential Equation
	02:00 PM to 03: 00 PM	M.Sc. II	Number theory
13/01/2021	02:00 PM to 03: 00 PM	M.Sc. I	Classical Mechanics
	02:00 PM to 03: 00 PM	M.Sc. II	Operational Research -I

Syllabus for M. Sc. I Sem. I

Sr. No.	Name of Paper	Topics
1	CP-1170A : Algebra	Unit I
2	CP-1171A: Advanced Calculus	Unit I
3	CP-1172A: Complex analysis	Unit I
4	CP-1173A: Ordinary Differential Equation	Unit I
5	CP-1174A: Classical Mechanics	Unit I

Syllabus for M. Sc. II Sem. III

Sr. No.	Name of Paper	Topics
1	CC-1180C: Functional Analysis	Unit I
2	CC-1181C: Advanced Discrete Mathematics	Unit I
3	CBC-1182C : Lattice Theory	Unit I
4	CBC-1183C: Number theory	Unit I
5	CBC-1184C : Operational Research -I	Unit I

Nature of question paper

Time:-1 Hours Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]

Five questions

Q.2) Attempt any three

[15]

Four questions

Q.3) Attempt any One

[10]

Two questions

(Prof. S. P. Patankar) HEAD

Department of Mathematics Vivekanand College, Kolhapur

Vivekanand College, Kolhapur (Autonomous)

M.Sc. I Semester-I Internal Examination: 2021-22

			MATHE	MATICS		
Sub: Algebra (CP-1170A) Date: 06/01/2021		OA)				Time:02:00 pm-03:00pm Total Marks:30
Q1) Select	the correct	t alternative	3			(5)
1] Let G be	a group & l	et H & K be t	wo subgrou	ps of G.If	both H &	K 12 elements, which of
the	e following	numbers car	not be the	cardinality	of HK =	$= \{hk: h \in H, k \in K\}?$
		a) 72	b) 60	c) 48	d) 36	
2] How man	ny proper si	ubgroups do	es the group	o Z⊕Z have	?	
a) 1	b) 2	c) 3	d) infi	nitely many	y.	
3] In a grou a) 3	up of order b) 5	15 the numb	er of subgr c) 1	oups of ord d) 2	der 3 is	
c) G has G	a subgroup lits a quotie 2 let $\left(rac{\mathbb{Z}}{n\mathbb{Z}} ight)^*$	nt group of	order 2. s of units o	$f \frac{\mathbb{Z}}{n\mathbb{Z}}$ which	ı one of t	he following is cyclic?
$a) \left(\frac{1}{8\mathbb{Z}}\right)$	b) $\left(\frac{1}{15}\right)$	\overline{z}) c)	$\left(\frac{\square}{10\mathbb{Z}}\right)$	$d)\left(\frac{1}{3}\right)$	<u>z</u>	
Q2) Solve a	ny THREE	of the follow	wing.			(15)
Show that,	A _n is generat	ed by 3-cycles	for n≥3.			
Define asce	nding centra	l series for a g	roup G. Show	that, if H an	d N are su	ubgroups of G and N is
		s normal in H.				
State and pr	ove Schreier	theorem.				
Define ind	ex of subgr	oup. Find in	ndex of An i	n S _n . Show	that An is	s normal in S _{n.}

Q3) Solve any ONE of the following.

(10)

- 1] Define even permutation. Prove that, no permutation of a finite set can be expressed both as a product of an even number of transpositions and as product of odd number of transpositions.
- 2] State and prove Caley's theorem.

Vivekanand College, Kolhapur (Autonomous)

M.Sc. (Part-I) Semester-I Internal Examination:2021-22

Subjec	et :A	dv	ance	d	Cal	culu
Time:	02:	00	PM-	03	:00	pm

Date: 08/01/2021 **Total Marks: 30**

Q. 1 Select the correct alternative for each of the following:

he series $\sum_{n=1}^{\infty} a_n \sin(nx)$ converges uniformly on \mathbb{R} if

$$A) \sum_{\substack{n=1\\ \infty}}^{\infty} a_n \ converges$$

B)
$$\sum_{n=1}^{\infty} |a_n| converges$$

C)
$$\sum_{n=1}^{\infty} \sin(nx)$$
 converges

A)
$$\sum_{n=1}^{\infty} a_n \ converges$$
 B) $\sum_{n=1}^{\infty} |a_n| \ converges$ C) $\sum_{n=1}^{\infty} \sin(nx) \ converges$ D) $\sum_{n=1}^{\infty} |\sin(nx)| \ converges$.

Radius of convergence for the seris $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ is _____ ii.

D) series always diverges.

iii. If
$$\overline{f}$$
 is linear then $\overline{f'}(\overline{c}; \overline{u}) = \underline{\qquad \qquad \qquad }$

$$A) 0 \qquad B) \ \overline{f}(\overline{u}) \qquad C) \ \overline{f}(\overline{c}) \qquad D) \ \overline{f'}(\overline{u})$$

Stokes theorem relates a surface integral to iv.

B) Line integral

D) Real integral

If $T: \mathbb{R}^n \to \mathbb{R}^m \& S: \mathbb{R}^m \to \mathbb{R}^p$ are linear then order of matrix of $(\bar{S}.\bar{T}) =$ ٧.

A)
$$n \times p$$

$$B) m \times p$$

$$C) p \times r$$

C)
$$p \times n$$
 D) $m \times n$

Q.2. Attempt any three of the following:

[15]

[5]

1) Prove that the sequence $\{f_n\}_{n=1}^{\infty}$ converges pointwise but not uniformly where $f_n(x) = \frac{1}{nx+1}$, 0 < x < 1

2) If
$$\sum_{n} a_n$$
 converges absolutely then prove that every subseris $\sum_{n} b_n$

also converges absolutely.

3) Let \bar{f} be a vector field given by $\bar{f}(x,y) = \sqrt{y}i + (x^3 + y)j$ where $(x,y) \in \mathbb{R}^{2}$, $y \ge 0$ obtain the integral of \bar{f} from (0,0) to (1,1) along the path $\alpha(t) = ti + ti$

4) Evaluate $\iint e^{\frac{y-x}{y+x}} dxdy$ over triangle bounded by lines x + y = 2

& two cordinate axes x & y.

