Department of mathematics Academic Year: 2022-2023 **Annual Teaching Plan** Name of the teacher: Mr. S. P. Patankar Programme - B.Sc. II Semester - III Subject: Mathematics Course Title: Integral Calculus | Month O | ctober | | Module/Unit: I | Sub-units planned | | |----------------|---------------|-----------------|--------------------------|---|--| | Lectures 10 | Practicals 02 | Total | Beta and Gamma functions | Definition of Beta function Basic Properties of Beta function and
Examples on Beta functions Definition of Gamma function Basic Properties of Gamma function and
Examples on Gamma functions Relation between Beta and Gamma
function | | | Month November | | Module/Unit: II | Sub-units planned | | | | Lectures | Practicals | Total | Multiple integrals | Integration Method of Evaluation Related Double examples Cartesian and | | | 12 | 02 | 14 | integrals | Polar Form 3. Change of order of integration 4. Change of Variable, Examples on Triple Integral. | | Name and Signature of Teacher ESTD. IGHT 1964 (S.P.Patankar) HEAD Department of Mathematics Vivekanand College, Kolhanur Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Mr. S. P. Patankar Programme - B.Sc. III Semester - V Subject: Mathematics Course Title: Matrix Algebra | Month O | ctober | | Module/Unit: I | Sub-units planned | |-------------|------------|-------|----------------------------|---| | Lectures 12 | Practicals | Total | Linear Transformation | Translation, Dilation, Rotation Reflection in a point, line and plans. Mauris form of basic geometric transformations. | | Month N | ovember | | Module/Unit; I | Sub-units planned | | Lectures | Practicals | Total | Linear Transformation | Interpretation of eigen values and eigen vectors for such | | 12 | | 12 | | transformations and eigen spaces 2. Invariant subspaces. 3. Types of matrices. 4. Rank of a matrix. Invariance of rank under elementary transformations | | Month: I | | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | System of Linear Equations | Reduction to normal form, Solutions of linear homogeneous | | 12 | | 12 | | and non homogeneous equations with number of equations and unknowna upto four. 3. Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. | | Month: J | | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | System of Linear Equations | Computation of matrix inversies using elementary row operations. | | 12 | | 12 | | Rank of matrix. 2. Solutions of a system of linear equations using matrices, Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics | Name and Signature of Teacher ESTD. TO JUNE 1964 (S.P.Patankar) HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Mr. S. P. Patankar Programme - B.Sc III Semester - V Subject: Mathematics Course Title: Modern algebra | Month October | | | Module/Unit: I | Sub-units planned | |----------------|------------|----------------|-------------------|---| | Lectures 12 | Practicals | Total | Groups | Definition and Binary operations Definitions and properties, Groups elementary properties. Finite groups and composition tables. Subgroups and its properties. Generators and cyclic groups. Permutations Functions and permutations cycles and cyclic notation, even, odd, permutations, Symmetric group, Alternating groups. | | Month November | | Module/Unit: I | Sub-units planned | | | Lectures 12 | Practicals | Total | Groups | Cyclic groups- elementary properties The classification of cyclic groups Isomorphisms -Definition and elementary properties. Cayley's theorem, Groups of cosets, Applications. Normal subgroups Factor groups, Criteria for existing of a coset group Inner automorphism and Dormal subgroups Simple groups The fundamental theorems of isomorphisms, applications | Name and Signature of Teacher (S.P.Patankar) HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of Teacher: Mr. S. P. Patankar Program: B.Sc. III Semester: V Subject: Mathematics Course Title: CCPM-VI | D | Month: October | | Subunits Planed | |-------------------------|--|---|--| | Practical | Total | Introduction | 1) Introduction to Python | | 16 | 16 | | | | vember | | Unit II | Subunits Planed | | Practical | Total | Conditional | 2) Expression and operators | | 15 | 15 | statement | 3) Conditional statement | | ecember | | Unit III | Subunits Planed | | ectures Practical Total | | Conditional | 4) Looping and control statement | | 17 | 17 | statement | , , , , | | Month: January | | Unit IV | Subunits Planed | | Practical | Total | Functions | 5) Functions | | - | Practical 15 cember Practical 17 nuary | vember Practical Total 15 15 cember Practical Total 17 17 nuary | Practical Total Conditional statement Cember Unit II Practical Total Conditional statement Cember Unit III Practical Total Conditional statement 17 17 statement Total Unit IV | Name and Signature of Teacher De Vive (S.P. Patankar) HEAD Department of Mathematics Vivekanand College, Kolhapur Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Prof. S.P. Thorat Programme - B.Sc. I Semester - I Subject: Mathematics Course Title: Calculus | Month: August | | | Module/Unit: I | Sub-units planned | | |---------------|------------|-------|---|--|--| | Lectures | Practicals | Total | 1. Limit and Continuity | 1) $\varepsilon - \delta$ definition of limit of real valued function | | | 8 | 01 | 09 | | 2) Infinite limits 3)properties of continuous function 4) Types of discontinuity 5) Uniform continuity | | | Month: Se | ptember | | Module/Unit: II | Sub-units planned | | | Lectures | | | Mean value theorem and successive differential | Differentiability of real valued function Relation between differentiability and | | | 10 | 01 | 11 | | continuity 3) Lagrange's mean value theorem 4) Successive differential equation 5) Leibnitz's theorem | | | Month: 0 | ctober | | Module/Unit: III | Sub-units planned | | | Lectures | Practicals | Total | 3. Higher mean value theorem and indeterminate form | Maclaurin's and Taylor's theorems Taylor's theorem infinite form with | | | 08 | 02 | 10 | | Lagrange and Cauchy forms of reminder 3)Indetermined Form | | | Month : N | ovember | | Module/Unit: IV | Sub-units planned | | | Lectures | Practicals | Total | 4. Asymptotes | Asymptotes of general algebraic cuvees | | | 10 | 01 | 11 | | 2) Asymptotes parallel to axes 3)Tangent at origin 4)Position and nature of double points | | Name and Signature of Teacher ESTO JUNE 1964 (Prof. S.P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhapur Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Prof. S. P. Thorat Programme - B.Sc I Semester - II Subject: Mathematics Course Title: Ordinary Differential Equation | Month: Fo | ebruary | | Module/Unit: I | Sub-units planned | | |---------------------------|------------|-------|---|---|--| | Lectures | Practicals | Total | Differential Equation of first order and first degree | Differential Equation of first order and first degree | | | 10 | 01 | 11 | | 2) equation reducible to linear form 3) First order higher degree 4) Clairaut's Form 5) Picard's method and theorem for existence and uniqueness | | | Month: N | /Jarch | | Module/Unit: II | Sub-units planned | | | Lectures Practicals Total | | Total | Linear Differential Equations with constant coefficient | 1)Linear Differential Equations with constant coefficient | | | 10 | 02 | 12 | | 2)Complex and distinct roots and complex repeated roots 3)Mixed roots 4)Types of complimentary function 5)Particular integrals of different functions | | | Month : A | April | | Module/Unit: III | Sub-units planned | | | Lectures | Practicals | Total | Homogeneous linear Differential
Equations | 1) Homogeneous linear Differential Equations | | | 08 | 01 | 09 | | 2)Cauchy – Euler's Equation and
methods of solving
3)Legendre's linear equations | | | Month : N | /lay | |
