Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Mr. S. P. Patankar

Programme - B.Sc. II

Semester - III

Subject: Mathematics

Course Title: Integral Calculus

Month O	ctober		Module/Unit: I	Sub-units planned	
Lectures 10	Practicals 02	Total	Beta and Gamma functions	 Definition of Beta function Basic Properties of Beta function and Examples on Beta functions Definition of Gamma function Basic Properties of Gamma function and Examples on Gamma functions Relation between Beta and Gamma function 	
Month November		Module/Unit: II	Sub-units planned		
Lectures	Practicals	Total	Multiple integrals	 Integration Method of Evaluation Related Double examples Cartesian and 	
12	02	14	integrals	Polar Form 3. Change of order of integration 4. Change of Variable, Examples on Triple Integral.	

Name and Signature of Teacher

ESTD. IGHT 1964

(S.P.Patankar)

HEAD

Department of Mathematics

Vivekanand College, Kolhanur

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Mr. S. P. Patankar

Programme - B.Sc. III

Semester - V

Subject: Mathematics

Course Title: Matrix Algebra

Month O	ctober		Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Linear Transformation	 Translation, Dilation, Rotation Reflection in a point, line and plans. Mauris form of basic geometric transformations.
Month N	ovember		Module/Unit; I	Sub-units planned
Lectures	Practicals	Total	Linear Transformation	Interpretation of eigen values and eigen vectors for such
12		12		transformations and eigen spaces 2. Invariant subspaces. 3. Types of matrices. 4. Rank of a matrix. Invariance of rank under elementary transformations
Month: I			Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	System of Linear Equations	 Reduction to normal form, Solutions of linear homogeneous
12		12		and non homogeneous equations with number of equations and unknowna upto four. 3. Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3.
Month: J			Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	System of Linear Equations	Computation of matrix inversies using elementary row operations.
12		12		Rank of matrix. 2. Solutions of a system of linear equations using matrices, Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics

Name and Signature of Teacher

ESTD. TO JUNE 1964

(S.P.Patankar)

HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Mr. S. P. Patankar

Programme - B.Sc III

Semester - V

Subject: Mathematics

Course Title: Modern algebra

Month October			Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Groups	 Definition and Binary operations Definitions and properties, Groups elementary properties. Finite groups and composition tables. Subgroups and its properties. Generators and cyclic groups. Permutations Functions and permutations cycles and cyclic notation, even, odd, permutations, Symmetric group, Alternating groups.
Month November		Module/Unit: I	Sub-units planned	
Lectures 12	Practicals	Total	Groups	 Cyclic groups- elementary properties The classification of cyclic groups Isomorphisms -Definition and elementary properties. Cayley's theorem, Groups of cosets, Applications. Normal subgroups Factor groups, Criteria for existing of a coset group Inner automorphism and Dormal subgroups Simple groups The fundamental theorems of isomorphisms, applications

Name and Signature of Teacher

(S.P.Patankar) HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of Teacher: Mr. S. P. Patankar

Program: B.Sc. III

Semester: V

Subject: Mathematics

Course Title: CCPM-VI

D	Month: October		Subunits Planed
Practical	Total	Introduction	1) Introduction to Python
16	16		
vember		Unit II	Subunits Planed
Practical	Total	Conditional	2) Expression and operators
15	15	statement	3) Conditional statement
ecember		Unit III	Subunits Planed
ectures Practical Total		Conditional	4) Looping and control statement
17	17	statement	, , , ,
Month: January		Unit IV	Subunits Planed
Practical	Total	Functions	5) Functions
-	Practical 15 cember Practical 17 nuary	vember Practical Total 15 15 cember Practical Total 17 17 nuary	Practical Total Conditional statement Cember Unit II Practical Total Conditional statement Cember Unit III Practical Total Conditional statement 17 17 statement Total Unit IV

Name and Signature of Teacher

De Vive

(S.P. Patankar)
HEAD
Department of Mathematics
Vivekanand College, Kolhapur

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Prof. S.P. Thorat

Programme - B.Sc. I

Semester - I

Subject: Mathematics

Course Title: Calculus

Month: August			Module/Unit: I	Sub-units planned	
Lectures	Practicals	Total	1. Limit and Continuity	1) $\varepsilon - \delta$ definition of limit of real valued function	
8	01	09		2) Infinite limits 3)properties of continuous function 4) Types of discontinuity 5) Uniform continuity	
Month: Se	ptember		Module/Unit: II	Sub-units planned	
Lectures			Mean value theorem and successive differential	Differentiability of real valued function Relation between differentiability and	
10	01	11		continuity 3) Lagrange's mean value theorem 4) Successive differential equation 5) Leibnitz's theorem	
Month: 0	ctober		Module/Unit: III	Sub-units planned	
Lectures	Practicals	Total	3. Higher mean value theorem and indeterminate form	Maclaurin's and Taylor's theorems Taylor's theorem infinite form with	
08	02	10		Lagrange and Cauchy forms of reminder 3)Indetermined Form	
Month : N	ovember		Module/Unit: IV	Sub-units planned	
Lectures	Practicals	Total	4. Asymptotes	Asymptotes of general algebraic cuvees	
10	01	11		2) Asymptotes parallel to axes 3)Tangent at origin 4)Position and nature of double points	

Name and Signature of Teacher

ESTO JUNE 1964

(Prof. S.P. Thorat)
HEAD
Department of Mathematics
Vivekanand College, Kolhapur

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Prof. S. P. Thorat

Programme - B.Sc I

Semester - II

Subject: Mathematics

Course Title: Ordinary Differential Equation

Month: Fo	ebruary		Module/Unit: I	Sub-units planned	
Lectures	Practicals	Total	Differential Equation of first order and first degree	Differential Equation of first order and first degree	
10	01	11		2) equation reducible to linear form 3) First order higher degree 4) Clairaut's Form 5) Picard's method and theorem for existence and uniqueness	
Month: N	/Jarch		Module/Unit: II	Sub-units planned	
Lectures Practicals Total		Total	Linear Differential Equations with constant coefficient	1)Linear Differential Equations with constant coefficient	
10	02	12		2)Complex and distinct roots and complex repeated roots 3)Mixed roots 4)Types of complimentary function 5)Particular integrals of different functions	
Month : A	April		Module/Unit: III	Sub-units planned	
Lectures	Practicals	Total	Homogeneous linear Differential Equations	1) Homogeneous linear Differential Equations	
08	01	09		2)Cauchy – Euler's Equation and methods of solving 3)Legendre's linear equations	
Month : N	/lay		Module/Unit: IV	Sub-units planned	
Lectures	Practicals	Total	Differential equations with variable coefficient	General theory of linear differential equations with variable	
08	01	09		coefficient 2)Transformation of Equations 3)Bessel's equation 4) Bessel's functions and properties	

Name and Signature of Teacher (S.P. Thorat)

ESTD FROM 1964 1964 1964

(Prof.S.P.Thorat)

HEAD

Name of Teacher: Prof S.P. Thorat

Program: B.Sc. II

Semester: IV

Subject: Mathematics

Course Title: Integral Transforms

Month: February		Module/Unit I	Subunits Planed	
Lectures	Practical	Total	Laplace transform	1) Existence theorem of Laplace transform
08	02	10		Laplace transform of Integrals Laplace transform of Periodic function
Month: March		Module/Unit II	Subunits Planed	
Lectures	Practical	Total	Inverse Laplace	1) Standard result of inverse Laplace
12	01	14	Inverse Laplace Transform and Application	Transform 2) Solving Linear differential equations with constant coefficient by Laplace transform

Name and Signature of Teacher

(S.P. Thorat)

ESTD. JUNE 1964

(Prof. S.P. Thorat)