[10]

Q.3. Attempt any one of the following:

1) If $\{f_n\}$ & $\{g_n\}$ be sequences of Riemann integrable functions defined on [a,b] &

$$\lim_{n\to\infty} f_n = f \& \lim_{n\to\infty} g_n = g \text{ on } [a,b]. \text{ Let } h_n(x) = \int_a^x f_n(t)g_n(t)dt \&$$

$$h(x) = \int_{a}^{\infty} f(t) g(t) dt$$

prove that $h_n \to h$ uniformely on [a, b]

2) If \bar{f} be differentiable at \bar{c} with total derivative $\bar{T}_{\bar{c}}$. Prove that $\bar{f}'(\bar{c};\bar{u}) = \bar{T}_{\bar{c}}(\bar{u})$ for every $\bar{u} \in \mathbb{R}^n$

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination: 2021-22 Subject: Complex Analysis

Date: 10/01/2021

Time: 02:00 pm-03:00 pm

Total Marks: 30

0	1 Calant the				Total Marks: 50	
Ų.	i) Which of the fol	ct alternative for allowing function is	each of the follow analytic?	ving:	[5]	
	$A) f(z) = e^{x}$	-iy	$\mathrm{B})f(z)= z $	2		
	$C) f(z) = x^2$	$+iy^2$	D) f(z) = (z	$(2-2)e^{-x-iy}$		
	ii) If C is the circl	e of radius 2 with	center at the origin	n in the complex	x plane, oriented in	
	the anti - clock	wise direction. Th	en the integral $\oint \frac{1}{(z)}$	$\frac{dz}{(-1)^2}$ is equal to		
	A) 1	B) $2\pi i$	C) 0	D) 1/	2πί	
	iii) For the function	on $f(z) = \frac{z - \sin z}{z^3}$, at t	he point $z = 0$ is			
	A) Pole of ord	der 3	B) Pole of or	der 2		
	C) Essential s	ingularity	D) Removab	le singularity		
	iv) The excess of t	the number of zero	s over the number	r of poles of a m	neromorphic	
	function is call	led				
	A) Maximum	Modulus Principle	B) Mi	inimum Modulu	is Principle	
	C) Schwarz Le	emma	D) Th	ne Argument Pr	inciple	
	v) The radius of c	onvergence of $\sum_{n=1}^{\infty}$	$=1\frac{n!}{n^n}Z^n$ is			
	A) -e	B) 1/e	" C) e	D)1/e		
	2. Attempt any the					[15]
	Find radius of conve					
If	$f u(x,y) = x^3 + ax$ f v(0,0) = 1, then $f \gamma \text{ is a contour } w$	a+b+v(1,1)	is equal to		v) its harmonic conjugate v) + $iv(x, y)$ is	ugate.
	continuous fu	nction on the cor	ntour γ with $ f(z) $	$ z \leq M, \forall z \in$	γ , then prove that	t
	$\left \int_{C} f(z)dz\right \leq$	$\leq ML$ where L is	the length of cor	ntour given by	$\int_a^b \gamma'(t) dt$	
Q.3	6. Attempt any on 1) $0 \le R < \infty$ i) $\sum a_n z^n$ co ii) If $ z > R$, find the radiu 2) If γ is a contocontinuous further $ \int_C f(z) dz \le \infty$	ne of the following called the radius of called the radius of called the radius of powers of convergence our with parameters on the contact of the contact of the contact of the contact of the called	is of convergence by for every z with the power series become of the power series interval [a, b] intour γ with $ f(z) $ where length of contributions is the length of contributions in the length of contributions is the length of contributions i	the with the following with the following with the following in the property of the following with the following in the foll	owing properties nd so the series di) is t . is a

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination(2021-22) Ordinary Differential Equations

Subject: Ordinary Differential Equations Total Marks: 30

Date: 12/01/2021 Time: 02:00PM to 03:00PM

Q.1) Choose the correct alternative for the following question. [05]

i) The General solution	of y'' -	+ y' -	2y = 1	0 is
-------------------------	------------	--------	--------	------

A)
$$c_1 e^{-x} + c_2 e^{-2x}$$

B)
$$c_1 e^x + c_2 e^{-2x}$$

C)
$$c_1 e^x + c_2 x e^x$$

D)
$$c_1 e^{-x} + c_2 e^{2x}$$

ii) Which of the following is not solution of $y''' - 3r_1y'' + 3r_1^2y' - r_1^3y = 0$, where r_1 is constant

$$A)\emptyset(x) = e^{r_1 x}$$

B)
$$\emptyset(x) = x^2 e^{r_1 x}$$

C)
$$\emptyset(x) = xe^{r_1x}$$

D)
$$\emptyset(x) = x^3 e^{r_1 x}$$

iii) The singular point of equation $x^2(x-4)^2y'' + 3xy' - (x-4)y = 0$ is.....

$$B)-4$$

iv) If $f(x,y) = x + y^2$, $R = \{(x,y)||x| < \infty, |y| \le b\}$ and K is Lipschitz constant then

A) F satisfies Lipschitz Condition on R with k = 2b

B) F satisfies Lipschitz Condition on R with k = 0

C) F satisfies Lipschitz Condition on R with k = 1

D) F do not satisfy Lipschitz Condition on R

v) In Legendary equation If α is a non-negative even integer, then \emptyset_1 is polynomial of degree 'n' containing only powers of x.

A) Odd

B)Even

C)Odd and zero

D)Even and zero

Q.2) Attempt any three

[15]

i) If \emptyset_1 and \emptyset_2 are two solutions of L(y)=0 on an interval I containing point x_0 than show that $W(\emptyset_1, \emptyset_2)(x) = e^{-a_1(x-x_0)} W(\emptyset_1, \emptyset_2)(x_0)$

ii) Show that there exist 'n' linearly independent solutions of L(y) = 0 on any

interval I. where, L(y) = 0 is homogeneous differential equation with variable coefficient.

iii) Classify the singular points in the finite plane $x^2(x^2 - 4)y'' + 2x^3y' + 3y = 0$ iv) Show that $\emptyset(x) = \frac{d^n}{dx^n}[(x^2 - 1)^n]$ satisfies the Legendre equation hence show that $\emptyset(1) = 2^n n!$

Q.3) Attempt any One

[10]

i) Find the power series solutions $\phi_1(x)$ and $\phi_2(x)$ of Legendre equation given $(1-x^2)y'' - 2xy' + \alpha(\alpha+1)y = 0$ where α is constant and |x| < 0

ii) Solve the Euler's equation $x^2y'' - 5xy' + 9y = x^3$, (x > 0)

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-I Internal Examination(2021-22) Classical Mechanics

Time: 2:00PM-3:00PM

Date:13/01/2021

Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]
1) The equation of motion of a single particle is given by
A) $\bar{F} = \bar{P}$ B) $\bar{F} = \dot{P}$
C) $\bar{F} = \ddot{\bar{P}}$ D) none of these
2) Which of the following is not example of Holonomic constraints?
A) rigid body B) simple pendulum
C) gas molecule moving in the closed containe D) particle moving on parabola $y^2 = 4ax$
3) The number of generalized co-ordinates in simple pendulum is
A) 1 B) 2
C) 3 D) 4
4) Let $\bar{r}_i = \bar{r}_i(q_j, t)$; $j = 1, 2, 3 \dots n$. Then $\delta \bar{r}_i = \dots$
A) $\sum_{k=1}^{\infty} \frac{\delta \bar{r}_i}{\delta q_k} \delta q_k$ B) $\sum_{k=1}^{n} \frac{\delta \bar{r}_i}{\delta q_k} \delta q_k$
C) $\sum_{k=1}^{n} \frac{\delta \bar{r}_i}{\delta q_k} \delta q_k + \delta t$ D) $\sum_{k=1}^{n} \frac{\delta \bar{r}_i}{\delta t} \delta t$
5) Equation of motion of simple pendulum is given by
A) $\ddot{\theta} = \frac{-g}{l} \sin \theta$ B) $\theta = \frac{-g}{l} \sin \theta$
C) $\ddot{\theta} = \frac{g}{l} \sin \theta$ D) $\theta = \frac{g}{l} \sin \theta$
Q.2) Attempt any three [15]
 Explain how the generalized co-ordinates of a rigid body with N particles reduces to six for its description. Explain Atwood machine and discuss it's motion. Use Hamilton's Principle to find the equation of motion of a simple pendulum Find the plain curve of fixed perimeter that encloses maximum area.
Q.3) Attempt any One [10]
1) Find the Euler-Lagranges differential equation satisfied by twice differentiable function $y(x)$ which extremizes the functional $I(y(x)) =$
$\int_{x_1}^{x_2} f(x, y, y') dx$
where y is prescribed at the end-points.
2) Derive Hamilton's principle for a non-conservative system from
D'Alemberts Principle. Further, derive the Hamilton's principle for

conservative system from it.