Module/Unit: IV | Sub-units planned | | | Lectures | Practicals | Total | Differential equations with variable coefficient | General theory of linear differential equations with variable | | | 08 | 01 | 09 | | coefficient 2)Transformation of Equations 3)Bessel's equation 4) Bessel's functions and properties | | Name and Signature of Teacher (S.P. Thorat) ESTD FROM 1964 1964 1964 (Prof.S.P.Thorat) HEAD Name of Teacher: Prof S.P. Thorat Program: B.Sc. II Semester: IV Subject: Mathematics Course Title: Integral Transforms | Month: February | | Module/Unit I | Subunits Planed | | |-----------------|-----------|----------------|---|---| | Lectures | Practical | Total | Laplace transform | 1) Existence theorem of Laplace transform | | 08 | 02 | 10 | | Laplace transform of Integrals Laplace transform of Periodic function | | Month: March | | Module/Unit II | Subunits Planed | | | Lectures | Practical | Total | Inverse Laplace | 1) Standard result of inverse Laplace | | 12 | 01 | 14 | Inverse Laplace Transform and Application | Transform 2) Solving Linear differential equations with constant coefficient by Laplace transform | Name and Signature of Teacher (S.P. Thorat) ESTD. JUNE 1964 (Prof. S.P. Thorat) Gthorup HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Prof. S.P. Thorat Programme - B.Sc III Semester - V Subject: Mathematics Course Title: Numerical Method - I | Month: A | ugust | | Module/Unit: I | Sub-units planned | |------------------|--|----------|--------------------------------|--| | Lectures 12 | Practicals | Total | Solution of algebraic equation | Introduction: Polynomial equation, algebraic equation and their roots iterative methods, Bisection method algorithm, examples Secant algebraic method: iterative sequence of secant method, examples Regula-Falsi method: algorithm, graphical representation, examples. Newton's method: algorithm, examples. | | Month: Se | eptember | | Module/Unit: I | Sub-units planned | | Lectures
12 | Practicals | Total | Solution of algebraic equation | Introduction: System of linear equations as a vector equation Ax = b, Augmented matrix. Direct methods: Gauss elimination method: Procedure, Examples Gauss-Jordan method: Procedure, examples. | | | | | | 4. Iterative methods:General iterative rule | | Month: 0 | The state of s | | Module/Unit: II | Sub-units planned | | Lectures 12 | Practicals | Total 12 | Iterative Methods | Jacobi iteration scheme, examples. Gauss-Seidel method: Formula, examples. Eigen values and eigenvectors of a real matrix | | | | | | real matrix | | Month : November | | | Module/Unit: II | Sub-units planned | | Lectures 12 | Practicals | Total 12 | Iterative Methods | Power method for finding an eigen value of greatest modulus, the case of matrix whose "dominant eigen value is not repeated", examples. Method of exhaustion, examples. | | | | | | Method of reduction, examples. Shifting of the eigen value, examples | Name and Signature of Teacher ESTD. FILL JUNE FR. 1964 (Prof. S.P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhabur Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Prof. S. P. Thorat Programme - B.Sc. III Semester - V Subject: Mathematics Course Title: Real Analysis | Month: August | | | Module/Unit: I | Sub-units planned | |------------------|------------|-------|---|---| | Lectures
12 | Practicals | Total | Sequence and Series | The algebraic and ordered properties of R Absolute value and real line, The completeness property of R Application of supremum property Intervals. Sequence, Limit of Sequence Monotone Sequences, | | Month: Se | eptember | Marie | Module/Unit: I | Sub-units planned | | Lectures 12 | Practicals | Total | Sequence and Series | Subsequences and The Bolzano-Weierstrass Theorem The Cauchy Criterion, Property of Divergent Sequences Series: Definition and examples, n" term Test, Cauchy Criterion for the series Comparison Tests Cauchy Condensation Test. | | Month: 0 | ctober | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Riemann Integral and
Improper Integral | The Riemann integral and properties | | 12 | | 12 | | Riemann integrable functions The squeeze Theorem, Classes of
Riemann integrable functions The fundamental Theorem. | | Month : November | | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Riemann Integral and
Improper Integral | Improper integral of first kind, Comparison test, - test for | | 12 | | 12 | | Convergence 2. convergence, Integral test for convergence of series Improper integral of second kind | Name and Signature of Teacher ESTD. TO JUNE 1964 (Prof. S.P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhapur Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Prof. S.P. Thorat Programme - B.Sc III Semester - VI Subject: Mathematics Course Title: Metric Space | Month M | arch | 6 | Module/Unit: I | Sub-units planned | |-------------|------------|-------|---|---| | Lectures 12 | Practicals | Total | Basic concepts of Metric Space | Definition and examples of metric spaces. Open ball. Open set. Closed set as complement of open set, Interior point and interior of a set. Limit point and closure of a set. Boundary point and boundary of a set. Properties of interior, closure and boundary. Bounded set and diameter of a set. Distance between two sets. Subspace of a metric space. | | Month A | oril | | Module/Unit: I | Sub-units planned | | Lectures 12 | Practicals | Total | Basic concepts of Metric Space | Convergent sequence. Cauchy sequence. Every convergent sequence is Cauchy and bounded, but the converse is not true. Completeness. Cantor's intersection theorem. R is a complete metric space. Q is not complete | | Month: N | Лаv | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Compactness and connectedness of Metric Space | Continuous mappings, sequential criterion of continuity. | | 12 | | 12 | | Uniform continuity. Compactness, Sequential compactness, Heine-Borel theorem in R. Finite intersection property, continuous functions on compact sets. | | Month: J | une | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Compactness and
connectedness of Metric Space | Concept of connectedness and some examples of connected metric space, | | 12 | | 12 | | connected subsets of R, C. Contraction mappings, Banach Fixed point Theorem and its application to ordinary differential equations. | Name and Signature of Teacher (S.P. Thorat) ESTD. FOR THE 1984 (Prof. S.P. Thorat) Name of Teacher: Prof. S.P.Thorat Program: B.Sc. III Semester: VI Subject: Mathematics Coarse Title: Core Course Practical In Mathematics (CCPM-V) | Month: | Month: | | Module/Unit I | Subunits Planed | |----------|-----------------|-------|-----------------|-------------------------------------| | Lectures | Practical | Total | Interpolation | 1) Newton's forward interpolation | | 00 | 02 | 02 | | 2) Newton's backward interpolation | | Month: O | ctober | | Module/Unit II | Subunits Planed | | Lectures | Practical | Total | Interpolation | 1) Lagrangian interpolation | | 00 | 02 | 02 | | 2) Divided difference interpolation | | Month: N | lovember | | Module/Unit III | Subunits Planed | | Lectures | Practical | Total | Numerical | 1) Trapezoidal rule | | 00 | 02 | 02 | integration | 2) Simpson's 1/3ed rule | | Month: D | Month: December | | Module/Unit IV | Subunits Planed | | Lectures | Practical | Total | Runge-Kutta | 1) Second order Runge-Kutta method | | 00 | 02 | 02 | Method | Fourth order Runge-Kutta method | Name and Signature of Teacher (S.P. Thorat) ESTD. JUNE 1964 (Prof. S.P. Thorat) HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Prof. S.P.Thorat Programme - B.Sc III Semester - VI Subject: Mathematics Course Title: Complex Analysis | Month Fe | bruary | | Module/Unit: I | Sub-units planned | |--------------|------------|----------------|--------------------|---| | Lectures 12 | Practicals | Total | Analytic Functions | Basic algebraic and geometric properties of complex numbers Function of complex variable, Limits, continuity and differentiation Cauchy Riemann equations, Analytic functions and examples of analytic functions. | | Month: March | | Module/Unit: I | Sub-units planned | | | Lectures | Practicals | Total | Analytic Functions | Exponential function, Logarithmic function, | | 12 | | 12 | | Trigonometric function, 2. Definite integrals of functions, Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals, 3. Cauchy integral formula and examples. | Name and Signature of Teacher ESTD. FINAND CO. (Prof. S.P. Thorat) HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Prof. S.P.Thorat Programme - M.Sc.-II Semester-III Subject: Mathematics Course Title: Number Theory | Month: Se | eptember | | Module/Unit: I | Sub-units planned | |----------------|------------------|-------------|---------------------------|---| | Lectures