Gthorup

HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Prof. S.P. Thorat

Programme - B.Sc III

Semester - V

Subject: Mathematics

Course Title: Numerical Method - I

Month: A	ugust		Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Solution of algebraic equation	 Introduction: Polynomial equation, algebraic equation and their roots iterative methods, Bisection method algorithm, examples Secant algebraic method: iterative sequence of secant method, examples Regula-Falsi method: algorithm, graphical representation, examples. Newton's method: algorithm, examples.
Month: Se	eptember		Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Solution of algebraic equation	 Introduction: System of linear equations as a vector equation Ax = b, Augmented matrix. Direct methods: Gauss elimination method: Procedure, Examples Gauss-Jordan method: Procedure, examples.
				4. Iterative methods:General iterative rule
Month: 0	The state of the s		Module/Unit: II	Sub-units planned
Lectures 12	Practicals	Total 12	Iterative Methods	 Jacobi iteration scheme, examples. Gauss-Seidel method: Formula, examples. Eigen values and eigenvectors of a real matrix
				real matrix
Month : November			Module/Unit: II	Sub-units planned
Lectures 12	Practicals	Total 12	Iterative Methods	Power method for finding an eigen value of greatest modulus, the case of matrix whose "dominant eigen value is not repeated", examples. Method of exhaustion, examples.
				Method of reduction, examples. Shifting of the eigen value, examples

Name and Signature of Teacher

ESTD. FILL JUNE FR. 1964

(Prof. S.P. Thorat)

HEAD

Department of Mathematics

Vivekanand College, Kolhabur

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Prof. S. P. Thorat

Programme - B.Sc. III

Semester - V

Subject: Mathematics

Course Title: Real Analysis

Month: August			Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Sequence and Series	 The algebraic and ordered properties of R Absolute value and real line, The completeness property of R Application of supremum property Intervals. Sequence, Limit of Sequence Monotone Sequences,
Month: Se	eptember	Marie	Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Sequence and Series	 Subsequences and The Bolzano-Weierstrass Theorem The Cauchy Criterion, Property of Divergent Sequences Series: Definition and examples, n" term Test, Cauchy Criterion for the series Comparison Tests Cauchy Condensation Test.
Month: 0	ctober		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Riemann Integral and Improper Integral	The Riemann integral and properties
12		12		 Riemann integrable functions The squeeze Theorem, Classes of Riemann integrable functions The fundamental Theorem.
Month : November			Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Riemann Integral and Improper Integral	Improper integral of first kind, Comparison test, - test for
12		12		Convergence 2. convergence, Integral test for convergence of series Improper integral of second kind

Name and Signature of Teacher

ESTD. TO JUNE 1964

(Prof. S.P. Thorat)

HEAD

Department of Mathematics

Vivekanand College, Kolhapur

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Prof. S.P. Thorat

Programme - B.Sc III

Semester - VI

Subject: Mathematics

Course Title: Metric Space

Month M	arch	6	Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Basic concepts of Metric Space	 Definition and examples of metric spaces. Open ball. Open set. Closed set as complement of open set, Interior point and interior of a set. Limit point and closure of a set. Boundary point and boundary of a set. Properties of interior, closure and boundary. Bounded set and diameter of a set. Distance between two sets. Subspace of a metric space.
Month A	oril		Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Basic concepts of Metric Space	Convergent sequence. Cauchy sequence. Every convergent sequence is Cauchy and bounded, but the converse is not true. Completeness. Cantor's intersection theorem. R is a complete metric space. Q is not complete
Month: N	Лаv		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Compactness and connectedness of Metric Space	Continuous mappings, sequential criterion of continuity.
12		12		Uniform continuity. Compactness, Sequential compactness, Heine-Borel theorem in R. Finite intersection property, continuous functions on compact sets.
Month: J	une		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Compactness and connectedness of Metric Space	Concept of connectedness and some examples of connected metric space,
12		12		 connected subsets of R, C. Contraction mappings, Banach Fixed point Theorem and its application to ordinary differential equations.

Name and Signature of Teacher (S.P. Thorat)

ESTD. FOR THE 1984

(Prof. S.P. Thorat)

Name of Teacher: Prof. S.P.Thorat

Program: B.Sc. III

Semester: VI

Subject: Mathematics

Coarse Title: Core Course Practical In Mathematics (CCPM-V)

Month:	Month:		Module/Unit I	Subunits Planed
Lectures	Practical	Total	Interpolation	1) Newton's forward interpolation
00	02	02		2) Newton's backward interpolation
Month: O	ctober		Module/Unit II	Subunits Planed
Lectures	Practical	Total	Interpolation	1) Lagrangian interpolation
00	02	02		2) Divided difference interpolation
Month: N	lovember		Module/Unit III	Subunits Planed
Lectures	Practical	Total	Numerical	1) Trapezoidal rule
00	02	02	integration	2) Simpson's 1/3ed rule
Month: D	Month: December		Module/Unit IV	Subunits Planed
Lectures	Practical	Total	Runge-Kutta	1) Second order Runge-Kutta method
00	02	02	Method	Fourth order Runge-Kutta method

Name and Signature of Teacher
(S.P. Thorat)

ESTD. JUNE 1964

(Prof. S.P. Thorat)

HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Prof. S.P.Thorat

Programme - B.Sc III

Semester - VI

Subject: Mathematics

Course Title: Complex Analysis

Month Fe	bruary		Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Analytic Functions	 Basic algebraic and geometric properties of complex numbers Function of complex variable, Limits, continuity and differentiation Cauchy Riemann equations, Analytic functions and examples of analytic functions.
Month: March		Module/Unit: I	Sub-units planned	
Lectures	Practicals	Total	Analytic Functions	Exponential function, Logarithmic function,
12		12		Trigonometric function, 2. Definite integrals of functions, Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals, 3. Cauchy integral formula and examples.

Name and Signature of Teacher

ESTD. FINAND CO.

(Prof. S.P. Thorat)

HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Prof. S.P.Thorat

Programme - M.Sc.-II

Semester-III

Subject: Mathematics

Course Title: Number Theory

Month: Se	eptember		Module/Unit: I	Sub-units planned
Lectures 16	Practicals	Total 16	Divisibility	 Review of Divisibility: The division algorithm, G.C.D., Euclidean algorithm, Diophantine equation ax + by = c, Primes and their distribution Fundamental theorem of arithmetic
Month Oc	tober		Module/Unit: II	Sub-units planned
Lectures 17	Practicals	Total	Congruence	 Congruences: Properties of congruences, Linear congruences, Chinese Remainder Theorem
				 Special divisibility tests, Fermat's theorem, Wilsons's theorem and applications.
	Month : November		Module/Unit: III	Sub-units planned
Lectures 22	Practicals	Total 22	Number Theoretic function	 Number Theoretic Functions: Euler's phi function, Euler's theorem Greatest integer function, the functions τand σ, Mobius function and Mobius
				inversion formula, Properties of these functions
Month: D			Module/Unit: IV	Sub-units planned
Lectures	Practicals	Total	Primitive roots	 Primitive roots: The order of an integer modulo n, Primitive roots of primes,
11		11		composite numbers having primitive roots, 2. The theory of indices, The quadratic reciprocity law: Eulerian criteria 3. The Legendre symbol and its properties, quadratic reciprocity, quadratic reciprocity with composite moduli.

Name and Signature of Teacher

ESTD. IGN JUNE 1964 CO

(Prof. S. P. Thorat)
HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Prof. G.B. Kolhe

Programme - B.Sc. I

Semester - I

Subject: Mathematics

Course Title: Algebra and Geometry

Month:	August		Module/Unit: I	Sub-units planned
Lectures	Practicals	Total	Theory of equation and complex number	Elementary theorem on the roots o equations
10	01	11		 Synthetic division Relations between the roots and coefficient of polynomial equations Polar representation of complex numbers, De Moivre's theorem
Month:	September		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Relations	 Relation and equivalence relation Functions, Composition of
8	01	09		function 3. Finite sets, Countable and Uncountable sets
Month: (October		Module/Unit: III	Sub-units planned
Lectures	Practicals	Total	Matrix algebra	System of linear equations Row reduction and Echelon Form
08	02	10		 Rank of matrix Determinant and Inverse of matrix Cayley-Hamilton theorem
Month: November			Module/Unit: IV	Sub-units planned
Lectures	Practicals	Total	Spheres	Different forms of Spheres Intersection of spheres
10	01	11		Tangents and Normal Radical planes and line, Coaxial System