Vivekanand College, Kolhapur (Autonomous) M.Sc. II Semester-III Internal Examination: 2021-22 MATHEMATICS

Sub: Functional Analysis

Time: 02:00 pm -03: 00 pm

Date: 06/01/2021

Total Marks:30

Q.1. Choose correct Alternative for the following. (5) 1) Consider following two statements I) Every normed linear space is a metric space. II) Every metric space is normed linear space. A) Only II is true. B) I is true and II is false C)Only I is false D) II is true and I is false. 2) Consider following two statements; I) Every normed linear space is a metric space. II) Every metric space is normed linear space. A) Only II is true. B) I is true and II is false C) Only I is false D) II is true and I is false. 3) Every projection on a Banach space B is A) linear, bounded, idempotent B) linear, idempotent, continuous C) linear, norm preserving, nilpotent D) Both A and B 4)Every projection on a Banach space B is A)Linear, Bounded, Idempotent B) Linear, Idempotent, Continuous C)Linear, Norm preserving, nilpotent D) Both A and B 5) Consider following two statements I)Every Banach space is reflexive norm linear space II)Every reflexive norm linear space is Banach Space A) Only II is true. B) I is true and II is false C)Only I is false D) II is true and I is false. O2) Solve any THREE of the following. (15)1)If N is a normed linear space and x_0 is non zero vector in N then show that there exist a functional f_0 in N^* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$ 2) f N is a normed linear space and x_0 is non zero vector in N then show that there exist a functional f_0 in N* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$ 3)If N is Banach space and M is closed linear subspace of N then show that, quotient space N/M is Banach space. 4)If $\{T_n\}$ and $\{S_n\}$ are sequences in B(N) such that $T_n \to T$ and $S_n \to S$ as $n \to \infty$ then show that, a) $T_n + S_n \rightarrow T + S$ b) $kT_n \rightarrow kT$ for k in F c) $T_nS_n \rightarrow TS$ as $n \rightarrow \infty$ Q3) Solve any ONE of the following. (10)1)Define normed linear space. If N and N' are normed linear spaces, T is linear transformation from N into N' then show that following conditions are equivalent a)T is continuous on N b)T is continuous at origin c)there exist a real number $k \ge 0$ with property $||T(x)|| \le k||x||$ for all x in N

d)If $s = \{x \text{ in } N \text{ such that } ||x|| \le 1 \}$ is closed unit sphere in N then T(S) is bounded in N'

2)Prove that a normed linear space N is finite dimensional if and only if $S = \{x \text{ in } N / ||x|| \le 1\}$ is compact.

Vivekanand College, Kolhapur (Autonomous)

M.Sc. (Part-II) Semester-III

Internal Examination (2021-22) Advanced Discrete Mathematics

Time: 3:00PM-4:00PM	Total Marks: 30
	A Other Ivital MS. St

Date: 08/01/2021

Q.1) Choose the correct alternative for the following question.

[05]

i) The adjacency matrix of graph is ---- matrix.

- A) diagonal
- B) scalar
- C) symmetric
- D) skew-symmetric

ii) If G is a graph with n vertices, q edges and w(G) number of connected components, then G has at-least ---- number of edges.

- A) n
- B) w(G)
- C) n + w(G) D) n w(G)

iii) The particular solution to recurrence relation $a_r + 7a_{r-1} + 3a_{r-2} = 5$ is -----

- A) 5
- B) $\frac{11}{5}$ C) $\frac{5}{11}$
- D) 11

iv) In a Boolean algebra an element can have ---- complement.

- A) only one
- B) exactly two
- C) more than two
- D) zero

v) For a Boolean algebra B, if a + b = 0, then ----

- A) a = 0, b = 0 B) $a = 0, b \neq 0$ C) $a \neq 0, b = 0$ D) $a \neq 0, b \neq 0$

Q.2) Attempt any three

[15]

i) Prove that in any graph G, there is even number of odd vertices

- ii) Define vertex disjoint subgraphs. Prove that join of two vertex disjoint complete graphs is a complete graph.
- iii) Define complement of graph. Prove that if G is self-complementary graph of n-vertices, then 'n' is equal to either 4t or 4t+1, for some integer 't'.
- iv) Define: a) Regular graph
- b) Path

Q.3) Attempt any One

[10]

i) Find eccentricity of all vertices of graph G. Also find radius and diameter of G.

ii) If T is a tree with n-vertices, then prove that T has precisely (n-1) number of edges.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination: 2021-22 MATHEMATICS

	ect: Lattice Theory : 10/01/2021		2:00pm -03:00p	m
		Total Marks:		
i.	Select the correct alternative for each of the for Consider the following statements Statement — 1) Every ideal is heriditory Statement — 2) Every heriditory subsets	subset.	[5	
	A) Only 1) true B) Only 2) true C) Both		D) Both 1)&2) f	alse.
ii.	A chain is			
		ot complement one of these	ed lattice	
iii.	In the poset $<\mathbb{Z}^+$, $ >$			
	where \mathbb{Z}^+ is the set of positive integers δ			
	A) Comparable B) Parellel C)	both A)&B)	D) neither a)	nor b).
iv.	L & M be two sublattices of lattice P then A) $L \cap M$ B) $L \cup M$	n which of the	following is al	so sublattice of I
	A) $L \times M$ D) Both a) & c)			
	Statement -1) $J(L)$ is not ring of set.			
	Statement -2) $H(J(L))$ is ring of set.	Dath 1) 02) to	D) 6	.1
v.	A) Only 1) true B) Only 2) true C) Consider the following statements	Botn 1)&2) tr	ue D) none of t	tnese
٧.	Statement – 1) Every ideal is heriditory	subset		
	Statement – 2) Every heriditory subset i			
	A) Only 1) true B) Only 2) true C) Both		D) Both 1)&2) f	alse.
			, , - , - , - , - , - , - , - ,	
O.2. A	Attempt any three of the following:			[15]
	ove that every ideal I of distributive lattice is	the intersecti	on of	
	all prime ideals containing it.			
2) Show	ow that in a finite lattice every element is join	ı of join irred	ucible elements	
3) If H	$^{c}H(P)$ is collection of all heriditory subset of p	poset P then si	how that $H(P)$ is	S
	lattice.			
4) In a	a lattice show that pseudo complement of an e	element is uni	que.	
	Attempt any one of the following: any lattice L prove the following conditions alv	vays holds.		[10]
i	$i) (x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z)$			
ii	$ii) \ x \lor (y \land z) \ \leq (x \lor y) \land (x \lor z) \forall \ x,y,z \in L$			
2) Prom	me if I &I he ideals of distributive lattice I if I	018111 are	nrincinle	