16 | Practicals | Total
16 | Divisibility | Review of Divisibility: The division algorithm, G.C.D., Euclidean algorithm, Diophantine equation ax + by = c, Primes and their distribution Fundamental theorem of arithmetic | | Month Oc | tober | | Module/Unit: II | Sub-units planned | | Lectures
17 | Practicals | Total | Congruence | Congruences: Properties of congruences, Linear congruences, Chinese Remainder Theorem | | | | | | Special divisibility tests, Fermat's theorem, Wilsons's theorem and applications. | | | Month : November | | Module/Unit: III | Sub-units planned | | Lectures
22 | Practicals | Total 22 | Number Theoretic function | Number Theoretic Functions: Euler's phi function, Euler's theorem Greatest integer function, the functions τand σ, Mobius function and Mobius | | | | | | inversion formula, Properties of these functions | | Month: D | | | Module/Unit: IV | Sub-units planned | | Lectures | Practicals | Total | Primitive roots | Primitive roots: The order of an integer
modulo n, Primitive roots of primes, | | 11 | | 11 | | composite numbers having primitive roots, 2. The theory of indices, The quadratic reciprocity law: Eulerian criteria 3. The Legendre symbol and its properties, quadratic reciprocity, quadratic reciprocity with composite moduli. | Name and Signature of Teacher ESTD. IGN JUNE 1964 CO (Prof. S. P. Thorat) HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Prof. G.B. Kolhe Programme - B.Sc. I Semester - I Subject: Mathematics Course Title: Algebra and Geometry | Month: | August | | Module/Unit: I | Sub-units planned | |-----------------|------------|-------|---------------------------------------|---| | Lectures | Practicals | Total | Theory of equation and complex number | Elementary theorem on the roots o equations | | 10 | 01 | 11 | | Synthetic division Relations between the roots and coefficient of polynomial equations Polar representation of complex numbers, De Moivre's theorem | | Month: | September | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Relations | Relation and equivalence relation Functions, Composition of | | 8 | 01 | 09 | | function 3. Finite sets, Countable and Uncountable sets | | Month: (| October | | Module/Unit: III | Sub-units planned | | Lectures | Practicals | Total | Matrix algebra | System of linear equations Row reduction and Echelon Form | | 08 | 02 | 10 | | Rank of matrix Determinant and Inverse of matrix Cayley-Hamilton theorem | | Month: November | | | Module/Unit: IV | Sub-units planned | | Lectures | Practicals | Total | Spheres | Different forms of Spheres Intersection of spheres | | 10 | 01 | 11 | | Tangents and Normal Radical planes and line, Coaxial System | Name and Signature of Teacher ESTD. GO JUNE 1964 Name of Teacher: Mr. G.B. Kolhe Program: B.Sc. II Semester: III Subject: Mathematics Course Title: Number Theory | Month: August | | | Module/Unit I | Subunits Planed | |---------------|------------------|-------|---------------------|---| | Lectures | Practical | Total | Divisibility theory | 1) Mathematical induction | | 08 | 01 | 09 | in the integers | Division Algorithm Euclidean Algorithm Diophantine equation | | Month: S | Month: September | | Module/Unit II | Subunits Planed | | Lectures | Practical | Total | Prime and their | definition of prime number indamental theorem of arithmetic | | 11 | 01 | 12 | distribution | | | | | | | 3) Euclid's theorem | G.B. Lolho Name and Signature of Teacher ESTD. JUNE IN 1964 RS (Prof. S.P. Thorat) HEAD Departmen Viathematics Vivekan dee, Kolhapur Name of Teacher: Mr. G. B. Kolhe Program: B.Sc. II Semester: III Subject: Mathematics Course Title: Core Course Practical In Mathematics (CCPM-III) | Month: | | | Module/Unit I | Subunits Planed | |----------|-----------|-------|-----------------|------------------------------------| | Lectures | Practical | Total | Introduction | 1) Introduction to Scilab | | 00 | 02 | 02 | | 2) Matrix | | Month: O | October | | Module/Unit II | Subunits Planed | | Lectures | Practical | Total | Matrices | 1) Accessing elements of matrices | | 00 | 02 | 02 | | 2) Submatrix | | Month: N | lovember | | Module/Unit III | Subunits Planed | | Lectures | Practical | Total | Matrices and | 1) Advanced Matrix operation | | 00 | 02 | 02 | Polynomials | 2) Polynomial | | Month: D | ecember | | Module/Unit IV | Subunits Planed | | Lectures | Practical | Total | Graph | 1) Plotting graphs | | 00 | 02 | 02 | | Introduction to Scilab Programming | Name and Signature of Teacher ESTD. TO JUNE 1964 (Prof. S. P. Thorat) HEAD Roborula Name of Teacher: Mr. G. B. Kolhe Program: B.Sc. II Semester: IV Subject: Mathematics Course Title: Discrete Mathematics | Month: February | | Module/Unit I | Subunits Planed | | |-----------------|-----------|---------------|-----------------|---| | Lectures | Practical | Total | Recurrence | 1) Models of Recurrence relation | | 12 | 02 | 14 | relation | 2) linear Recurrence relation with constant coefficient 3) homogeneous solutions & Examples 4) particular solutions and Total solutions | | Month: M | farch | | Module/Unit II | Subunits Planed | | Lectures | Practical | Total | Generating | 1) Generating function | | 08 | 02 | 10 | function | 2) Basic properties of generating function3) Application to solving recurrence relation | Name and Signature of Teacher (G. B. Kolhe) (Prof. S.P. Thorat) Name of Teacher: Mr. G. B. Kolhe Program: B.Sc. II Semester: IV Subject: Mathematics Course Title: Core Course Practical In Mathematics (CCPM-III) | Month: F | ebruary | | Module/Unit I | Subunits Planed | |----------|--------------------|-------|--|--| | Lectures | Practical | Total | Interpolation | 1) Numerical method to find the
root of the | | 00 | 02 | 02 | | given function | | | | | | 2) Interpolation | | Month: N | 1arch | | Module/Unit II | Subunits Planed | | Lectures | Practical | Total | Euler and Runge | 1) Numerical solution of Ordinary | | 00 | 02 02 Kutta method | | Differential Equation-I Euler's and
Euler's Modified method | | | | | | | Numerical solution of Ordinary Differential Equation-II Runge Kutta Mathod | | Month: A | pril | | Module/Unit III | Subunits Planed | | Lectures | Practical | Total | Numerical | 1) Numerical Integration-I Trapezoidal rule | | 00 | 02 | 02 | Integration | 2) Numerical Integration-II Simpson's Rule | | Month: M | lay | | Module/Unit IV | Subunits Planed | | Lectures | Practical | Total | Numerical Method | 1) Numerical Method for solution of system | | 00 | 02 | 02 | | of linear equations-I Guass-Jordan | | | | | | Numerical Method for solution of system of linear equations-I Guass-Seidel | A.B. kolhk Name and Signature of Teacher (G.B. kolhe) ESTD. PARTIES TO THE PURPOSE OF Name of Teacher: Mr. G.B. Kolhe Program: B.Sc. III Semester: VI Subject: Mathematics Coarse Title: Core Course Practical In Mathematics (CCPM-IV) | Month: | | | Module/Unit I | Subunits Planed | |-----------------|--------------|----------------|---|--| | Lectures
00 | Practical 02 | Total 02 | 2× 2 Games | Assignment problems (Unbalanced Problems) 2) Two by Two (2× 2) Games without saddle point | | Month: C | ctober | | Module/Unit II | Subunits Planed | | Lectures 00 | Practical 02 | Total 02 | Algebraic and
Assignment
Problems | Algebraic method of Two By two (2× 2) Games 2) Arithmetic method of Two By two (2× 2) Games | | Month: N | ovember | | Module/Unit III | Subunits Planed | | Lectures
00 | Practical 02 | Total
02 | Assignment
Problems | Graphical method for 2× n games m× 2 Games Processing n jobs through 2 machines | | Month: December | | Module/Unit IV | Subunits Planed | | | Lectures 00 | Practical 02 | Total
02 | Assignment