Name and Signature of Teacher

ESTD. GO JUNE 1964

Name of Teacher: Mr. G.B. Kolhe

Program: B.Sc. II

Semester: III

Subject: Mathematics

Course Title: Number Theory

Month: August			Module/Unit I	Subunits Planed
Lectures	Practical	Total	Divisibility theory	1) Mathematical induction
08	01	09	in the integers	Division Algorithm Euclidean Algorithm Diophantine equation
Month: S	Month: September		Module/Unit II	Subunits Planed
Lectures	Practical	Total	Prime and their	definition of prime number indamental theorem of arithmetic
11	01	12	distribution	
				3) Euclid's theorem

G.B. Lolho

Name and Signature of Teacher

ESTD. JUNE IN 1964 RS

(Prof. S.P. Thorat)

HEAD

Departmen Viathematics Vivekan dee, Kolhapur

Name of Teacher: Mr. G. B. Kolhe

Program: B.Sc. II

Semester: III

Subject: Mathematics

Course Title: Core Course Practical In Mathematics (CCPM-III)

Month:			Module/Unit I	Subunits Planed
Lectures	Practical	Total	Introduction	1) Introduction to Scilab
00	02	02		2) Matrix
Month: O	October		Module/Unit II	Subunits Planed
Lectures	Practical	Total	Matrices	1) Accessing elements of matrices
00	02	02		2) Submatrix
Month: N	lovember		Module/Unit III	Subunits Planed
Lectures	Practical	Total	Matrices and	1) Advanced Matrix operation
00	02	02	Polynomials	2) Polynomial
Month: D	ecember		Module/Unit IV	Subunits Planed
Lectures	Practical	Total	Graph	1) Plotting graphs
00	02	02		Introduction to Scilab Programming

Name and Signature of Teacher

ESTD. TO JUNE 1964

(Prof. S. P. Thorat)

HEAD

Roborula

Name of Teacher: Mr. G. B. Kolhe

Program: B.Sc. II

Semester: IV

Subject: Mathematics

Course Title: Discrete Mathematics

Month: February		Module/Unit I	Subunits Planed	
Lectures	Practical	Total	Recurrence	1) Models of Recurrence relation
12	02	14	relation	2) linear Recurrence relation with constant coefficient 3) homogeneous solutions & Examples 4) particular solutions and Total solutions
Month: M	farch		Module/Unit II	Subunits Planed
Lectures	Practical	Total	Generating	1) Generating function
08	02	10	function	2) Basic properties of generating function3) Application to solving recurrence relation

Name and Signature of Teacher

(G. B. Kolhe)

(Prof. S.P. Thorat)

Name of Teacher: Mr. G. B. Kolhe

Program: B.Sc. II

Semester: IV

Subject: Mathematics

Course Title: Core Course Practical In Mathematics (CCPM-III)

Month: F	ebruary		Module/Unit I	Subunits Planed
Lectures	Practical	Total	Interpolation	1) Numerical method to find the root of the
00	02	02		given function
				2) Interpolation
Month: N	1arch		Module/Unit II	Subunits Planed
Lectures	Practical	Total	Euler and Runge	1) Numerical solution of Ordinary
00	02 02 Kutta method		Differential Equation-I Euler's and Euler's Modified method	
				Numerical solution of Ordinary Differential Equation-II Runge Kutta Mathod
Month: A	pril		Module/Unit III	Subunits Planed
Lectures	Practical	Total	Numerical	1) Numerical Integration-I Trapezoidal rule
00	02	02	Integration	2) Numerical Integration-II Simpson's Rule
Month: M	lay		Module/Unit IV	Subunits Planed
Lectures	Practical	Total	Numerical Method	1) Numerical Method for solution of system
00	02	02		of linear equations-I Guass-Jordan
				Numerical Method for solution of system of linear equations-I Guass-Seidel

A.B. kolhk

Name and Signature of Teacher

(G.B. kolhe)

ESTD. PARTIES TO THE PURPOSE OF THE

Name of Teacher: Mr. G.B. Kolhe

Program: B.Sc. III

Semester: VI

Subject: Mathematics

Coarse Title: Core Course Practical In Mathematics (CCPM-IV)

Month:			Module/Unit I	Subunits Planed
Lectures 00	Practical 02	Total 02	2× 2 Games	Assignment problems (Unbalanced Problems) 2) Two by Two (2× 2) Games without saddle point
Month: C	ctober		Module/Unit II	Subunits Planed
Lectures 00	Practical 02	Total 02	Algebraic and Assignment Problems	Algebraic method of Two By two (2× 2) Games 2) Arithmetic method of Two By two (2× 2) Games
Month: N	ovember		Module/Unit III	Subunits Planed
Lectures 00	Practical 02	Total 02	Assignment Problems	 Graphical method for 2× n games m× 2 Games Processing n jobs through 2 machines
Month: December		Module/Unit IV	Subunits Planed	
Lectures 00	Practical 02	Total 02	Assignment Problems	 Processing n jobs through 3 machines Processing 2 jobs through m machines Processing n jobs through 2 machines

Name and Signature of Teacher
(G.B. Kolhe)

ESTD. FOR THE STORY OF THE STOR

(Prof. s.P. Thorat)

HEAD

Department of Mathematics

Vivekanand College, Kolhapur

Department of mathematics Academic Year: 2021-2022

Annual Teaching Plan

Name of the teacher: G. B. Kolhe

Programme - B.Sc III

Semester - VI

Subject: Mathematics

Course Title: Numerical Method - II

Month: F	Month: February		Module/Unit: I	Sub-units planned		
Lectures 12	Practicals	Total	Interpolation	 Forward interpolation: Newton's forward differences, forward difference table. Newton's forward form of interpolating polynomial (formula only) examples Backward interpolation: Newton's backward differences, backward difference table, Newton's backward form of interpolating polynomial (formula only). 		
Month: N	larch		Module/Unit: I	Sub-units planned		
Lectures	Practicals Total		Interpolation	Introduction, Lagrangian interpolating polynomial (formula only), examples		
12		12		 Divided difference interpolation:, Newton's divided differences, divided difference table, examples finding divided (differences of give data) Newton's divided difference form of interpolating polynomial, examples 		
Month :A	April		Module/Unit: II	Sub-units planned		
Lectures	Practicals	Total	Numerical Differentiation and Integration	Numerical differentiation based on interpolation polynomial.		
12		12		 Numerical integration: Newton-Cotes formula (statement only) composite Trapezoidal rule composite Simpson's 1/3rd rule, examples composite Simpson's 3/8th rule, examples. 		
	Month: Mays		Module/Unit: II	Sub-units planned		
Lectures	Practicals	Total	Numerical Differentiation and Integration	Euler's Method, Examples, Second order Runge-Kutta method (formula)		
12		12		only). Examples 3. Fourth order Runge-Kutta method(formula only), examples		

Name and Signature of Teacher

(G.B. Kolne)

(Prof. S.P. Thorat)

HEAD

Department of Mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Mr. Gaurav B. Kolhe

Programme: M. Sc. I

Semester: I

Subject: Mathematics

Course Title: Classical Mechanics

Month: O	ct		Module/Unit:	Sub-units planned
Lectures	Practical	Total	Lagrange's	1) Lagrange's equation
15	00	15	Equation	2) examples on Lagrange's equation3) Cyclic Coordinate and its properties
Month: Nov			Module/Unit:	Sub-units planned
Lectures	Practical	Total	Variational	1) Basic lemma of variational calculus,
15	00	15	Calculus	Brachistochrone problem geodesic, isoperimetric problems Green's theorem
Month: D	Month: Dec		Module/Unit:	Sub-units planned
Lectures	Practical	Total	Hamiltonian	1) Hamilton's principle,
18	00	18	function	
Month: Ja	n		Module/Unit:	Sub-units planned
Lectures	Practical	Total	Rigid Body and its	Kinematics of rigid body
17	00	17	Rigid Body and its motion	Rigid body Rigid body and its motion Orthogonal transformations

G.B. Wilh

Name and Signature of Teacher

ESTD EN JUNE OF 1964

(Mr. S. P. Thorat)