then so I & J

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2021-22) Number Theory

Time: 02:00PM to 03:00PM Date:12/01/2021	Total Marks: 30	: 30	
Q.1) Choose the correct alternative	for the following question. [05]		
1) Sum of positive divisors of $n=2^5$			
A) 61 B) 62 C) 63	D) 64		
2) Consider the following statements			
(I) Mobius μ -function is multiplicat	tive		
(II) The function τ and σ are both	multiplicative, then		
A) Only (I) is true	B) Only (II) is true		
C) Both (I) and (II) are true	D) Both (I) and (II) are false		
3) If n is a prime then $\tau(n)$ is			
A) 1 B) 2 C) 3 D) 4			
4) If n is a prime then $\sigma(n)$ is			
A) n+1 B) n+2 C) n+3	D) n+4		
5) $\sigma(101) =$			
A) 100 B) 102 C) 201	D) 202		
Q.2) Attempt any three	[15]		
1) State and Prove Euclid's theorem			
2) Solve the linear Diophantine equa	ation $54x + 21y = 906$.		
3) By using mathematical induction	prove that $21/4^{n+1} + 5^{2n-1}$.		
4)Prove that for given integers a and $gcd(a,b) = ax + by$.	d b not both zero there exists integers x and y such t	ha	
Q.3) Attempt any One	[10]		
1) Prove that the linear Diophantine	equation $ax + by = c$ has a solution iff		
d/c where $d = \gcd(a, b)$. If (x_0, y_0)	(0) is any particular solution of this		
equation then all other solutions a	are given by $x = x_0 + \frac{b}{a}t$ and $y = y_0 - \frac{a}{a}t$.		
2)Prove that every positive integer n	> 1 can be expressed as product of		

primes and this representation is unique apart from the order in which the factor occurs.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-III Internal Examination(2021-22) Operational Research-I

Total Marks: 30

Time: 02:00PM to 03:00 PM

Optimize $Z = x_1^2 + x_2^2 + x_3^2$,

Date: 13/01/2021
Q.1) Choose the correct alternative for the following question. [05]
 i) The set of all convex combination of a finite number of points is called A) Convex cone B) Convex polyhedron C) convex hull D) none of these ii) In Big – M method, the coefficient of artificial variable in the objective function for maximization problem is
A) +M B) -M C) Zero D) None of these
iii) The point at which $\nabla f(x) = 0$ are called
A) boundary points B) interior points C) extreme points D) convex point
iv) A sufficient condition for a stationary point to be an extreme point is that the Hessian
matrix H is evaluated at x_0 is when x_0 is minimum point
A) Positive definite B) Negative definite
C) Positive semidefinite D) Negative semidefinite
v) Which of the following is correct?
A) An extreme point is boundary point of set
B) An extreme point cannot be between any other two point of set
C) Both A and B
D)None of these
Q.2) Attempt any three [15]
i) Solve the following non – linear programming problem

subject to $x_1 + x_2 + 3x_3 = 2$, $5x_1 + 2x_2 + x_3 = 5$, $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

- ii) Show that the set $S = \{(x_1, x_2): 2x_1 x_2 + x_3 \le 4\}$ is convex set
- iii) Use dynamic programming to show that $Z = P_1 log P_1 + P_2 log P_2 + \dots P_n log P_n$ Subject to $P_1 + P_2 + \dots P_n = 1$, $P_i \ge 0$, $i = 1, 2, \dots$ is minimum when $P_1 = P_2 = \dots P_n = 1/n$.
- iv) Explain the characteristics of standard form of Linear programming problem. Rewrite the following LPP in standard form. Min $Z = 2x_1 + x_2 + 4x_3$, subject to $-2x_1 + 4x_2 \le 4$, $x_1 + 2x_2 + x_3 \ge 5$, $2x_1 + 3x_3 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$, x_3 unrestricted in sign

Q.3) Attempt any One

[10]

- i) Define quadratic programming problem. Solve the following quadratic programming problem by Beal's Method. Max $Z=10x_1+25x_2-10x_1^2-x_2^2-4x_1x_2$, subject to $x_1+2x_2+x_3=10$, $x_1+x_2+x_4=9$, $x_1\geq 0$, $x_2\geq 0$, $x_3\geq 0$, $x_4\geq 0$
- ii) Solve the following all integer programming problem using the branch and bound Method Max $Z = 3x_1 + 5x_2$ subject to $2x_1 + 4x_2 \le 25$, $2x_2 \le 10$, $x_1 \le 8$ and $x_1 \ge 0$, $x_2 \ge 0$ and integers.

Date: 25/04/2022

Vivekanand College, Kolhapur (Autonomous) Department of Mathematics M. Sc. I Sem II and M.Sc. II Sem IV Internal Examination 2021-22

All the students of M.Sc. I and M.Sc. II are hereby informed that their Internal Examination of Mathematics will be conducted on as given below timetable. The examination will be conducted only one time, students are directed to attend the examination without fail. Syllabus and timetable for examination will be as mentioned in following table.

Syllabus for M. Sc. I Sem. II

Sr.No.	Name of Paper	Topics
1	Linear Algebra (CP-1175B)	Unit I
2	Integral Equation (CP-1176B)	Unit I
3	General Topology (CP-1177B)	Unit I
4	Partial Differential Equations (CP-1178B)	Unit I
5	Numerical Analysis (CP-1179D)	Unit I

Syllabus for M. Sc. II Sem. IV

Sr. No.	Name of Paper	Topics
1	Field Theory (CP-1190D)	Unit I
2	Integral Equation (CP-1191D)	Unit I
3	Algebraic Number Theory (CP-1192D)	Unit I
4	Operational Research II(CP-1194D)	Unit I
5	Combinatorics (CP-1198D)	Unit I

Timetable

Date	Time	Class	Subject
04/05/2022	03:00 PM to 04: 00 PM	M.Sc. I	Linear Algebra (CP-1175B)
	03:00 PM to 04: 00 PM	M.Sc. II	Field Theory (CP-1190D)
05/05/2022	03:00 PM to 04: 00 PM	M.Sc. I	Integral Equation (CP-1176B)
	03:00 PM to 04: 00 PM	M.Sc. II	Integral Equation (CP-1191D)
06/05/2022	03:00 PM to 04: 00 PM	M.Sc. I	General Topology (CP-1177B)
	03:00 PM to 04: 00 PM	M.Sc. II	Algebraic Number Theory (CP-1192D)
07/05/2022	03:00 PM to 04: 00 PM	M.Sc. I	Partial Differential Equations (CP-1178B)
	03:00 PM to 04: 00 PM	M.Sc. II	Operational Research II(CP-1194D)
09/05/2022	03:00 PM to 04: 00 PM	M.Sc. I	Numerical Analysis (CP-1179B)
	03:00 PM to 04: 00 PM	M.Sc. II	Combinatorics (CP-1198D)

Nature of question paper

Time:-1 Hours

Total Marks: 30

Q.1) Choose the correct alternative for the following question. [05]

Five questions

Q.2) Attempt any three

[15]