Problems | Processing n jobs through 3 machines Processing 2 jobs through m machines Processing n jobs through 2 machines | Name and Signature of Teacher (G.B. Kolhe) ESTD. FOR THE STORY OF STOR (Prof. s.P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhapur Department of mathematics Academic Year: 2021-2022 #### **Annual Teaching Plan** Name of the teacher: G. B. Kolhe Programme - B.Sc III Semester - VI Subject: Mathematics Course Title: Numerical Method - II | Month: F | Month: February | | Module/Unit: I | Sub-units planned | | | |-------------|------------------|-------|---|--|--|--| | Lectures 12 | Practicals | Total | Interpolation | Forward interpolation: Newton's forward differences, forward difference table. Newton's forward form of interpolating polynomial (formula only) examples Backward interpolation: Newton's backward differences, backward difference table, Newton's backward form of interpolating polynomial (formula only). | | | | Month: N | larch | | Module/Unit: I | Sub-units planned | | | | Lectures | Practicals Total | | Interpolation | Introduction, Lagrangian interpolating polynomial (formula only), examples | | | | 12 | | 12 | | Divided difference interpolation:, Newton's divided differences, divided difference table, examples finding divided (differences of give data) Newton's divided difference form of interpolating polynomial, examples | | | | Month :A | April | | Module/Unit: II | Sub-units planned | | | | Lectures | Practicals | Total | Numerical Differentiation and Integration | Numerical differentiation based on interpolation polynomial. | | | | 12 | | 12 | | Numerical integration: Newton-Cotes formula (statement only) composite Trapezoidal rule composite Simpson's 1/3rd rule, examples composite Simpson's 3/8th rule, examples. | | | | | Month: Mays | | Module/Unit: II | Sub-units planned | | | | Lectures | Practicals | Total | Numerical Differentiation and Integration | Euler's Method, Examples, Second order Runge-Kutta method (formula) | | | | 12 | | 12 | | only). Examples 3. Fourth order Runge-Kutta method(formula only), examples | | | Name and Signature of Teacher (G.B. Kolne) (Prof. S.P. Thorat) HEAD Department of Mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Mr. Gaurav B. Kolhe Programme: M. Sc. I Semester: I Subject: Mathematics Course Title: Classical Mechanics | Month: O | ct | | Module/Unit: | Sub-units planned | |------------|------------|-------|---------------------------|--| | Lectures | Practical | Total | Lagrange's | 1) Lagrange's equation | | 15 | 00 | 15 | Equation | 2) examples on Lagrange's equation3) Cyclic Coordinate and its properties | | Month: Nov | | | Module/Unit: | Sub-units planned | | Lectures | Practical | Total | Variational | 1) Basic lemma of variational calculus, | | 15 | 00 | 15 | Calculus | Brachistochrone problem geodesic, isoperimetric problems Green's theorem | | Month: D | Month: Dec | | Module/Unit: | Sub-units planned | | Lectures | Practical | Total | Hamiltonian | 1) Hamilton's principle, | | 18 | 00 | 18 | function | | | Month: Ja | n | | Module/Unit: | Sub-units planned | | Lectures | Practical | Total | Rigid Body and its | Kinematics of rigid body | | 17 | 00 | 17 | Rigid Body and its motion | Rigid body Rigid body and its motion Orthogonal transformations | G.B. Wilh Name and Signature of Teacher ESTD EN JUNE OF 1964 (Mr. S. P. Thorat) Name of Teacher: Mr. G.B. Kolhe Program: M.Sc. II Semester: IV Subject: Mathematics Coarse Title: Measure and Integration | Month: F | ebruary | | Module/Unit I | Subunits Planed | |----------|-----------|-------|-------------------------|---| | Lectures | Practical | Total | 1. Lebesgue | 1) Open Sets, Closed Sets and Borel Sets | | 16 | 00 | 16 | Measurable | 2) Lebesgue Outer Measure, The sigma algebra of Lebesgue Measurable Sets, Countable Additivity 3) Continuity and Borel-Cantelli Lemma 4) nonmeasurable set. | | Month: N | /larch | No. | Module/Unit II | Subunits Planed | | Lectures | Practical | Total | 2. Measurable | Sums, Product and Composition of | | 17 00 | 00 | 17 | Functions, | Measurable Functions, 2) Sequential Pointwise limits and Simple Approximation. Littlewood's Three Principles | | | | | | 3) Egoroff's Theorem and Lusin's | | | | | | Theorem, Lebesgue | | | | | | 4) Integration of a Bounded Measurable Function, Lebesgue Integration of a Nonnegative Measurable Function. | | Month: A | pril | | Module/Unit III | Subunits Planed | | Lectures | Practical | Total | 3. The general | 1) The General Lebesgue Integral, | | 18 | 00 | 18 | Lebesgue integral | 2) Characterization of Riemann and
Lebesgue Integrability,3) Differentiability of Monotone Functions, | | | | | | Lebesgue's Theorem, | | | | | | 4) Functions of Bounded | | Month: M | 91/ | | Module/Link IV | Variations:Jordan's Theorem | | Lectures | Practical | Total | Module/Unit IV | Subunits Planed | | 6 | | | 4. Absolutely | 1) Absolutely Continuous Functions, | | 10 | 00 | 16 | Continuous
Funcition | 2)Integrating Derivatives: Differentiating Indefinite Integrals, | | ELS | | | | 3) Normed Linear Spaces, Inequalities of | | | | | | Young, Holder and Minkowski,
4)The Riesz-Fischer Theorem. | (Mr. G.B. Kolhe) ESTD. FOR JUNE 1964 (S.P.Thorat) HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Mr. Avinash A. Patil Programme - M.Sc.-I Semester-I Subject: Mathematics Course Title: Advanced Calculus | Month: S | Month: September | | Module/Unit: I | Sub-units planned | |----------------|------------------|-------|--|---| | Lectures
18 | | Total | Integral Calculus | 1. Functions of Bounded Variation & Rectifiable Curves 2. Multiple Integral 3. Green's theorem 4. Surface integral 5. Curl & divergence | | Month: 0 | ctober | | Module/Unit: I and II | Sub-units planned | | Lectures | Practicals | Total | Integral Calculus | Stokes theorem Gauss divergence theorem | | 15 | | 15 | Sequence & series of functions | Pointwise & uniform Convergence Cauchy condition | | | | | | 3. Uniform convergence & Riemann integration 4. Uniform convergence & differentiation 5. Double sequence | | Month: No | | | Module/Unit: II and III | Sub-units planned | | Lectures | Practicals | Total | Sequence & series of functions | 1. Mean convergence
2. Power series | | 22 | | 22 | Multivariable differential
Calculus | 1. Directional derivatives 2. Total derivative 3. Jacobian matrix 4. Chain rule 5. Mean value theorem | | Month: De | Month: December | | Module/Unit: III and IV | Sub-units planned | | Lectures | Practicals | Total | Multivariable differential
Calculus | Taylor's formula Inverse function theorem | | 12 | | 12 | | | | | | | Implicit functions | Implicit function theorem
Applications of implicit function Theorem | Name and Signature of Teacher ESTD. JUNE IN 1964 (Prof. S. P. Thorat) HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Avinash A. Patil Programme - M.Sc.-II Semester-III Subject: Mathematics Course Title: Lattice theory | Month: So | eptember | | Module/Unit: I | Sub-units planned | |-----------------|------------|-----------------|-------------------------------------|--| | Lectures | Practicals | Total | Basic concepts of
Lattice theory | 1. Posets 2. Description of Lattices | | 16 | | 16 | | 3. Duality principle 4. Homomorphism & Isomorphism | | Month: 0 | ctober | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Special types of
Lattices | Distributive lattices Modular lattices | | 17 | | 17 | | Congruence relations Boolean algebras | | Month: N | ovember | | Module/Unit: III | Sub-units planned | | Lectures | Practicals | Total | Ideals | Ideal theory Ideals and filters in lattices | | 21 | | 21 | | Lattice of all ideals Stone's theorem | | Month: December | | Module/Unit: IV | Sub-units planned | | | Lectures | Practicals | Total | Pseudo lattices | Stone algebra Pseudo complemented lattices | | 12 | | 12 | | 3. Stone lattices | Name and Signature of Teacher ESTD. FOR JUNE 1964 Department of mathematics Academic Year: 2022-2023 ### **Annual Teaching Plan** Name of the teacher: Mr. Avinash A. Patil Programme: M.Sc.-I Semester-II Subject: Mathematics Course Title: Integral Equations | Month: So | eptember | | Module/Unit: I | Sub-units planned | |-----------|------------|-------|---|---| | Lectures | Practicals | Total | Linear integral equations | Classification Initial value problem | | 16 | | 16 | | 3. Boundary value problem 4. Separable kernel | | Month: 0 | ctober | | Module/Unit: I and II | Sub-units planned | | Lectures | Practicals | Total | Linear integral equations | 1. Homogeneous Fredholm equations & eigen functions | | 17 | | 17 | | - Table to agent functions | | | | | Solutions of Fredholm &