Name of Teacher: Mr. G.B. Kolhe

Program: M.Sc. II

Semester: IV

Subject: Mathematics

Coarse Title: Measure and Integration

Month: F	ebruary		Module/Unit I	Subunits Planed
Lectures	Practical	Total	1. Lebesgue	1) Open Sets, Closed Sets and Borel Sets
16	00	16	Measurable	2) Lebesgue Outer Measure, The sigma algebra of Lebesgue Measurable Sets, Countable Additivity 3) Continuity and Borel-Cantelli Lemma 4) nonmeasurable set.
Month: N	/larch	No.	Module/Unit II	Subunits Planed
Lectures	Practical	Total	2. Measurable	Sums, Product and Composition of
17 00	00	17	Functions,	Measurable Functions, 2) Sequential Pointwise limits and Simple Approximation. Littlewood's Three Principles
				3) Egoroff's Theorem and Lusin's
				Theorem, Lebesgue
				4) Integration of a Bounded Measurable Function, Lebesgue Integration of a Nonnegative Measurable Function.
Month: A	pril		Module/Unit III	Subunits Planed
Lectures	Practical	Total	3. The general	1) The General Lebesgue Integral,
18	00	18	Lebesgue integral	2) Characterization of Riemann and Lebesgue Integrability,3) Differentiability of Monotone Functions,
				Lebesgue's Theorem,
				4) Functions of Bounded
Month: M	91/		Module/Link IV	Variations:Jordan's Theorem
Lectures	Practical	Total	Module/Unit IV	Subunits Planed
6			4. Absolutely	1) Absolutely Continuous Functions,
10	00	16	Continuous Funcition	2)Integrating Derivatives: Differentiating Indefinite Integrals,
ELS				3) Normed Linear Spaces, Inequalities of
				Young, Holder and Minkowski, 4)The Riesz-Fischer Theorem.

(Mr. G.B. Kolhe)

ESTD. FOR JUNE 1964

(S.P.Thorat)

HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Mr. Avinash A. Patil

Programme - M.Sc.-I

Semester-I

Subject: Mathematics

Course Title: Advanced Calculus

Month: S	Month: September		Module/Unit: I	Sub-units planned
Lectures 18		Total	Integral Calculus	1. Functions of Bounded Variation & Rectifiable Curves 2. Multiple Integral 3. Green's theorem 4. Surface integral 5. Curl & divergence
Month: 0	ctober		Module/Unit: I and II	Sub-units planned
Lectures	Practicals	Total	Integral Calculus	Stokes theorem Gauss divergence theorem
15		15	Sequence & series of functions	Pointwise & uniform Convergence Cauchy condition
				3. Uniform convergence & Riemann integration 4. Uniform convergence & differentiation 5. Double sequence
Month: No			Module/Unit: II and III	Sub-units planned
Lectures	Practicals	Total	Sequence & series of functions	1. Mean convergence 2. Power series
22		22	Multivariable differential Calculus	1. Directional derivatives 2. Total derivative 3. Jacobian matrix 4. Chain rule 5. Mean value theorem
Month: De	Month: December		Module/Unit: III and IV	Sub-units planned
Lectures	Practicals	Total	Multivariable differential Calculus	Taylor's formula Inverse function theorem
12		12		
			Implicit functions	Implicit function theorem Applications of implicit function Theorem

Name and Signature of Teacher

ESTD. JUNE IN 1964

(Prof. S. P. Thorat) HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Avinash A. Patil

Programme - M.Sc.-II

Semester-III

Subject: Mathematics

Course Title: Lattice theory

Month: So	eptember		Module/Unit: I	Sub-units planned
Lectures	Practicals	Total	Basic concepts of Lattice theory	1. Posets 2. Description of Lattices
16		16		3. Duality principle 4. Homomorphism & Isomorphism
Month: 0	ctober		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Special types of Lattices	Distributive lattices Modular lattices
17		17		Congruence relations Boolean algebras
Month: N	ovember		Module/Unit: III	Sub-units planned
Lectures	Practicals	Total	Ideals	Ideal theory Ideals and filters in lattices
21		21		Lattice of all ideals Stone's theorem
Month: December		Module/Unit: IV	Sub-units planned	
Lectures	Practicals	Total	Pseudo lattices	Stone algebra Pseudo complemented lattices
12		12		3. Stone lattices

Name and Signature of Teacher

ESTD. FOR JUNE 1964

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Mr. Avinash A. Patil

Programme: M.Sc.-I

Semester-II

Subject: Mathematics

Course Title: Integral Equations

Month: So	eptember		Module/Unit: I	Sub-units planned
Lectures	Practicals	Total	Linear integral equations	Classification Initial value problem
16		16		3. Boundary value problem 4. Separable kernel
Month: 0	ctober		Module/Unit: I and II	Sub-units planned
Lectures	Practicals	Total	Linear integral equations	1. Homogeneous Fredholm equations & eigen functions
17		17		- Table to agent functions
			Solutions of Fredholm & Volterra integral equations	Successive approximations Method Successive substitution Method Adomian decomposition method Resolvent kernel
Month: No	ovember		Module/Unit: III	Sub-units planned
Lectures	Practicals	Total	Symmetric kernels	Convolution type kernels Symmetric kernels
20		20		3. Eigenvalues & eigenfunctions for symmetric kernels
Month: De	ecember		Module/Unit: IV	Sub-units planned
Lectures	Practicals	Total	Hilbert Schmidt theorem	Hilbert Schmidt theorem Solution of symmetric integral
16		16		equations 3. Integrodifferential equations

Name and Signature of Teacher

ESTD. FOR JUNE IN 1964

(Prof. S. P. Thorat)
HEAD
Department of Mathematics
Vivekanand College, Kolhaput

Department of mathematics Academic Year: 2021-2022

Annual Teaching Plan

Name of the teacher: Avinash A. Patil

Programme - M.Sc.-II

Semester-IV

Subject: Mathematics

Course Title: Combinatorics

Month: F	ebruary		Module/Unit: I	Sub-units planned
Lectures	Practicals	Total	Permutations and combinations	The sum Rule and product Rule Permutations and combinations
14		14		3. The Pigeonhole Principle 4. Ramsey Numbers, Catalan Numbers & Stirling Numbers
Month: M	arch		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Inclusion-Exclusion principle	1. Generalized Permutations & combinations
19		19		Inclusion – Exclusion principle Derangements Combinatorial Number theory
Month: Aj	pril		Module/Unit: III	Sub-units planned
Lectures	Practicals	Total	Generating functions	Rook- Polynomial Ordinary and Exponential
23		23		generating functions 3. Recurrence Relations 4. Fibonacci sequence
Month: M	ay		Module/Unit: IV	Sub-units planned
Lectures	Practicals	Total	Group Theory in Combinatorics	Group Theory in Combinatorics The Burnside Frobenius Theorem
12		12		3. Permutation Groups and Their Cycle Indices

Name and Signature of Teacher

ESTD. TO JUNE IN 1964 8

(Prof. S. P. Thorat)
HEAD
Department of Mathematics
Vivekanand College, Kolhapus

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of Teacher: Shital Manohar Malavi

Program: M.Sc. I

Semester: I

Subject: Mathematics

Coarse Title: Complex Analysis

Month: S	eptember		Module/Unit I	Subunits Planed
Lectures 16	Practical 00	Total 16	1. Analytic Functions	 Power series, radius of convergence, Analytic functions, zeros of an analytic function, Cauchy-Riemann equations, Harmonic functions, Mobius transformations
Month: O	ctober		Module/Unit II	Subunits Planed
Lectures 17	Practical 00	Total 17	2. Cauchy Integral	 Power series representation of analytical function. Liouville's theorem, Fundamental theorem of algebra, Maximum modulus theorem, the index of closed curve, Cauchy's theorem and integral formula, Moreira's theorem.
Month: N	lovember		Module/Unit III	Subunits Planed
Lectures 18	Practical 00	Total 18	3. Singularities	 Counting zero's, The open mapping theorem, Gearset's Theorem. Classification of singularities, Laurent series development. Casorati- weierstrass theorem.
Month: D	ecember		Module/Unit IV	Subunits Planed
Lectures 16	Practical 00	Total 16	4. Residues	The argument principle, Rouche's theorem, the maximum principle. Schwarz's lemma Residues, residues and its applications to characterize conformal maps.