Four questions

Q.3) Attempt any One

[10]

Two questions

(Prof. S. P. Patankar)

Department of Mathematics Vivekanand College, Kolhapur

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination: 2021-22 **MATHEMATICS**

Time: 03: 00 PM-04:00pm Date: 04/05/2022 Q. 1 Select the correct altern i) Let V denote the vector space	native for each of the	Subject: Linea Total Marks: he following: ric matrices, over I	30
space over R is			and the table vector
A) n^2	B) $(n^2 + n)/2$	C) $n^2 + n$	D) $n^2 - n$
ii) T1, T2 and T3 are three r	maps defined on R3,		
$T1\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+1 \\ y \\ z \end{bmatrix}, T2\begin{bmatrix} x \\ y \\ z \end{bmatrix}$	$= \begin{bmatrix} xy \\ z \end{bmatrix}, T3 \begin{bmatrix} x \\ y \\ z \end{bmatrix} =$	$\begin{bmatrix} x+y \\ y+z \\ z+x \end{bmatrix}$ as which	of these maps are linear
A) T1, T2, T3	B) T1, T2	C) T3	D) T1, T3
iii) $W^{\perp^{\perp}} = \dots$ (with usual	notation)		
A) <i>W</i> [⊥]	B) W	C) F	D) V
iv) $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ then	n Jordan form of A	with minimal poly	
A) $diag[J_3(0)]$	B) diag[J ₂ (0)]	C) diag[J ₃ (1)]	D) $diag[J_1(0)]$
v] If $\alpha_1 v 1 + \alpha_2 v 2 + + \alpha_n v n = 0$, vector space V(F), then	, n i following:	ii) i≠0 for all iv) i≠0 for at	i=1,2,, n least one i
$2.S \subseteq T$ then i. $L(S) \subseteq L(T)$ ii. $L($			
3. v_1 , v_2 , $v_n \in V$ are linearly inderepresentation in the form $a_1v_1 + a_2v_2 + a_3v_3 + a_3v_4 + a_3v_3 $	pendent then every $a_2v_2 + a_nv_n$, $a_i \in F$.	element in their line	ear span has a unique
4. v_1 , v_2 , $v_n \in V$ are either linear once v_1 , v_2 , v_{k-1}	ly independent or so	me v=k= is a linear o	combination of preceding
5. If A and B are finite dimensional	subspace of vector s	pace V then	
Dim(A + B) = dim(A) + dim(B) - d	im(A∩B)		
Q.3. Attempt any one of the following of the following and prove Rank-nullity to 2] If V is internal direct sum of U. direct sum of U. 1. 1. 2	heorem	nen prove that V is	[10] isomorphic to external

direct sum of U1, U2,...Un

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II

Internal Examination: 2021-22

Sub: Integral Equations	Date: 05/05/2022
Total Marks: 30	Time: 03:00pm-04:00pm
Q.1) Choose the correct alternative for	the following question. [05]
1) The homogeneous Fredholm integral equation	has infinite number of solution, if
a) $D(\lambda) = 0$ b) $D(\lambda) \neq 0$ c) $D(\lambda) \neq 0$	$D(\lambda) > 0$ d) $D(\lambda) < 0$
2) The type of integral equation $g(s) = f(s) + \lambda$	K(s,t)g(t)dt s a is
a) Fredholm integral equation of 1st kind	
b) Volterra integral equation of 1st kind	
c) Homogeneous Volterra integral equation of	2nd kind
d) Non-homogeneous Volterra integral equatio3) The eigen values of non-zero symmetric kernel	n of 2nd kind
a) real b) zero c) only imaginary	d) none of these
4)) Spectrum of symmetric kernel is always	d) none of these
a) empty b) non-empty c) does not e	xist d) none of these
5) A symmetric kernel possesses eigen value	
a) only one b) at-least one c) at-most one	d) none of these
Q.2) Attempt any three	[15]
1) Convert the following boundary value problem	to an integral equation.
$y'' + \lambda y = 0, y(0) = 0, y(l) = 0, 0 \le x \le l$	
2) Find the eigen values and eigen functions of the	e homogeneous integral equation
$g(s) = \lambda \int_0^1 (6s - 2t) g(t) dt$	
3) Convert the following boundary value problem to $y(0) = 0$, $y(1) = 1$, $0 \le x \le 1$	o an integral equation. $y'' + xy = 1$,
4) Prove that eigen functions $g(s)$ and $\psi(s)$ corresp	bonding to distinct eigen values λ_1
and λ_2 respectively of the homogeneous integra	al equation $g(s) = \lambda \int K(s,t)g(t)dt$
and its transpose are orthogonal.	
Q.3) Attempt any One	[10]
 Describe the procedure of finding eigen values an Fredholm integral equation of 2nd kind with separ 	able kernel.
2) Solve the integral equation $g(s) = f(s) + \lambda \int_0^{2\pi} ds$	cos(s+t) g(t)dt by discussing
all possible cases.	

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2021-22)

Subject: General Tope Date: $06/05/2022$ Q.1) Choose the correct 1) If (X, τ) is a topological a) $int_X(A) \subseteq int_Y(A)$	et alternative for space and Y⊂ X and	the following qu	00 PM to 04:00 testion. [05]
c) $int_X(A) = int_Y(A)$		one of them	
2) In Discrete topology, (X	, D) is separable if ar	nd only if X is	
a) uncountable	b) countable	c) infinite	
3) Which of the following p	roperty is not heredit	tary property?	
a) Discreteness	b) indiscreetness	c) separability	d)T ₁ space
4) In discrete topology, set of	of limit point of any	subset A of X is	
a) Ø b) A	c) X – A	d) none of then	1
5) If $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X \text{ be defined by } \}$	{2, 3, 4}, X} is topolo	gy on $X = \{1, 2, 3,$	4) and $f: X \rightarrow$
f(1) = 2, $f(2) = 4$, $f(3) =$	2 and $f(4) = 3$, then	1	
a) f is continuous at 3c) f is continuous at 1		b) f is discontinu d) f is continuous	
 Q.2) Attempt any thre 1) If X be an infinite set and topology on X. 2) Define the following te a) Limit point 3) Show that A U D(A) is 4) Show that a mapping f 	rms: o) closure of set closed set	c) interior set	d) neighbourhood
$\overline{f^{-1}}(B) \subseteq f^{-1}(\overline{B})$ Q.3) Attempt any On	e		[10]
$X \rightarrow Y$ then f is hom 2) Consider the topolog $\{p\}, \{q\}, Y\}$ on Y	eomorphism if and c by $\tau = \{\emptyset, \{a\}, \{b, c\}\}$ $Y = \{p, q, r\}$. owing mapping is a) m $Y = \{p, q, r\}$. $Y = \{p, q, r\}$. $Y = \{p, q, r\}$. $Y = \{p, q, r\}$.	only if f is continuous, X on $X = \{a, b, c\}$	$\{v\}$ and $V = \{\emptyset, \{r\}, \{r\}, \{r\}, \{r\}, \{r\}, \{r\}, \{r\}, \{r\}$

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II **Internal Examination(2021-22) Partial Differential Equations**