Volterra integral
equations | Successive approximations Method Successive substitution Method Adomian decomposition method Resolvent kernel | | Month: No | ovember | | Module/Unit: III | Sub-units planned | | Lectures | Practicals | Total | Symmetric kernels | Convolution type kernels Symmetric kernels | | 20 | | 20 | | 3. Eigenvalues & eigenfunctions for symmetric kernels | | Month: De | ecember | | Module/Unit: IV | Sub-units planned | | Lectures | Practicals | Total | Hilbert Schmidt theorem | Hilbert Schmidt theorem Solution of symmetric integral | | 16 | | 16 | | equations 3. Integrodifferential equations | Name and Signature of Teacher ESTD. FOR JUNE IN 1964 (Prof. S. P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhaput Department of mathematics Academic Year: 2021-2022 #### **Annual Teaching Plan** Name of the teacher: Avinash A. Patil Programme - M.Sc.-II Semester-IV Subject: Mathematics Course Title: Combinatorics | Month: F | ebruary | | Module/Unit: I | Sub-units planned | |-----------|------------|-------|----------------------------------|---| | Lectures | Practicals | Total | Permutations and combinations | The sum Rule and product Rule Permutations and combinations | | 14 | | 14 | | 3. The Pigeonhole Principle 4. Ramsey Numbers, Catalan Numbers & Stirling Numbers | | Month: M | arch | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Inclusion-Exclusion principle | 1. Generalized Permutations & combinations | | 19 | | 19 | | Inclusion – Exclusion principle Derangements Combinatorial Number theory | | Month: Aj | pril | | Module/Unit: III | Sub-units planned | | Lectures | Practicals | Total | Generating functions | Rook- Polynomial Ordinary and Exponential | | 23 | | 23 | | generating functions 3. Recurrence Relations 4. Fibonacci sequence | | Month: M | ay | | Module/Unit: IV | Sub-units planned | | Lectures | Practicals | Total | Group Theory in
Combinatorics | Group Theory in Combinatorics The Burnside Frobenius Theorem | | 12 | | 12 | | 3. Permutation Groups and Their Cycle Indices | Name and Signature of Teacher ESTD. TO JUNE IN 1964 8 (Prof. S. P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhapus Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of Teacher: Shital Manohar Malavi Program: M.Sc. I Semester: I Subject: Mathematics Coarse Title: Complex Analysis | Month: S | eptember | | Module/Unit I | Subunits Planed | |----------------|--------------|-------------|--------------------------|---| | Lectures 16 | Practical 00 | Total
16 | 1. Analytic
Functions | Power series, radius of convergence, Analytic functions, zeros of an analytic function, Cauchy-Riemann equations, Harmonic functions, Mobius transformations | | Month: O | ctober | | Module/Unit II | Subunits Planed | | Lectures 17 | Practical 00 | Total
17 | 2. Cauchy Integral | Power series representation of analytical function. Liouville's theorem, Fundamental theorem of algebra, Maximum modulus theorem, the index of closed curve, Cauchy's theorem and integral formula, Moreira's theorem. | | Month: N | lovember | | Module/Unit III | Subunits Planed | | Lectures
18 | Practical 00 | Total
18 | 3. Singularities | Counting zero's, The open mapping
theorem, Gearset's Theorem. Classification of singularities, Laurent
series development. Casorati- weierstrass
theorem. | | Month: D | ecember | | Module/Unit IV | Subunits Planed | | Lectures
16 | Practical 00 | Total
16 | 4. Residues | The argument principle, Rouche's theorem, the maximum principle. Schwarz's lemma Residues, residues and its applications to characterize conformal maps. | (Ms. Shital M. Malovi) (Name and Signature of Teacher) ESTD. G JUNE 1964 Prof. S.P. Thorat) HLAU Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Malavi Shital Manohar Programme - M.Sc. I Subject: Mathematics Semester - II Course Title: General Topology | Month Fe | bruary | - DC | Module/Unit: I | Sub-units planned | |----------------|-----------------------------|-------|---|---| | Lectures
12 | tures Practicals Total _ 12 | | 1. Topology and their basic terms | Topological spaces, Examples Limit points, closed set and closure Interior, Exterior, | | | | | | neighbourhood4. Different ways of defining topology5. Bases, Subbases, subbases of
topological subspaces | | Month Ma | Month March | | Module/Unit: I and II | Sub-units planned | | Lectures | Practicals | Total | 1. Topology and their basic terms | 1. Hereditary Properties | | 20 | | 20 | | | | | | | 2. Connectedness and compactness in topological space | Connected spaces, components connected subspaces of real line,
compact space one point
compactification, continuous function | | Month : A | pril | | Module/Unit: II and III | Sub-units planned | | Lectures | Practicals | Total | 2. Connectedness and compactness in topological | Homeomorphisms Topological Properties | | 22 | | 22 | space | | | | | | 3. Separation Axioms | Separation Axioms: T₀, T₁, T₂ spaces First and second axiom spaces Separable spaces Lindelof spaces | | Month: M | Month : May | | Module/Unit: III and IV | Sub-units planned | | Lectures | | Total | 3. Separation Axioms | Regular and T₃ spaces Normal and T₄ space | | 14 | | 14 | | | | 3 | | | 4.Different types of Topological Spaces | Completely regular T_{3/2} spaces Completely normal and T₅ spaces Product spaces | (Ms. shifal M. Malavi) Name and Signature of Teacher ESTD. GO JUNE PA 1964 * (Prof. S. P. Thorat) Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Malavi Shital Manohar Programme - M. Sc I Semester - II Subject: Mathematics Course Title: Numerical analysis | Month Ap | Month April | | Module/Unit: III | Sub-units planned | |-------------|-------------|----------|--------------------------|---| | Lectures 18 | Practicals | Total 18 | Runge - Kutta Methods | Runge - Kutta Method: second order methods the coefficient tableau, third order methods (without proof), order conditions, Fourth order methods (without proof) Implicit Range-kutta methods Stability characteristics, Taylor Series Methods: Introduction to Taylor series methods | |
Month Ma | ıy | 3216 | Module/Unit: III and IV | Sub-units planned | | Lectures | Practicals | Total | | | | 16 | | 16 | Linear multistep methods | Linear multistep methods: Adams Methods General form of linear multistep methods Predictor- corrector Adams methods, Starting Methods, Analysis of linear multistep methods: Convergence, consistency, sufficient condition for convergence, Stability Characteristics | CMs. Shital M. Malovi) Name and Signature of Teacher ESTD. FOR JUNE 1964 (Prof. S. P. Thorat) Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Malavi Shital Manohar Programme - M. Sc II Semester - III Subject: Mathematics Course Title: Operational Research I | Month Se | ptember | | Module/Unit: I | Sub-units planned | | |------------------|------------|-------|------------------------------------|--|--| | Lectures | Practicals | Total | Convex Set | Convex sets and their properties General formulation of linear | | | 13 | | 13 | | programming 3. Fundamental Theorem of linear programming | | | Month Oc | tober | | Module/Unit: II | Sub-units planned | | | Lectures | Practicals | Total | Simplex Method and Duality | Simplex method Revised simplex method in standard | | | 15 | | 15 | | form I 3. Duality in linear programming | | | Month : November | | | Module/Unit: II and III | Sub-units planned | | | Lectures | Practicals | Total | Simplex Method and
Duality | Integer linear programming Gomory's cutting plane method | | | 21 | | 21 | Dynamic programming | 3. Branch and Bound method. | | | | | | | Dynamic programming. Bellman's principle of Optimality Application of dynamic programming in production | | | Month : D | ecember | | Module/Unit: IV | Sub-units planned | | | Lectures | Practicals | Total | Non- Linear