(Ms. Shital M. Malovi)

(Name and Signature of Teacher)

ESTD. G JUNE 1964 Prof. S.P. Thorat)

HLAU

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Malavi Shital Manohar

Programme - M.Sc. I Subject: Mathematics Semester - II

Course Title: General Topology

Month Fe	bruary	- DC	Module/Unit: I	Sub-units planned
Lectures 12	tures Practicals Total _ 12		1. Topology and their basic terms	 Topological spaces, Examples Limit points, closed set and closure Interior, Exterior,
				neighbourhood4. Different ways of defining topology5. Bases, Subbases, subbases of topological subspaces
Month Ma	Month March		Module/Unit: I and II	Sub-units planned
Lectures	Practicals	Total	1. Topology and their basic terms	1. Hereditary Properties
20		20		
			2. Connectedness and compactness in topological space	 Connected spaces, components connected subspaces of real line, compact space one point compactification, continuous function
Month : A	pril		Module/Unit: II and III	Sub-units planned
Lectures	Practicals	Total	2. Connectedness and compactness in topological	Homeomorphisms Topological Properties
22		22	space	
			3. Separation Axioms	 Separation Axioms: T₀, T₁, T₂ spaces First and second axiom spaces Separable spaces Lindelof spaces
Month: M	Month : May		Module/Unit: III and IV	Sub-units planned
Lectures		Total	3. Separation Axioms	 Regular and T₃ spaces Normal and T₄ space
14		14		
3			4.Different types of Topological Spaces	 Completely regular T_{3/2} spaces Completely normal and T₅ spaces Product spaces

(Ms. shifal M. Malavi)

Name and Signature of Teacher

ESTD. GO JUNE PA 1964 *

(Prof. S. P. Thorat)

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Malavi Shital Manohar

Programme - M. Sc I

Semester - II

Subject: Mathematics

Course Title: Numerical analysis

Month Ap	Month April		Module/Unit: III	Sub-units planned
Lectures 18	Practicals	Total 18	Runge - Kutta Methods	 Runge - Kutta Method: second order methods the coefficient tableau, third order methods (without proof), order conditions, Fourth order methods (without proof) Implicit Range-kutta methods Stability characteristics, Taylor Series Methods: Introduction to Taylor series methods
Month Ma	ıy	3216	Module/Unit: III and IV	Sub-units planned
Lectures	Practicals	Total		
16		16	Linear multistep methods	 Linear multistep methods: Adams Methods General form of linear multistep methods Predictor- corrector Adams methods, Starting Methods, Analysis of linear multistep methods: Convergence, consistency, sufficient condition for convergence, Stability Characteristics

CMs. Shital M. Malovi)

Name and Signature of Teacher

ESTD. FOR JUNE 1964

(Prof. S. P. Thorat)

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Malavi Shital Manohar

Programme - M. Sc II

Semester - III

Subject: Mathematics

Course Title: Operational Research I

Month Se	ptember		Module/Unit: I	Sub-units planned	
Lectures	Practicals	Total	Convex Set	Convex sets and their properties General formulation of linear	
13		13		programming 3. Fundamental Theorem of linear programming	
Month Oc	tober		Module/Unit: II	Sub-units planned	
Lectures	Practicals	Total	Simplex Method and Duality	Simplex method Revised simplex method in standard	
15		15		form I 3. Duality in linear programming	
Month : November			Module/Unit: II and III	Sub-units planned	
Lectures	Practicals	Total	Simplex Method and Duality	Integer linear programming Gomory's cutting plane method	
21		21	Dynamic programming	3. Branch and Bound method.	
				Dynamic programming. Bellman's principle of Optimality Application of dynamic programming in production	
Month : D	ecember		Module/Unit: IV	Sub-units planned	
Lectures	Practicals	Total	Non- Linear Programming Problem	Non- linear programming unconstrained problems of maximum	
15		15		and minimum 2. Lagrangian method 3. Kuhn Tucker necessary and sufficient conditions, 4. Wolfe's method, 5. Beale's method.	

(Ms. Shital M. Malovi)

Name and Signature of Teacher

ESTD. FOR JUNE 1964

(Prof. S. P. Thorat)

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Shital Manohar Malavi

Programme - M.Sc.-II

Semester-III

Subject: Mathematics

Course Title: Advanced Discrete mathematics

Month: Se	Month: September		Module/Unit: I	Sub-units planned
Lectures	Practicals	Total	Graph Theory	 Graph Theory: Definition, examples and properties,
16		16		 Graph isomorphism, Bipartite graphs, Complete Bipartite graph, regular graph, sub-graphs spanning sub-graph, Edge deleted sub-graph, Vertex deleted sub- graph, Union and intersection of two graphs, complements of a graph
Month: 0	ctober		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Tree	Matrix representation of graph Properties of tree
17		17		3. Bridges & spanning trees
				4. Inclusion exclusion principle5. Pigeonhole principle

CMs. Shital M. malavi)

Name and Signature of Teacher

(Prof. S. P. Thory HEA)

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Malavi Shital Manohar

Programme - M. Sc II

Semester - IV

Subject: Mathematics

Course Title: Operational Research II

Month Fe	bruary	(sho	Module/Unit: I	Sub-units planned
Lectures 13	Practicals	Total	Replacement Policy	1.Replacement Problems 2.Failure mechanism of items 3.Replacement policy for items whose maintenance cost increases with time and money values is constant 4.Group replacement of items that fail completely
Month Ma	arch	mu smib	Module/Unit: II	Sub-units planned
Lectures 22	Practicals	Total 22	Inventory Models	 Inventory – Cost involved in inventory problems variables in inventory problem, symbols in inventory concept of EOQ, Methods with calculus method Model I (a) The economic lot size system with uniform demand Model I (b) Economic lot size with different rates of demand in different cycles. Model I (c) Economic lot size with finite Rate of Replenishment.,(EOQ production model)
Month : A	Month : April 2018 modified A		Module/Unit: II and III	7. EOQ model with shortages Sub-units planned
Lectures	Practicals	Total	Inventory Models	1. Model II(a) The EOQ with
21		21	, , , , , , , , , , , , , , , , , , , ,	constant rate of demand, scheduling, time constant.

		(suen	Queuing Theory	4. Poisson process, Properties, Exponential process, 5. Classification of Queuing Models		
Month : May			Module/Unit: III and IV	Sub-units planned		
Lectures		Total	Queuing Theory	1. Model I:(M/M/I): (∞/FCFS), Model II (a): General Erlang		
15	200	15		queuing model.		
	off any or to off feeting the source of bodyser sol bodyser sol	ith these satisfied and the control of the control		 Information Theory: Communication process, Quantitative measure of information Uniqueness theorem, Chanel capacity, efficiency and redundancy Encoding, Shannon Fano encoding procedure PERT / CPM: Applications of PERT / CPM techniques, Network diagram, representations. Rules for constructing the Network diagram determination of the critical path. 		

(Ms. Shital M. Madari)

Name and Signature of Teacher

(Prof. S. P. Thorat)

HEAD

Department of Mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Kulkarni Prajakta Prasad

Programme: M. Sc. I

Subject: Mathematics

Semester: I

Course Title: Modern Algebra

Month: S	Month: September		Module/Unit:	Sub-units planned
Lectures 18	Practical 00	Total 18	Simple Groups	1) Simple groups, simplicity of An, Commutator subgroups, 2) Normal subgroup and subnormal series, Jordan-Holder theorem 3) Solvable groups, Nilpotent group, isomorphism theorems (Statement only) 4) Zassenhaus Lemma, Schreier refinement theorem.
Month: O	ctober		Module/Unit:	Sub-units planned
Lectures 15	Practical 00	Total	Group Action	 Group action on a set, isometry subgroups, Burnside theorem Direct product and semidirect product of groups, Sylow theorems, p-subgroups, Group of order and pq, Class equation and applications
Month: N	ovember		Module/Unit:	Sub-units planned
Lectures 17	Practical 00	Total 17	Rings of Polynomial	Ring of Polynomials, Factorization of polynomials over fields, Irreducible polynomials, Eisenstein criterion, ideals in F[x], unique factorization domain, principal ideal domain Gauss lemma, Euclidean Domain
Month: D	ecember		Module/Unit:	Sub-units planned
Lectures	Practical	Total	Module	1) Modules, sub-modules, quotient modules,
16	00	16		homomorphism and isomorphism theorems, fundamental theorem for modules completely reducible modules, free modules.