Time:3:00PMto4:00PM **Total Marks: 30**

Date:07/05/2022

Q.1) Choose the correct alternative for the following question. [05]

- 1) The normals to the two surfaces represented by the equations Pdx+Qdy+Rdz=0&Pp+Qq=R are...
 - a) collinear b) Orthogonal c) Parellel d) intersects at acute angle
- 2) The equation $(x^2+z^2)p-xyq=z^3x$ is
 - a) Linear b) semilinear c) Quasilinear d) Nonlinear
- 3) The complete integral of $z=px+qy+\sqrt{pq}$ is a) z=a+b+abb) $z=ax+by+\sqrt{pq}$ c) z=cd) none of these
- 4) The equation...represents the set of all right circular cones with x-axis as the axis of symmetry.

$$a)(x^2 + y^2) = (z - c)^2 tan^2(\alpha) \qquad b)(x^2 - y^2) = (z - c)^2 tan^2(\alpha)$$

c)
$$(z^2 + y^2) = (x - c)^2 tan^2(\alpha)$$
 d) $(x^2 + z^2) = (y - c)^2 tan^2(\alpha)$

- 5) The complete integral of z=px+qy+pq is a) z=a+b+ab b) z=ax+by+ab c) z=c d) none of these
- Q.2) Attempt any three

[15]

- 1) Find the general solution of $z(xp yq) = y^2 x^2$.
- 2) Obtaine pde by eliminating a,b from $z = ax^2 + by^2 + c$
- 3) Find the general solution of $p + q = 2\sqrt{z}$.
- 4) Find the general integral of $(x^2 + y^2)p + 2xyq = (x+y)z$.

Q.3) Attempt any One

[10]

1) Solve Pfaffian differntial equation

$$(6x + yz)dx + (xz - 2y)dy + (xy + 2z)dz = 0$$

2) A tightly stretched string with fixed end point x=0, x=1 initially in a position given by y(x,0)=x(1-x) it released from rest position find the displacement y(x,t) at any time

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-I) Semester-II Internal Examination(2021-22)

Subject : Numerical Analysis	Total Marks: 30
Date: 09/05/2022	Time: 03:00PM to 04:00PM
Q.1) Choose the correct alternative for	the following question. [05]
1) If $f(x)$ is continuous function in the	
the equation $f(x) = 0$ has at least one r	eal root or an odd number of real
roots in (a,b) is known as	
A) Bisection Method B) Iterative Me	thod
C) Direct Method D) Intermediate	
2) If $\{x_k\}$ is convergent sequence i.e. $\lim_{k \to \infty}$	$\int_{\infty} \{x_k\} = x^* \text{ is root of } f(x) = 0 \text{ and } x_k$
is called of $f(x)$.	
A) Order B) Approximate root C)	Zero D) Convergence
3) If eigen values are not same $(i.e \lambda_i \neq$	λ_i) then the corresponding eigen
vectors are	
A) Parallel B) Perpendicular C) Syr	nmetric D) Distinct
4)The largest eigen value in modulus of a	마트 (1985년 - 1985년 - 19
largest sum of the module of the elements a	along any row and column, is known
as	
	Gerschgorin Theorem
C) Intermediate Value Theorem D) N	
5) The value of integral using Gauss – L	egendre one point formula
$I = \int_0^2 \frac{dx}{2+4x}$ is	
2^{3+4x} 3 2 7	
$I = \int_0^2 \frac{dx}{3+4x} \text{ is}$ $A) \frac{2}{7} B) \frac{3}{7} C) \frac{2}{5} D) \frac{7}{2}$	
Q.2) Attempt any three	[15]
1) Determine the rate of convergence of Regu	
2) Explain order conditions of fourth order Rung	
	by using Gerschgorin theorem and Brauer -1
theorem. 4) Explain General form of linear multistep meth	ad
4) Explain General form of finear multistep mem	ou
Q.3) Attempt any One	[10]
1) Explain Adams Moulton method of second ord	그리고 하는 것이 없는 것이다.

2) Describe third order Runge-Kutta method

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination: 2021-22 MATHEMATICS

Subject : Field Theory Date: 04/05/2022		Time: 03: 00 I Total Marks:	-
Q. 1 Select the correct altern i. e and π are elem	native for each of the forents over Q	ollowing:	.[5]
A) Transcendental	B) Algebraic	C) Irreducible	D) Reducible
ii. Polynomial of degree or	ne is always		
A) Inseparable	B) Separable	C) Monic	D) Simple
iii. If $f(x)$ is of degree 3,	Then $f(x)$ has Root		,
A) Complex	B) Unique	C) Distinct	D) Real
iv. Any subgroup and any	quotient group of a	group is solvable	
A)Solvable	B) Normal	C) Separable	D) None
v. If $F \subseteq K \subseteq L$ are fields. I	f a ∈ L be algebraic over	er K and K is an algeb	oraic extension of
F. Then, a is			
A) Algebraic over K	B) Algebraic Over F	C) Algebraic	D) Separable
 Find the splitting field of 	colynomial over a field F at there exist an isomorphis $x^3 - 2$ over the field Q of $x^2 + x + 1$ be polynomial over $x^3 - x^2 + x + 1$	m σ : E \rightarrow K which is identificational number and its ver Q. Prove that their states	entity on F s degree over Q. splitting fields are
III. If $f(x)$ is a non const	uivalent to each other for an osed olynomial over K can be fact ant polynomial over K, then polynomial over K has atleas	ored completely into line all the roots of f(x) belon t one root in K.	[10] ear factors in K [x] gs to K.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-I♥

Internal Examination: 2021-22

Sub: In	tegral Equations	Date: 65/05/2027
Total Ma		
Q. 1) 7 2 2) 7 2 3 4 5 6 6 6 7 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	1) Choose the correct alternative for the The homogeneous Fredholm integral equation has a $D(\lambda) = 0$ b) $D(\lambda) \neq 0$ c) $D(\lambda)$ The type of integral equation $g(s) = f(s) + \lambda \int K(s)$. Fredholm integral equation of 1st kind b) Volterra integral equation of 1st kind b) Homogeneous Volterra integral equation of 2nd b) Non-homogeneous Volterra integral equation of 3nd b) Non-homogeneous Volterra integral equation of 3nd b) Non-homogeneous Volterra integral equation of 3nd b) real b) zero c) only imaginary c) spectrum of symmetric kernel is always	infinite number of solution, if > 0 d) $D(\lambda) < 0$ $(x,t)g(t)dt$ s a is kind $(x,t)g(t)dt$ s a is d) none of these
	only one b) at-least one c) at-most one c) Attempt any three	d) none of these
		[15]
	Convert the following boundary value problem to a	an integral equation.
2) F	" + $\lambda y = 0$, $y(0) = 0$, $y(l) = 0$, $0 \le x \le l$ ind the eigen values and eigen functions of the ho $y(t) = \lambda \int_0^1 (6s - 2t)g(t)dt$	mogeneous integral equation
3) Cor y 4) Pr and ar	envert the following boundary value problem to an $y(0) = 0$, $y(1) = 1$, $0 \le x \le 1$ ove that eigen functions $g(s)$ and $\psi(s)$ correspond λ_2 respectively of the homogeneous integral equal its transpose are orthogonal.	ling to distinct eigen values λ_*
1) I	Attempt any One Describe the procedure of finding eigen values and eigeredholm integral equation of 2nd kind with separable	kernel.
2) S	olve the integral equation $g(s) = f(s) + \lambda \int_0^{2\pi} \cos \theta$ l possible cases.	(s+t) g(t)dt by discussing

