

"Education for Knowledge, Science, and Culture"
- Shikshanmaharshi Dr. Bapuji Salunkhe
Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur (Autonomous) Kolhapur (Autonomous)

Department Of Mathematics

Course Outcomes (COs)

M.Sc. Part I Mathematics (Introduced in the year 2018-19)
Semester I
a (CP-1170A)
On completion of the course, student will be able to:
Check solvability of groups via Sylow's theorems.
Check irreducibility of polynomial over any field.
familiar with theory of modules.
apply the basic concepts of field theory, including field extensions and finite fields.
red Calculus (CP-1171A)
On completion of the course, student will be able to:
Make use of Greens Theorem, Stokes Theorems for an arc rectification of curve.
Analyse convergence of sequences and series of functions.
Find the directional derivative of function of several variables.
Optimize function of several variables.
ex Analysis (CP-1172A)
On completion of the course, student will be able to:
Know how to check given complex valued function is analytic or not.
Find power series expansion of an analytic function with radius of convergence.
Find zeros and singularities of complex valued functions.
Evaluate integral of complex valued functions along given curve.
ry Differential Equations (CP-1173A)
On completion of the course, student will be able to:
Find the linearly independent and hence general solutions of given differential

	equations.
CO2	Find series solutions of Bessel's and Legendre's differential equations.
CO3	Apply Picard's successive approximation method to find approximate solution of initial value problem.
CO4	Apply the Lipschitz condition of successive approximation.
Classic	al Mechanics (CP-1174A)
CO No.	On completion of the course, student will be able to:
CO1	Analyse motion of system of particles through Lagrangian & Hamiltonian principles.
CO2	Apply principle of variation of calculus for extremization of problem.
CO3	Study motion of rigid body.
CO4	Lagrangian and Hamiltonian formulation of Classical Mechanics.
	Semester II
Linear	Algebra (CP-1175B)
CO No.	On completion of the course, student will be able to:
CO1	Understand basic notions in linear algebra and use the results in developing
	advanced mathematics.
CO2	Study the properties of vector spaces, linear transformations, algebra of linear
	transformations and inner product spaces in detail.
CO3	Construct canonical forms and bilinear forms.
CO4	Apply knowledge of vector space, linear transformations, canonical forms and bilinear transformations
Measu	re and Integration (CP-1176B)
CO No.	On completion of the course, student will be able to:
CO1	Understand algebra of sets, open and closed sets of real number and outer measure and measurable sets
CO2	Understand the abstract measure theory and definition and main properties of the integral
CO3	Able to construct Lebesgue's measure on the real line and in n-dimensional Euclidean space.
CO4	Able to use the concept of measure theory to solve the problems related to
Genera	l Topology (CP-1177B)
CO No.	On completion of the course, student will be able to:
CO1	Find different topologies on a given set and study their properties.
CO2	Check continuity of functions through different topological approaches

CO3	The student is able to apply his or her knowledge of general topology to
	formulate and solve problems of a topological nature in mathematics and other
	fields where topological issues arise.
CO4	To acquaint students with homeomorphism and some topological properties
	like connectedness, compactness
Partial	Differential Equations (CP-1178B)
CO No.	On completion of the course, student will be able to:
CO1	Classify given second order partial differential equations.
CO2	Use different method to solve boundary value problem specially use wave
	equations, Heat equations.
CO3	Understand what are well-posed initial (and/or boundary) value problems for
	classical PDEs such as the wave equation, the Laplace equation and the heat (diffusion) equation
CO4	Technique of separation of variables to solve PDEs and analyze the behavior of
	solutions in terms of eigen function expansions
Numer	ical Analysis (CP-1179B)
CO No.	On completion of the course, student will be able to:
CO1	Solve linear and non-linear equations by various numerical methods
CO2	Find numerical integrations along with error computations.
CO3	Solve initial value problems by different numerical methods.
CO4	Find rate of convergence of various numerical methods

(S.P. PATANKAR)
HEAD
Department of Mathematics
Vivekanand College, Kolhapur