Programming Problem | Non- linear programming
unconstrained problems of maximum | | | 15 | | 15 | | and minimum 2. Lagrangian method 3. Kuhn Tucker necessary and sufficient conditions, 4. Wolfe's method, 5. Beale's method. | | (Ms. Shital M. Malovi) Name and Signature of Teacher ESTD. FOR JUNE 1964 (Prof. S. P. Thorat) Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Shital Manohar Malavi Programme - M.Sc.-II Semester-III Subject: Mathematics Course Title: Advanced Discrete mathematics | Month: Se | Month: September | | Module/Unit: I | Sub-units planned | |-----------|------------------|-------|-----------------|---| | Lectures | Practicals | Total | Graph Theory | Graph Theory: Definition, examples and properties, | | 16 | | 16 | | Graph isomorphism, Bipartite graphs, Complete Bipartite graph, regular graph, sub-graphs spanning sub-graph, Edge deleted sub-graph, Vertex deleted sub- graph, Union and intersection of two graphs, complements of a graph | | Month: 0 | ctober | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Tree | Matrix representation of graph Properties of tree | | 17 | | 17 | | 3. Bridges & spanning trees | | | | | | 4. Inclusion exclusion principle5. Pigeonhole principle | CMs. Shital M. malavi) Name and Signature of Teacher (Prof. S. P. Thory HEA) Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Malavi Shital Manohar Programme - M. Sc II Semester - IV Subject: Mathematics Course Title: Operational Research II | Month Fe | bruary | (sho | Module/Unit: I | Sub-units planned | |-------------|-------------------------------|----------|---|---| | Lectures 13 | Practicals | Total | Replacement Policy | 1.Replacement Problems 2.Failure mechanism of items 3.Replacement policy for items whose maintenance cost increases with time and money values is constant 4.Group replacement of items that fail completely | | Month Ma | arch | mu smib | Module/Unit: II | Sub-units planned | | Lectures 22 | Practicals | Total 22 | Inventory Models | Inventory – Cost involved in inventory problems variables in inventory problem, symbols in inventory concept of EOQ, Methods with calculus method Model I (a) The economic lot size system with uniform demand Model I (b) Economic lot size with different rates of demand in different cycles. Model I (c) Economic lot size with finite Rate of Replenishment.,(EOQ production model) | | Month : A | Month : April 2018 modified A | | Module/Unit: II and III | 7. EOQ model with shortages Sub-units planned | | Lectures | Practicals | Total | Inventory Models | 1. Model II(a) The EOQ with | | 21 | | 21 | , | constant rate of demand,
scheduling, time constant. | | | | (suen | Queuing Theory | 4. Poisson process, Properties, Exponential process, 5. Classification of Queuing Models | | | |-------------|---|---|-------------------------|---|--|--| | Month : May | | | Module/Unit: III and IV | Sub-units planned | | | | Lectures | | Total | Queuing Theory | 1. Model I:(M/M/I): (∞/FCFS),
Model II (a): General Erlang | | | | 15 | 200 | 15 | | queuing model. | | | | | off any or to
off feeting
the source of
bodyser sol
bodyser sol | ith these satisfied and the control of | | Information Theory: Communication process, Quantitative measure of information Uniqueness theorem, Chanel capacity, efficiency and redundancy Encoding, Shannon Fano encoding procedure PERT / CPM: Applications of PERT / CPM techniques, Network diagram, representations. Rules for constructing the Network diagram determination of the critical path. | | | (Ms. Shital M. Madari) Name and Signature of Teacher (Prof. S. P. Thorat) HEAD Department of Mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Kulkarni Prajakta Prasad Programme: M. Sc. I Subject: Mathematics Semester: I Course Title: Modern Algebra | Month: S | Month: September | | Module/Unit: | Sub-units planned | |----------------|------------------|-------------|------------------------|---| | Lectures 18 | Practical 00 | Total 18 | Simple
Groups | 1) Simple groups, simplicity of An, Commutator subgroups, 2) Normal subgroup and subnormal series, Jordan-Holder theorem 3) Solvable groups, Nilpotent group, isomorphism theorems (Statement only) 4) Zassenhaus Lemma, Schreier refinement theorem. | | Month: O | ctober | | Module/Unit: | Sub-units planned | | Lectures 15 | Practical 00 | Total | Group Action | Group action on a set, isometry subgroups,
Burnside theorem Direct product and semidirect product of
groups, Sylow theorems, p-subgroups, Group of order and pq, Class equation and applications | | Month: N | ovember | | Module/Unit: | Sub-units planned | | Lectures
17 | Practical 00 | Total
17 | Rings of
Polynomial | Ring of Polynomials, Factorization of polynomials over fields, Irreducible polynomials, Eisenstein criterion, ideals in F[x], unique factorization domain, principal ideal domain Gauss lemma, Euclidean Domain | | Month: D | ecember | | Module/Unit: | Sub-units planned | | Lectures | Practical | Total | Module | 1) Modules, sub-modules, quotient modules, | | 16 | 00 | 16 | | homomorphism and isomorphism theorems, fundamental theorem for modules completely reducible modules, free modules. | (Ms. P.P. Kulkarni) ESTD. FOR JUNE 1964 (S. P. Thorat) Department of Mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Kulkarni Prajakta Prasad Programme: M. Sc. I Subject: Mathematics Semester: II Course Title: Linear Algebra | Month: F | Month: February | | Module/Unit: | Sub-units planned | |----------------|-----------------|--------------|--|--| | Lectures 15 | Practical 00 | Total | Vector Spaces
and Quotient
Spaces | Direct sum of a vector space Dual Spaces, Annihilator of a subspace, Quotient Spaces Algebra of Linear transformations. | | Month: March | | Module/Unit: | Sub-units planned | | | Lectures | Practical | Total | Inner Product | 1) Adjoint of a linear transformation, Inner | | 15 | 00 | 15 | Space | product spaces 2) Eigen values Eigen vectors of a linear transformation 3) Diagonalization 4) Invariant subspaces | | Month: April | | Module/Unit: | Sub-units planned | | | Lectures
18 | Practical 00 | Total
18 | Canonical forms
and Jordan forms | Canonical forms, Similarity of linear transformations Reduction to triangular forms, Nilpotent transformations Primary decomposition theorem, Jordan blocks and Jordan forms variants of linear transformations | | Month: M | | | Module/Unit: | Sub-units planned | | Lectures
17 | Practical 00 | Total
17 | Self adjoint
linear
transformation | Hermitian, Self adjoint, Unitary and normal linear transformation Symmetric bilinear forms skew symmetric bilinear forms Group preserving bilinear forms | (Fylbens) (Ms. P.P. Kulkarni) ESTD. FOR JUNE 1964 (S.P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhapur Department of Mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Kulkarni Prajakta Prasad Programme: M. Sc. I Subject: Mathematics Semester: II Course Title: Numerical Analysis | Month: F | ebruary | | Module/Unit:I | Sub-units planned | |----------|-----------|-------|------------------------|--| | Lectures | Practical | Total | Rate of
Convergence | Rate of convergence of Secant Method,
Regula -Falsi Method and | | 17 | 00 | 17 | | Newton-Raphson Method 2) Bairstow method, Matrix factorization methods (Doo little reduction, Crout reduction) 3) Eigen Values and eigenvectors 4) Gerschgorin theorem, Breuer theorem, Jacobi Method for symmetric matrices. | | Month: N | larch | | Module/Unit: II | Sub-units planned | | Lectures | Practical | Total | Numerical integration | Numerical Integration: Error estimates of