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination(2021-22) Algebraic Number Theory

Time: 3:00PM-4:00PM	Total Marks: 30
Data: 06/05/2022	Total Marks. St

 Q.1) Choose the correct alternative Let R be a ring. The associate of additional additional actions. 	
(a) {0}	(b) $R - \{0\}$
(c) R	(d) None of the above
2) Let D be a integral domain.P: Cancellation law does not hold in D.	
Q: $x \in D$ is a unit if and only if $1 \mid x$.	
(a) P is true and Q is false	(b) P is false and Q is true
(c) P and Q are false	(d) P and Q are true
3)Let $x, y \in D$. x and y are associates then y	which of the following conditions satisfies
$(a)x = yu \text{ for } u \in D$	(b) $xy = u$ for u is a unit in D
(c) $x \mid y$ and $y \mid x$	(d) All of the above
4) Let x ∈ D and D is a integral domain.P: x is irreducible if and only if every d	ivisor of x is an associate of x or a unit Q : an
associate of an irreducible is irreducible.	
(a)P is true and Q is false	(b) P is false and Q is true
(c) P and Q are false	(d) P and Q are true

Q.2) Attempt any three

(b) $\{e_1, e_2\}$

(a) $\{(0,0)\}$

[15]

1) If A and B are non-zero ideals of O then show that N(AB)=N(A)N(B)

(c) $Z \times Z$

- 2) With usual notations prove that The Field polynomial f_{α} is a power of minimal polynomial p_{α}
- 3) Suppose $\alpha 1, \alpha 2, \dots \alpha n \in O$ for a Q basis for K if $\Delta[\alpha 1, \alpha 2, \dots \alpha n]$ is square free then show that $\{\alpha 1, \alpha 2, \dots \alpha n\}$ is an integral basis.

(d) R²

4) Show that the coefficient of the field polynomial are rational numbers so that

 $f_{\alpha}(t) \in Q(t)$.

- 1) Show that the ring of integers O of $Q(\zeta)$ is $Z(\zeta)$
- 2) Let d be a square free rational integer then the integer if $Q(\sqrt{d})$ are
- $Z(\sqrt{d})$ if $d \not\equiv 1 \pmod{4}$ $Z(\frac{1}{2} + \frac{1}{2}\sqrt{d})$ if $d \equiv 1 \pmod{4}$.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination(2021-22) Operational Research-II

Total Marks: 30

Time: 03:00PM to 04:00 PM

Date:07/05/2022			Total Marks. 30
Q.1) Choose the co	orrect alternativ	e for the following qu	uestion. [05]
i) The present wor	th factor of one rup	ee spent in n years with r	interest rate is given
by			
A) $\frac{1}{1+r}$	$\mathrm{B})^{\frac{1}{(1+r)^n}}$	$C)\frac{1}{(1+r)^{-n}}$	D) None of these
ii) A dummy activ	ity is used in netwo	rk diagram, when	
A) two parallel a	ctivities have the sa	me tail and head event	
B) the chain of a	ctivities may have a	a common event, yet be in	ndependent by themselv
C) both A and B			
D) None of these			
iii) In custo	omers are moving fr	om one queue to another	queue to receive service
more quickly			
A) Balking	B) Reneging	C) Jockeying	D) None of these
iv) Ininvento	ory the rate of consu	imption is the same as the	rate of production so
that the items are	produced in large of	quantity than they are requ	iired
A) Fluctuating	B) Cycle	C) Transportation	D) Anticipation
v) In model I(b), min	imum average inve	ntory cost is	
A) $\sqrt{\frac{2C_1C_3q}{T}}$	B) $\sqrt{\frac{2C_1C_3D}{T}}$	$C)\sqrt{2C_1C_3D}$	D) None of these

i) Let the value of money be assumed to be 10% per year and suppose that machine A is replaced after every 3 years whereas machine B is replaced after every six years. The yearly costs of both the machine are given as under:

Year	1	2	3	4	5	6
Machine A	1000	200	400	1000	200	400
Machine B	1700	100	200	300	400	500

Determine which machine should be purchased.

- ii) You have to supply your customers 100 units of a certain product every Monday (and only then). You obtain the product from a local supplier at Rs. 60 per unit. The costs of ordering and transportation from the suppliers are Rs. 150 per order. The costs of carrying inventory is estimated at 15% per year of the cost of the product carried
 - a) Find the lot size which will minimize the cost of the system
 - b) Determine the optimal cost
- iii) Explain the concept of EOQ.
- iv) In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day.
 Assuming that the inter arrival time follows an exponential distribution and the service time distribution is also exponential with an average 36 minutes. Calculate the following
 - i) the mean queue size
 - ii) the probability that the queue size exceeds 10

if the input of trains increase to an to an average 33 per day, what will be the change in i) and ii)

Q.3) Attempt any One

[10]

- i) Derive the optimal economic lot size formula $q = \sqrt{\frac{2C_3RK}{C_1(K-R)}}$ in the usual notations when the rate of replenishment is finite. Also, derive the minimum cost formula.
- ii) Explain the costs involved in inventory problems in detail.

Vivekanand College, Kolhapur (Autonomous) M.Sc. (Part-II) Semester-IV Internal Examination: 2021-22

	MATHEMATICS				
Subj	ect: Combinatorics Time: 03: 00	-04:00pm			
Date	e: 09/05/2022 Total Marks	Total Marks: 30			
Q. 1 I.	Select the correct alternative for each of the following: The coefficient of x^2 in the expansion of $(1-x)^{-2}$ is	[5]			
	a) 1 b) 2 c) 3 d) 4				
II.	The weight of permutation $(1,3,2,4) \in S_4$ is				
	a) 2 b) 4 c) 6 d) 8				
III.	The number of derangements of (1,2,3) is/are				
	a) 1 b) 2 c) 3 d) none of these				
IV.	The number of circular permutation of 6 objects is				
	a) 120 b) 24 c) 6 d) 5				
V.	The Ramsey Number $R(3,3) = $				
а) 6 b) 5 c) 4 d) 0				
i) St	Attempt any three of the following: tate & prove principle of inclusion and exclusion for n finite sets.	[15]			
ii) F	or every positive integer n prove that $\sum_{r=0}^{\infty} {n \choose r}^2 = {2n \choose n}$				
iii) .	Solve $a_r = 10a_{r-1} - 9a_{r-2}$ with initial conditions $a_0 = 3\&a_1 = 11$				
iv) V	With usual notations show that $C_n = \frac{1}{n} {2n-2 \choose n-1}$				
i)	Attempt any one of the following: Find a cycle index of dihedral group on symmetries of square Find a cycle index of dihedral group on symmetries of triangle	[10]			

Shri Swami Vivekanand Shikshan Sanstha's

VIVFKANAND COLL FGF. KOLHAPLIR (ALITONOMOLIS) 2130, E Ward, Tarabai Park, Kolhapur, Maharashtra 416003