(Ms. P.P. Kulkarni)

ESTD. FOR JUNE 1964

(S. P. Thorat)

Department of Mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Kulkarni Prajakta Prasad

Programme: M. Sc. I Subject: Mathematics

Semester: II

Course Title: Linear Algebra

Month: F	Month: February		Module/Unit:	Sub-units planned
Lectures 15	Practical 00	Total	Vector Spaces and Quotient Spaces	 Direct sum of a vector space Dual Spaces, Annihilator of a subspace, Quotient Spaces Algebra of Linear transformations.
Month: March		Module/Unit:	Sub-units planned	
Lectures	Practical	Total	Inner Product	1) Adjoint of a linear transformation, Inner
15	00	15	Space	product spaces 2) Eigen values Eigen vectors of a linear transformation 3) Diagonalization 4) Invariant subspaces
Month: April		Module/Unit:	Sub-units planned	
Lectures 18	Practical 00	Total 18	Canonical forms and Jordan forms	 Canonical forms, Similarity of linear transformations Reduction to triangular forms, Nilpotent transformations Primary decomposition theorem, Jordan blocks and Jordan forms variants of linear transformations
Month: M			Module/Unit:	Sub-units planned
Lectures 17	Practical 00	Total 17	Self adjoint linear transformation	Hermitian, Self adjoint, Unitary and normal linear transformation Symmetric bilinear forms skew symmetric bilinear forms Group preserving bilinear forms

(Fylbens)

(Ms. P.P. Kulkarni)

ESTD. FOR JUNE 1964

(S.P. Thorat)

HEAD

Department of Mathematics

Vivekanand College, Kolhapur

Department of Mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Kulkarni Prajakta Prasad

Programme: M. Sc. I Subject: Mathematics

Semester: II

Course Title: Numerical Analysis

Month: F	ebruary		Module/Unit:I	Sub-units planned
Lectures	Practical	Total	Rate of Convergence	Rate of convergence of Secant Method, Regula -Falsi Method and
17	00	17		Newton-Raphson Method 2) Bairstow method, Matrix factorization methods (Doo little reduction, Crout reduction) 3) Eigen Values and eigenvectors 4) Gerschgorin theorem, Breuer theorem, Jacobi Method for symmetric matrices.
Month: N	larch		Module/Unit: II	Sub-units planned
Lectures	Practical	Total	Numerical integration	Numerical Integration: Error estimates of trapezoidal and Simpson's Numerical
16	00	16		integration rule. 2) Gauss- Legendre integration Methods (n= 1, 2) 3) Lobatto Integration Method (n = 2) 4) Radau Integration method (n=2) and their error estimates

Hallani

(Ms. P.P. Kulkarni)

ESTD. JUNE 1964

(S. P. Thorat)
HEAD
Department of Mathematics
Vivekanand College, Kolhanss

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Kulkarni Prajakta Prasad

Programme - M. Sc.II Subject: Mathematics

Semester - III

Course Title: Function Analysis

Month: Se	eptember		Module/Unit: I	Sub-units planned
Lectures 16	Practicals	Total 16	Normed linear space	 Normed linear spaces, Banach spaces, Quotient spaces, Continuous linear transformations, Equivalent norms, Finite dimensional normed spaces and properties,
Month: O	ctober		Module/Unit: I and II	Sub-units planned
Lectures	Practicals	Total	Normed linear space	 Conjugate space and separability The Hahn-Banach theorem and its consequences.
			Conjugate space	 Second conjugate space the natural embedding of the normed linear space in its second conjugate space Reflexivity of normed spaces Weak * topology on the conjugate space. The open mapping theorem.
Month: No	ovember		Module/Unit: II and III	Sub-units planned
Lectures	Practicals	Total	Conjugate space	Projection on Banach space the closed graph theorem, the conjugate of
19		19		an operator 3. the uniform boundedness principle.
			Hilbert Space	 Hilbert spaces: examples and elementary properties Orthogonal complements, The projection theorem, Orthogonal sets The Bessel's inequality, Fourier expansion and Parseval's equation separable Hilbert spaces.
Month: De	cember		Module/Unit: III and IV	Sub-units planned
Lectures	Practicals	Total	Hilbert Space	1. The conjugate of Hilbert space, Riesz's
16		16		theorem, 2. The adjoint of an operator.
			Types of operators	 Self adjoint operators, Normal and Unitary operators Projections, Eigen values and eigenvectors of an operator on a Hilbert space The determinants and spectrum of an operator, The spectral theorem on a finite dimensional Hilbert space.

Harlbany

Ms. Kulkarni Prajakta Prasad

(Mr. S. P. Thorat)

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Kulkarni Prajakta Prasad.

Programme - M.Sc.-II

Semester-III

Subject: Mathematics

Course Title: Advanced Discrete mathematics

Month: November			Module/Unit: III	Sub-units planned
Lectures	Practicals	Total	Recurrence relation	Discrete numeric functions Generating functions
19		19		3. Linear recurrence relations
Month: Decembers		Module/Unit: IV	Sub-units planned	
Lectures	Practicals	Total	Lattice theory	Hasse diagram Lattices
16		16		3. Types of lattices4. Boolean algebra

Kelen

(Ms. P.P. Kulkarni)

ESTD. GE JUNE 1964 SE (S. P. Thorat)

Department of Mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Kulkarni Prajakta Prasad

Programme: M. Sc. II Subject: Mathematics

Semester: IV

Course Title: Field Theory

Month: F	ebruary		Module/Unit:	Sub-units planned
Lectures	Practical	Total	Field Extension	1) Field Extensions Extension of a
18	00	18		field 2) Algebraic extensions, algebraically closed fields 3) Derivatives and multiple roots 4) Finite Fields.
Month: N	1arch		Module/Unit:	Sub-units planned
Lectures	Practical	Total	Galois Theory	1) Galois Theory
15	00 15		2) Separable and normal extensions3) Automorphism groups and fixed fields	
				4) Fundamental theorem of Galois theory
Month: A	1		Module/Unit:	Sub-units planned
Lectures	Practical	Total	Finite fields	1) Finite Fields, Prime fields
17	00	17		2) Fundamental theorem of algebra3) Cyclic extensions4) Cyclotomic extensions
Month: M	lay		Module/Unit:	Sub-units planned
Lectures	Practical	Total	Polynomials solvable	Applications of Galois theory
16	00	16	by radicals	Constructions by ruler and compass 3) Solvable groups, Polynomials solvable by radicals

(Ms. P.P. Kulkarni)

ESTD. JUNE 1964

(S. P. Thorat)
HEAD
Department of Mathematics
Vivekanand College, Kolhapus

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Mrudula Gurunath Goliwadekar

Programme - B.Sc. I

Semester - II

Subject: Mathematics

Course Title: Multivariable Calculus

Month: F	February		Module/Unit: I	Sub-units planned	
Lectures	Practicals	Total	Partial Differentiation	 Functions of several variables Level curves and surfaces 	
08	01	09		3. Partial Differentiation Chain Rule	
				4. Direction Derivatives	
				5. Tangent plans and normal lines	
Month :March			Module/Unit: II	Sub-units planned	
Lectures	Practicals	Total	Jacobian	 Higher order partial derivatives Jacobians, 	
10	01	11	46	Change of variables	
				3. Euler's Theorem	
				4. Taylor's Theorem for functions of two variables and more variables	

Name and Signature of Teacher
(Moudula G. Golowadekar)

Name of Teacher: Ms. M. G. Goliwadekar

Program: B.Sc. II

Semester: IV

Subject: Mathematics

Course Title: Integral Transforms

Month: April			Module/Unit III	Subunits Planed
Lectures 08	Practical 02	Total 10	Fourier Transform	Infinite Fourier Sine and Cosine transform Relationship between Fourier Transform and laplace transform
Month: May		Module/Unit IV	Subunits Planed	
Lectures	Practical	Total	Finite Fourier	1) Finite Fourier Transform And Inverse,
09	02	11	Transform And Inverse, Fourier Integrals	Fourier Integrals 2) Finite Inverse Fourier Transform And Inverse, Fourier Integrals