trapezoidal and Simpson's Numerical | | 16 | 00 | 16 | | integration rule. 2) Gauss- Legendre integration Methods (n= 1, 2) 3) Lobatto Integration Method (n = 2) 4) Radau Integration method (n=2) and their error estimates | Hallani (Ms. P.P. Kulkarni) ESTD. JUNE 1964 (S. P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhanss Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Kulkarni Prajakta Prasad Programme - M. Sc.II Subject: Mathematics Semester - III Course Title: Function Analysis | Month: Se | eptember | | Module/Unit: I | Sub-units planned | |-------------|------------|----------|-------------------------|--| | Lectures 16 | Practicals | Total 16 | Normed linear space | Normed linear spaces, Banach spaces, Quotient spaces, Continuous linear transformations, Equivalent norms, Finite dimensional normed spaces and properties, | | Month: O | ctober | | Module/Unit: I and II | Sub-units planned | | Lectures | Practicals | Total | Normed linear space | Conjugate space and separability The Hahn-Banach theorem and its consequences. | | | | | Conjugate space | Second conjugate space the natural embedding of the normed linear space in its second conjugate space Reflexivity of normed spaces Weak * topology on the conjugate space. The open mapping theorem. | | Month: No | ovember | | Module/Unit: II and III | Sub-units planned | | Lectures | Practicals | Total | Conjugate space | Projection on Banach space the closed graph theorem, the conjugate of | | 19 | | 19 | | an operator 3. the uniform boundedness principle. | | | | | Hilbert Space | Hilbert spaces: examples and elementary properties Orthogonal complements, The projection theorem, Orthogonal sets The Bessel's inequality, Fourier expansion and Parseval's equation separable Hilbert spaces. | | Month: De | cember | | Module/Unit: III and IV | Sub-units planned | | Lectures | Practicals | Total | Hilbert Space | 1. The conjugate of Hilbert space, Riesz's | | 16 | | 16 | | theorem, 2. The adjoint of an operator. | | | | | Types of operators | Self adjoint operators, Normal and Unitary operators Projections, Eigen values and eigenvectors of an operator on a Hilbert space The determinants and spectrum of an operator, The spectral theorem on a finite dimensional Hilbert space. | Harlbany Ms. Kulkarni Prajakta Prasad (Mr. S. P. Thorat) Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Kulkarni Prajakta Prasad. Programme - M.Sc.-II Semester-III Subject: Mathematics Course Title: Advanced Discrete mathematics | Month: November | | | Module/Unit: III | Sub-units planned | |------------------|------------|-----------------|---------------------|---| | Lectures | Practicals | Total | Recurrence relation | Discrete numeric functions Generating functions | | 19 | | 19 | | 3. Linear recurrence relations | | Month: Decembers | | Module/Unit: IV | Sub-units planned | | | Lectures | Practicals | Total | Lattice theory | Hasse diagram Lattices | | 16 | | 16 | | 3. Types of lattices4. Boolean algebra | Kelen (Ms. P.P. Kulkarni) ESTD. GE JUNE 1964 SE (S. P. Thorat) Department of Mathematics Academic Year: 2022-2023 ### **Annual Teaching Plan** Name of the teacher: Ms. Kulkarni Prajakta Prasad Programme: M. Sc. II Subject: Mathematics Semester: IV Course Title: Field Theory | Month: F | ebruary | | Module/Unit: | Sub-units planned | |----------|-----------|-------|--|---| | Lectures | Practical | Total | Field Extension | 1) Field Extensions Extension of a | | 18 | 00 | 18 | | field 2) Algebraic extensions, algebraically closed fields 3) Derivatives and multiple roots 4) Finite Fields. | | Month: N | 1arch | | Module/Unit: | Sub-units planned | | Lectures | Practical | Total | Galois Theory | 1) Galois Theory | | 15 | 00 15 | | 2) Separable and normal extensions3) Automorphism groups and fixed fields | | | | | | | 4) Fundamental theorem of Galois theory | | Month: A | 1 | | Module/Unit: | Sub-units planned | | Lectures | Practical | Total | Finite fields | 1) Finite Fields, Prime fields | | 17 | 00 | 17 | | 2) Fundamental theorem of algebra3) Cyclic extensions4) Cyclotomic extensions | | Month: M | lay | | Module/Unit: | Sub-units planned | | Lectures | Practical | Total | Polynomials solvable | Applications of Galois theory | | 16 | 00 | 16 | by radicals | Constructions by ruler and compass 3) Solvable groups, Polynomials solvable by radicals | (Ms. P.P. Kulkarni) ESTD. JUNE 1964 (S. P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhapus Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms.
Mrudula Gurunath Goliwadekar Programme - B.Sc. I Semester - II Subject: Mathematics Course Title: Multivariable Calculus | Month: F | February | | Module/Unit: I | Sub-units planned | | |--------------|------------|-------|-------------------------|---|--| | Lectures | Practicals | Total | Partial Differentiation | Functions of several variables Level curves and surfaces | | | 08 | 01 | 09 | | 3. Partial Differentiation
Chain Rule | | | | | | | 4. Direction Derivatives | | | | | | | 5. Tangent plans and normal lines | | | Month :March | | | Module/Unit: II | Sub-units planned | | | Lectures | Practicals | Total | Jacobian | Higher order partial derivatives Jacobians, | | | 10 | 01 | 11 | 46 | Change of variables | | | | | | | 3. Euler's Theorem | | | | | | | 4. Taylor's Theorem for functions of two variables and more variables | | Name and Signature of Teacher (Moudula G. Golowadekar) Name of Teacher: Ms. M. G. Goliwadekar Program: B.Sc. II Semester: IV Subject: Mathematics Course Title: Integral Transforms | Month: April | | | Module/Unit III | Subunits Planed | |----------------|--------------|----------------|--|---| | Lectures
08 | Practical 02 | Total
10 | Fourier Transform | Infinite Fourier Sine and Cosine transform Relationship between Fourier Transform and laplace transform | | Month: May | | Module/Unit IV | Subunits Planed | | | Lectures | Practical | Total | Finite Fourier | 1) Finite Fourier Transform And Inverse, | | 09 | 02 | 11 | Transform And
Inverse, Fourier
Integrals | Fourier Integrals 2) Finite Inverse Fourier Transform And Inverse, Fourier Integrals | Name and Signature of Teacher (Mrydula G. Goliwadekar) (Prof. S.P. Thorat) HEAD Name of Teacher: Ms. M.G. Goliwadekar Program: B.Sc. III Semester: V Subject: Mathematics Coarse Title: Core Course Practical In Mathematics (CCPM-V) | Month: A | ugust | | Module/Unit I | Subunits Planed | |------------------|-----------|----------------|------------------|-----------------------------| | Lectures | Practical | Total | Iterative Method | 1) Bisection Method | | 00 | 02 | 02 | | 2) Secant Method | | Month: September | | Module/Unit II | Subunits Planed | | | Lectures | Practical | Total | Iterative Method | 1) Newton's Method | | 00 | 02 | 02 | | 2) Guass-Elimination Method | | Month: O | ctober | | Module/Unit III | Subunits Planed | | Lectures | Practical | Total | Numerical Method | 1) Guass Jordan Method | | 00 | 02 | 02 | | 2) Jacobi Iteration scheme | | Month: November | | TEMP | Module/Unit IV | Subunits Planed | | Lectures | Practical | Total | Numerical Method | 1) Guass- Seidel Method | | 00 | 02 | 02 | | 2) Power Method | Name and Signature of Teacher (Mrudula G. Goliwadekar) Athorat (Prof. S.P. Thorat) HEAD Name of Teacher: Ms. M. G. Goliwadekar Program: B.Sc. III Semester: V Subject: Mathematics Coarse Title: Core Course Practical In Mathematics (CCPM-IV) | Month: A | ugust | | Module/Unit I | Subunits Planed | |----------------|--------------|-------------|-----------------------------------|---| | Lectures
00 | Practical 02 | Total
02 | Introduction to LPP | Graphical method for Linear Programming Problem 2) Transportation Problems (North west corner rule) | | Month: S | eptember | | Module/Unit II | Subunits Planed | | Lectures 00 | Practical 02 | Total
02 | Transportation and Assignment-I | Transportation Problems (Lowest Cost Entry Method) 2) Transportation Problems (Vogel Approximation Method) | | Month: O | ctober | | Module/Unit III | Subunits Planed | | Lectures
00 | Practical 02 | Total
02 | Transportation and Assignment-II | Transportation Problems (Test For Optimality MODI Method) 2) Transportation Problems (Hungarian Method) | | Month: N | ovember | | Module/Unit IV | Subunits Planed | | Lectures
00 | Practical 02 | Total