Subject Wise Student Blank Marks Entry

Session: JAN-FEB 2022 Subject: NUMBER THEORY (CBP-1183C)

Stream: M.Sc.(Maths)

Standard: M.SC. (MATHS) SEM 3

Sub-Subject: CIE

Semester:

Max Marks: 30

Print Date: 10-03-2022

Page No: Page 1 of 1

SrNo	PRN	SeatNo	GRNos	RollNo	StudentName	Marks
1	2020121201	931001	2830718	2201	AUTADE PRAGATI PRABHAKAR	24
2	2020121202	931002	2836021	2202	BATE SONALI SHANKAR	24
3	2020121203	931003	2830924	2203	BHOSALE SAKSHI VIJAY	26
4	2020121205	931004	2838313	2204	CHOUGULE ASMITA ADINATH	28
5	2020121206	931005	2826835	2205	DEOKARE VIPUL VIJAY	19
6	2020121207	931006	2826658	2206	DURUGALE SHARAYU DINKAR	26
7	2020121208	931007	2828976	2207	GOLIWADEKAR MRUDULA GURUNATH	28
8	2020121209	931008	2830745	2208	INGALE AAKANKSHA AJIT	28
9	2020121210	931009	2827130	2209	JADHAV ASHWINI ASHOK	12
10	2020121211	931010	2858518	2210	JAMBONI SHIVARATNA SUNIL	22
11	2020121212	931011	2826631	2211	KADAM VEDIKA SANJAY	26
12	2020121213	931012	2827643	2212	KAMBLE MANISHA BHIMRAO	27
13	2020121215	931013	2827029	2213	KAMBLE SHUBHAM TANAJI	12
14	2020121216	931014	2827024	2214	KHATKAR DIGVIJAY ASHOK	19
15	2020121217	931015	2827198	2215	KHOCHAGE SHRUTI SUNIL	26
16	2020121218	931016	2830830	2216	KOLEKAR SHIVANI TANAJI	20
17	2020121220	931017	2830712	2217	MANE PRATIBHA NARAYAN	21
18	2020121221	931018	2830440	2218	NEMISHTE RUTURAJ BHARAT	19
19	2020121224	931019	2830808	2219	PATIL KAJAL AMAR	26
20	2020121225	931020	2830446	2220	PATIL PRUTHVIRAJ VIKAS	26
21	2020121226	931021	2825790	2221	RUTUJA TANAJI PATIL	26
22	2020121227	931022	2835604	2222	PATIL SHARAD DHANAJI	12
23	2020121229	931023	2828866	2223	PATIL VIDULA MILIND	26
24	2020121230	931024	2830434	2224	PATIL VIKAS MARUTI	19
25	2020121231	931025	2857922	2225	PISHTE REVATI SHRIDHAR	26
26	2020121232	931026	2830922	2226	REGADE POONAM PUNDALIK	25
27	2020121233	931027	2826375	2227	SANKPAL SONALI SARJERAO	27
28	2020121234	931028	2828989	2228	SATHE ANKITA MAHIPATI	28
29	2020121235	931029	2858522	2229	SHELAKE ABHIJEET BHAGAVAN	17
30	2020121236	931030	2836026	2230	SOLAPURE MRUNALI MAHADEV	26
31	2020121237	931031	2825584	2231	SUTAR SHIVANI ANIL	28
32		931032	2921033	2232	TAMBE ABHISHEK APPASAHEB	17

Shri Swami Vivekanand Shikshan Sanstha's

VIVFKANAND COLL FGF. KOLHAPLIR (ALITONOMOLIS) 2130, E Ward, Tarabai Park, Kolhapur, Maharashtra 416003

Subject Wise Student Blank Marks Entry

Session: JAN-FEB 2022 Subject: LATTICE THEORY (CBP-1182C)

Stream: M.Sc.(Maths)

Standard: M.SC. (MATHS) SEM 3 Sub-Subject: CIE

Semester: Max Marks: 30 **Print Date**: 10-03-2022 Page No: Page 1 of 1

SrNo	PRN	PRN SeatNo GRNo		RollNo	StudentName	Marks	
1	2020121201	931001	2830718	2201	AUTADE PRAGATI PRABHAKAR	15	
2	2020121202	931002	2836021	2202	BATE SONALI SHANKAR	24	
3	2020121203	931003	2830924	2203	BHOSALE SAKSHI VIJAY	24	
4	2020121205	931004	2838313	2204	CHOUGULE ASMITA ADINATH	15	
5	2020121206	931005	2826835	2205	DEOKARE VIPUL VIJAY	12	
6	2020121207	931006	2826658	2206	DURUGALE SHARAYU DINKAR	24	
7	2020121208	931007	2828976	2207	GOLIWADEKAR MRUDULA GURUNATH	30	
8	2020121209	931008	2830745	2208	INGALE AAKANKSHA AJIT	12	
9	2020121210	931009	2827130	2209	JADHAV ASHWINI ASHOK	18	
10	2020121211	931010	2858518	2210	JAMBONI SHIVARATNA SUNIL	18	
11	2020121212	931011	2826631	2211	KADAM VEDIKA SANJAY	30	
12	2020121213	931012	2827643	2212	KAMBLE MANISHA BHIMRAO	18	
13	2020121215	931013	2827029	2213	KAMBLE SHUBHAM TANAJI	18	
14	2020121216	931014	2827024	2214	KHATKAR DIGVIJAY ASHOK	12	
15	2020121217	931015	2827198	2215	KHOCHAGE SHRUTI SUNIL	18	
16	2020121218	931016	2830830	2216	KOLEKAR SHIVANI TANAJI	27	
17	2020121220	931017	2830712	2217	MANE PRATIBHA NARAYAN	18	
18	2020121221	931018	2830440	2218	NEMISHTE RUTURAJ BHARAT	27	
19	2020121224	931019	2830808	2219	PATIL KAJAL AMAR	15	
20	2020121225	931020	2830446	2220	PATIL PRUTHVIRAJ VIKAS	30	
21	2020121226	931021	2825790	2221	RUTUJA TANAJI PATIL	18	
22	2020121227	931022	2835604	2222	PATIL SHARAD DHANAJI	12	
23	2020121229	931023	2828866	2223	PATIL VIDULA MILIND	27	
24	2020121230	931024	2830434	2224	PATIL VIKAS MARUTI	24	
25	2020121231	931025	2857922	2225	PISHTE REVATI SHRIDHAR	15	
26	2020121232	931026	2830922	2226	REGADE POONAM PUNDALIK	18	
27	2020121233	931027	2826375	2227	SANKPAL SONALI SARJERAO	30	
28	2020121234	931028	2828989	2228	SATHE ANKITA MAHIPATI	30	
29	2020121235	931029	2858522	2229	SHELAKE ABHIJEET BHAGAVAN	21	
30	2020121236	931030	2836026	2230	SOLAPURE MRUNALI MAHADEV	15	
31	2020121237	931031	2825584	2231	SUTAR SHIVANI ANIL	18	
32		931032	2921033	2232	TAMBE ABHISHEK APPASAHEB	21	

(Prof. S. P. Patankar) HEAD Department of Mathematics Vivekanand College, Kolhapur