Name and Signature of Teacher
(Mrydula G. Goliwadekar)

(Prof. S.P. Thorat)

HEAD

Name of Teacher: Ms. M.G. Goliwadekar

Program: B.Sc. III

Semester: V

Subject: Mathematics

Coarse Title: Core Course Practical In Mathematics (CCPM-V)

Month: A	ugust		Module/Unit I	Subunits Planed
Lectures	Practical	Total	Iterative Method	1) Bisection Method
00	02	02		2) Secant Method
Month: September		Module/Unit II	Subunits Planed	
Lectures	Practical	Total	Iterative Method	1) Newton's Method
00	02	02		2) Guass-Elimination Method
Month: O	ctober		Module/Unit III	Subunits Planed
Lectures	Practical	Total	Numerical Method	1) Guass Jordan Method
00	02	02		2) Jacobi Iteration scheme
Month: November		TEMP	Module/Unit IV	Subunits Planed
Lectures	Practical	Total	Numerical Method	1) Guass- Seidel Method
00	02	02		2) Power Method

Name and Signature of Teacher
(Mrudula G. Goliwadekar)

Athorat (Prof. S.P. Thorat)

HEAD

Name of Teacher: Ms. M. G. Goliwadekar

Program: B.Sc. III

Semester: V

Subject: Mathematics

Coarse Title: Core Course Practical In Mathematics (CCPM-IV)

Month: A	ugust		Module/Unit I	Subunits Planed
Lectures 00	Practical 02	Total 02	Introduction to LPP	Graphical method for Linear Programming Problem 2) Transportation Problems (North west corner rule)
Month: S	eptember		Module/Unit II	Subunits Planed
Lectures 00	Practical 02	Total 02	Transportation and Assignment-I	Transportation Problems (Lowest Cost Entry Method) 2) Transportation Problems (Vogel Approximation Method)
Month: O	ctober		Module/Unit III	Subunits Planed
Lectures 00	Practical 02	Total 02	Transportation and Assignment-II	Transportation Problems (Test For Optimality MODI Method) 2) Transportation Problems (Hungarian Method)
Month: N	ovember		Module/Unit IV	Subunits Planed
Lectures 00	Practical 02	Total 02	Transportation and Assignment-III	Assignment Problems (Maximization Case) 2) Assignment Problems (Traveling Salesman Problem)

Name and Signature of Teacher

(Mrudula G. Goliwadekar)

Esthora-(Prof. S.P. Thorat)

HEAD Department of Mathematics

Vivekanand College, Kolhapur

Vivekanand College, Kolhapur (Autonomous) Department of mathematics

Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. M.G. Goliwadekar

Programme - B.Sc III

Semester - VI

Subject: Mathematics

Course Title: Linear algebra

Month M	arch		Module/Unit: I	Sub-units planned
Lectures 12	Practicals	Total	Vector Space	 Vector spaces, General properties of vector spaces, Vector subspaces, Algebra of subspaces linear combination of vectors, Linear span, linear sum of two subspaces Linear dependence and independence of vectors Basis of vector space Finite dimensional vector space, Dimension of a vector space, Dimension of subspace
Month Ap	oril		Module/Unit: I	Sub-units planned
Lectures	Practicals	Total	Vector Space	Linear transformations, linear operators Range and null space of linear transformation
12		12		 Rank and nullity of linear transformation Linear transformations as vectors product of linear transformations, Invertible linear transformation.
Month : N	//ay		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	Inner product space	The adjoint or transpose of a linear transformation
12		12		 Sylvester's law of nullity, characteristic values and vectors of linear transformation Cayley Hamilton theorem, Diagonalisable operators,
Month: June		Module/Unit: II	Sub-units planned	
Lectures	Practicals	Total	Inner product space	 Inner product spaces, Euclidean and unitary. Norm or length of vector, Schwartz
12		12		inequality, 3. Orthogonality, Orthonormal set, complete orthonormal set 4. Gram-Schmidt ortogonalisation process.

Name and Signature of Teacher

Mrudwa G. Goliwadekar)

ESTD. S. JUNE 1964

(Prof. S.P. Thorat)

Name of Teacher: Ms. Mrudula Gurunath Goliwadekar

Program: B.Com. I

Semester: I

Subject: Mathematics

Course Title: Business Mathematics Paper-I

Month: A	Month: August		Module/Unit I	Subunits Planed
Lectures	Practical	Total	Arithmetic and	1) Definition of A.P. and G.P.
16	00	16	Geometric progression	2) Formulae for n^{th} term and sum to n terms of A.P. and G.P.
Month: S	eptember		Module/Unit II	Subunits Planed
Lectures	Practical	Total	Compound interest,	1) Different types of interest rates
17	00	17	ratio, percentage,	2) Concept of proportion
			proportion and partnership	Application to division into proportional part and partnership
Month: October			Module/Unit III	Subunits Planed
Lectures	Practical	Total	Matrices and	1) Definition of matrix, Types of
15	00	15	Determinants	Matrices
				2) Finding inverse of matrix by using adjoint matrix
				Solution of system of linear equations by Cramer's rule
Month: N	ovember		Module/Unit IV	Subunits Planed
Lectures	Practical	Total	Linear programming	1) Formation of L.P.P.
16	00	16	problem (L.P.P.)	Graphical method of solution Problem relating to two variables including the case of mixed constraints

Name and Signature of Teacher

[Mondala G. Gollwadetar)

(S. P. Thorat)

HEAD

Department of mathematics Academic Year: 2021-2022

Annual Teaching Plan

Name of the teacher: Ms. Mrudula Gurunath Goliwadekar

Programme - M.Sc.-I

Semester-I

Subject: Mathematics

Course Title: Ordinary Differential Equations

Month: Se	Month: September		Module/Unit: I	Sub-units planned
Lectures	Practicals	Total	Linear Equations with constant coefficients	1. Second order homogeneous Equations
15		15		Linear dependence & dependence Non-homogeneous equations of order two Homogeneous equations of order n
Month: 0	ctober		Module/Unit: II	Sub-units planned
Lectures	Practicals	Total	The non-homogeneous equation of n th order	The non-homogeneous equation of n th order
17		17		Linear Equations with variable Coefficients Wronskian and linear dependence Reduction of order of homogeneous equation
Month: No	ovember	HI ST	Module/Unit: III	Sub-units planned
Lectures	Practicals	Total	The Euler equations	Sturm Liouville theory
20				2. Homogeneous equations with
20		20		analytic coefficients 3. The legendre equations 4. Linear Equations with regular singular points 5. The Euler equations
Month: De	ecember		Module/Unit: IV	Sub-units planned
Lectures	Practicals	Total	Successive approximations	The Bessel equation Regular singular points at infinity
13		13		3. Existence and uniqueness of solutions: The method of successive approximations 4. The Lipschitz condition

Name and Signature of Teacher

ESTD. FR.
JUNE FR.
1964 *

(Prof. S. P. Thorat)
HEAD
Department of Mathematics
Vivekanand College, Kolhapur

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Ankita Mahipati Sathe

Programme - B.Sc. I

Semester - II

Subject: Mathematics

Course Title: Multivariable Calculus

Month: A	Month : April		Module/Unit: III	Sub-units planned
Lectures	Practicals	Total	Extreme values	 Extreme values Necessary condition for extreme values
06	02	08		3. Sufficient condition for extreme values4. Lagrange's method
Month: N	/ May		Module/Unit: IV	Sub-units planned
Lectures	Practicals	Total	Vector Calculus	 Differential of vectors tangent line to curves
11	01	12		gradient and divergence and curl 3. Solenoidal and irrotational vector 4. vector identities

Name and Signature of Teacher
(Ankita M. Sathe)

ESTD. COLUMN JUNE IN 1964

(Prof. S.P. Thorat)

HEAD

Name of Teacher: Ms. Ankita Mahipati Sathe

Program: B.Sc. II

Semester: III

Subject: Mathematics

Course Title: Number Theory

Month: C	ctober		Module/Unit III	Subunits Planed
Lectures	Practical	Total	Theory of	1) Definition of congruence
12	01	13 congruences	congruences	2) Basic properties of congruence3) Fermat's theorem and their examples4) Examples on Wilsons theorem
Month: N	lovember		Module/Unit IV	Subunits Planed
Lectures	Practical	Total	tal Number-Thereotic 1) The sum and Number of divis	1) The sum and Number of divisors and it's
09	01	10	Function	examples 2) Greatest integer function 3) Euler's Phi-function 4) Some properties of the Phi-function

Saman

Name and Signature of Teacher (Ank 949 M. Swhe)

ESTD. JUNE 1964

(Prof. S.P. Thorat) HEAD

Name of Teacher: Ms. Ankita M. Sathe

Program: B.Sc. II

Semester: III

Subject: Mathematics

Course Title: Integral Calculus

Month: October			Module/Unit III	Subunits Planed	
Lectures	Practical	Total	Multiple Integral	Double Integration: Method of evaluation and related examples	
12	01	13			
				2) Change of variable	
Month: November			Module/Unit IV	Subunits Planed	
Lectures	Practical	Total	Fourier Series	1) Periodic function	
09	00	09		Fourier Series Expansion of elementary function	
				Half range series expansion	

Name and Signature of Teacher

(Ankita M. Sathe)

(Prof. S.P. Thorat) HEAD Department of Mathematics

Rethord.

Vivekanand College, Kolhapur

Name of Teacher: Ms. Ankita M. Sathe

Program: B.Sc. II

Semester: IV

Subject: Mathematics

Course Title: Discrete Mathematics

Month: April			Module/Unit III	Subunits Planed	
Lectures Practical Total		Basics of Graph	1) Types of Edges		
10	02	12	Theory	Degree of vertex Handshaking lemma	
Month: May		Module/Unit IV	Subunits Planed		
Lectures	Practical	Total	Paths and Circuits	1) Paths, cycle, Circuit	
11	02	13		2) Operations of Graph 3) types of Graph	

Name and Signature of Teacher
(Ankida M. Southe)

STD. FOR THE STD. WAS A 1964 STD. TO HAPURAGE

hthorat (Prof. S.P. Thorat)

HEAD

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Ankita M. Sathe

Programme - B.Sc III

Semester - V

Subject: Mathematics

Course Title: Modern algebra

ctober		Module/Unit: II	Sub-units planned	
Practicals	Total	Field	 Definition and basic properties Fields, Integral domains, divisors of zer and cancellation laws The characteristic of a ring, some non commutative rings Examples 	
00	12			
Month: November		Module/Unit: II	Sub-units planned	
Practicals	Total	Field	matrices over a field, The real quaternions	
00	12		Homomorphism of rings Definition and elementary properties	
			3. Maximal and Prime ideals, Prime fields	
	e o ovember Practicals	Practicals Total ovember Practicals Total	Practicals Total Field oo 12 ovember Module/Unit: II Practicals Total Field	

Name and Signature of Teacher

(Ankita M. sathe)

ESTD. CO JUNE III 1964 C*

Vivekanand College, Kolhapur (Autonomous) Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. A. M. Sathe

Programme - B.Sc III

Semester - VI

Subject: Mathematics

Course Title: Complex Analysis

Month : April			Module/Unit: II	Sub-units planned	
Lectures	Practicals	Total	Singularities	 Convergence of sequences and series of complex variables 	
12		12		 Taylor series and its examples, Laurent series and its examples, absolute and uniform convergence of power series. 	
Month - Mon		Madala/III-it II	3. Isolated singular points		
Month: May			Module/Unit: II	Sub-units planned	
Lectures	Practicals	Total	Singularities	 Residues, Cauchy's residue theorem, Residue at infinity, T 	
12		12		three types of isolated singularities, Residues at poles and examples	
				Zeros of analytic functions, Zeros and poles	
				Application of residue theorem to evaluate real integrals	

A Prout

Name and Signature of Teacher

(Ankita M. sathe)

ESTD. FOR JUNE 1964

(Prof. S.P. Thorat)

HEAD

Name of Teacher: Ms. A.M. Sathe

Program: B.Sc. III

Semester: VI

Subject: Mathematics

Coarse Title: Core Course Practical In Mathematics (CCPM-VI)

Month: February			Module/Unit I	Subunits Planed
Lectures 00	Practical 02	Total 02	System of linear algebraic equations	System of linear algebraic equations
				2) Roots of equations
Month: N			Module/Unit II	Subunits Planed
Lectures	Practical	Total	Initial value	1) Initial value problem
00	02	02	problem	Magic square and area calculation without measurement
Month: A	pril		Module/Unit III	Subunits Planed
Lectures	Practical	Total	Graph Theory	1) Graph Theory: Network
00	02	02		Collaz conjuncture and monte Hall problem
Month: M	lay		Module/Unit IV	Subunits Planed
Lectures	Practical	Total	Data visualization	Data compressing using Numpy
00	02	02	in Python	Data visualization in Python

Name and Signature of Teacher

(Ankida M. sathe)

ESTD. JUNE 1964

(Prof. S.P. Thorat)

HEAD

Department/of/Mathamatacs

Vivekanand College, Kölhapar

hthorat

Name of Teacher: Ms. Ankita Mahipati Sathe

Program: B.Com. I

Semester: II

Subject: Mathematics

Course Title: Business Mathematics Paper-II

Month: February			Module/Unit I	Subunits Planed
Lectures 16	Practical 00	Total 16		 Linear, Quadratic, exponential (of type y = a^x) Limit of function- Theorems on Limit Continuity of a function at a point, discontinuity of a function Algebra of continuous function
Month: M	1arch		Module/Unit II	Subunits Planed
Lectures 17	Practical 00	Total 16	Differentiation	Definition, derivative using first Principle Method of differentiation of sum, difference, product, quotient of two functions Second order derivative
Month: A	Month: April		Module/Unit III	Subunits Planed
Lectures 16	Practical 00	Total 16	Application of differentiation	Maxima and minima Case of one variable involving second order derivatives Elasticity of demand
Month: M	lay		Module/Unit IV	Subunits Planed
Lectures 17	Practical 00	Total 17	Integration and its application	Integration-An Anti derivative Process, Standard forms Method integration by substitution and by parts Definite integral and their Properties

Name and Signature of Teacher (ANK Ha M, Sathe)

Department of mathematics Academic Year: 2022-2023

Annual Teaching Plan

Name of the teacher: Ms. Ankita Mahipati Sathe

Programme - M.Sc. I

Semester - II

Subject: Mathematics Course Title: Partial Differential Equations

	hmom	•	Course Title: Partial Differential Equation			
Month February			Module/Unit: I	Sub-units planned		
Lectures 14	Practicals	Total	1. Partial Differential Equation	 First order Partial Differential Equations Linear equations of first order. Pfaffian differential equations Compatible systems of first order partial differential equations. 		
Month Ma	arch		Module/Unit: I and II	Sub-units planned		
Lectures	Practicals	Total	1. Partial Differential Equation	Compatible systems of first order partial differential equations.		
20	-	20		partial unierential equations.		
			2. Non-Linear Partial Differential Equation	 Charpits method, Jacobi method of solving partial differential equations, CauchyProblem, 		
Month : April			Module/Unit: II and III	Sub-units planned		
Lectures 22	Practicals	Total 22	2 Non-Linear Partial Differential Equation	Method of characteristics to find the integral surface of a quasi linear partial differential equations.		
			3. Higher Order Partial Differential Equation	 Second order Partial Differential Equations. Classification of second order partial differential equation. Vibration of an infinite string 		
Month : May			Module/Unit: III and IV	4. Method of separation of variables Sub-units planned		
Lectures	Practicals	Total	3. Higher Order Partial Differential Equation	Uniqueness of solution of wave equation		
14	-	14	4. Boundary Value Problems:	Cauchy problems. Laplace equation, Solution of Laplace equation, Dirichlets problems and Neumann problems. maximum and minimum principles Stability theorem.		

Sandan.

Name and Signature of Teacher

LAND CO LAND CO JUNE 1964

(Prof. S. P. Thorat) HEAD