02 | Transportation and Assignment-III | Assignment Problems (Maximization Case) 2) Assignment Problems (Traveling Salesman Problem) | Name and Signature of Teacher (Mrudula G. Goliwadekar) Esthora-(Prof. S.P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhapur ## Vivekanand College, Kolhapur (Autonomous) Department of mathematics Academic Year: 2022-2023 **Annual Teaching Plan** Name of the teacher: Ms. M.G. Goliwadekar Programme - B.Sc III Semester - VI Subject: Mathematics Course Title: Linear algebra | Month M | arch | | Module/Unit: I | Sub-units planned | |-------------|------------|-----------------|---------------------|--| | Lectures 12 | Practicals | Total | Vector Space | Vector spaces, General properties of vector spaces, Vector subspaces, Algebra of subspaces linear combination of vectors, Linear span, linear sum of two subspaces Linear dependence and independence of vectors Basis of vector space Finite dimensional vector space, Dimension of a vector space, Dimension of subspace | | Month Ap | oril | | Module/Unit: I | Sub-units planned | | Lectures | Practicals | Total | Vector Space | Linear transformations, linear operators Range and null space of linear transformation | | 12 | | 12 | | Rank and nullity of linear transformation Linear transformations as vectors product of linear transformations, Invertible linear transformation. | | Month : N | //ay | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | Inner product space | The adjoint or transpose of a linear transformation | | 12 | | 12 | | Sylvester's law of nullity, characteristic values and vectors of linear transformation Cayley Hamilton theorem, Diagonalisable operators, | | Month: June | | Module/Unit: II | Sub-units planned | | | Lectures | Practicals | Total | Inner product space | Inner product spaces, Euclidean and unitary. Norm or length of vector, Schwartz | | 12 | | 12 | | inequality, 3. Orthogonality, Orthonormal set, complete orthonormal set 4. Gram-Schmidt ortogonalisation process. | Name and Signature of Teacher Mrudwa G. Goliwadekar) ESTD. S. JUNE 1964 (Prof. S.P. Thorat) Name of Teacher: Ms. Mrudula Gurunath Goliwadekar Program: B.Com. I Semester: I Subject: Mathematics Course Title: Business Mathematics Paper-I | Month: A | Month: August | | Module/Unit I | Subunits Planed | |----------------|---------------|-------|----------------------------|--| | Lectures | Practical | Total | Arithmetic and | 1) Definition of A.P. and G.P. | | 16 | 00 | 16 | Geometric progression | 2) Formulae for n^{th} term and sum to n terms of A.P. and G.P. | | Month: S | eptember | | Module/Unit II | Subunits Planed | | Lectures | Practical | Total | Compound interest, | 1) Different types of interest rates | | 17 | 00 | 17 | ratio, percentage, | 2) Concept of proportion | | | | | proportion and partnership | Application to division into proportional part and partnership | | Month: October | | | Module/Unit III | Subunits Planed | | Lectures | Practical | Total | Matrices and | 1) Definition of matrix, Types of | | 15 | 00 | 15 | Determinants | Matrices | | | | | | 2) Finding inverse of matrix by using adjoint matrix | | | | | | Solution of system of linear equations by Cramer's rule | | Month: N | ovember | | Module/Unit IV | Subunits Planed | | Lectures | Practical | Total | Linear programming | 1) Formation of L.P.P. | | 16 | 00 | 16 | problem (L.P.P.) | Graphical method of solution Problem relating to two variables including the case of mixed constraints | Name and Signature of Teacher [Mondala G. Gollwadetar) (S. P. Thorat) HEAD Department of mathematics Academic Year: 2021-2022 #### **Annual Teaching Plan** Name of the teacher: Ms. Mrudula Gurunath Goliwadekar Programme - M.Sc.-I Semester-I **Subject: Mathematics** Course Title: Ordinary Differential Equations | Month: Se | Month: September | | Module/Unit: I | Sub-units planned | |-----------|------------------|-------|---|--| | Lectures | Practicals | Total | Linear Equations with constant coefficients | 1. Second order homogeneous
Equations | | 15 | | 15 | | Linear dependence & dependence Non-homogeneous equations of order two Homogeneous equations of order n | | Month: 0 | ctober | | Module/Unit: II | Sub-units planned | | Lectures | Practicals | Total | The non-homogeneous equation of n th order | The non-homogeneous equation of n th order | | 17 | | 17 | | Linear Equations with variable Coefficients Wronskian and linear dependence Reduction of order of homogeneous equation | | Month: No | ovember | HI ST | Module/Unit: III | Sub-units planned | | Lectures | Practicals | Total | The Euler equations | Sturm Liouville theory | | 20 | | | | 2. Homogeneous equations with | | 20 | | 20 | | analytic coefficients 3. The legendre equations 4. Linear Equations with regular singular points 5. The Euler equations | | Month: De | ecember | | Module/Unit: IV | Sub-units planned | | Lectures | Practicals | Total | Successive
approximations | The Bessel equation Regular singular points at infinity | | 13 | | 13 | | 3. Existence and uniqueness of solutions: The method of successive approximations 4. The Lipschitz condition | Name and Signature of Teacher ESTD. FR. JUNE FR. 1964 * (Prof. S. P. Thorat) HEAD Department of Mathematics Vivekanand College, Kolhapur Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Ankita Mahipati Sathe Programme - B.Sc. I Semester - II Subject: Mathematics Course Title: Multivariable Calculus | Month: A | Month : April | | Module/Unit: III | Sub-units planned | |----------|---------------|-------|------------------|---| | Lectures | Practicals | Total | Extreme values | Extreme values Necessary condition for extreme values | | 06 | 02 | 08 | | 3. Sufficient condition for extreme values4. Lagrange's method | | Month: N | /
May | | Module/Unit: IV | Sub-units planned | | Lectures | Practicals | Total | Vector Calculus | Differential of vectors tangent line to curves | | 11 | 01 | 12 | | gradient and divergence and curl 3. Solenoidal and irrotational vector 4. vector identities | Name and Signature of Teacher (Ankita M. Sathe) ESTD. COLUMN JUNE IN 1964 (Prof. S.P. Thorat) HEAD Name of Teacher: Ms. Ankita Mahipati Sathe Program: B.Sc. II Semester: III Subject: Mathematics Course Title: Number Theory | Month: C | ctober | | Module/Unit III | Subunits Planed | |----------|-----------|----------------|---|---| | Lectures | Practical | Total | Theory of | 1) Definition of congruence | | 12 | 01 | 13 congruences | congruences | 2) Basic properties of congruence3) Fermat's theorem and their examples4) Examples on Wilsons theorem | | Month: N | lovember | | Module/Unit IV | Subunits Planed | | Lectures | Practical | Total | tal Number-Thereotic 1) The sum and Number of divis | 1) The sum and Number of divisors and it's | | 09 | 01 | 10 | Function | examples 2) Greatest integer function 3) Euler's Phi-function 4) Some properties of the Phi-function | Saman Name and Signature of Teacher (Ank 949 M. Swhe) ESTD. JUNE 1964 (Prof. S.P. Thorat) HEAD Name of Teacher: Ms. Ankita M. Sathe Program: B.Sc. II Semester: III Subject: Mathematics Course Title: Integral Calculus | Month: October | | | Module/Unit III | Subunits Planed | | |-----------------|-----------|-------|-------------------|---|--| | Lectures | Practical | Total | Multiple Integral | Double Integration: Method of evaluation and related examples | | | 12 | 01 | 13 | | | | | | | | | 2) Change of variable | | | Month: November | | | Module/Unit IV | Subunits Planed | | | Lectures | Practical | Total | Fourier Series | 1) Periodic function | | | 09 | 00 | 09 | | Fourier Series Expansion of elementary function | | | | | | | Half range series expansion | | Name and Signature of Teacher (Ankita M. Sathe) (Prof. S.P. Thorat) HEAD Department of Mathematics Rethord. Vivekanand College, Kolhapur Name of Teacher: Ms. Ankita M. Sathe Program: B.Sc. II Semester: IV Subject: Mathematics Course Title: Discrete Mathematics | Month: April | | | Module/Unit III | Subunits Planed | | |--------------------------|-----------|-----------------|--------------------|---|--| | Lectures Practical Total | | Basics of Graph | 1) Types of Edges | | | | 10 | 02 | 12 | Theory | Degree of vertex Handshaking lemma | | | Month: May | | Module/Unit IV | Subunits Planed | | | | Lectures | Practical | Total | Paths and Circuits | 1) Paths, cycle, Circuit | | | 11 | 02 | 13 | | 2) Operations of Graph
3) types of Graph | | Name and Signature of Teacher (Ankida M. Southe) STD. FOR THE STD. WAS A 1964 STD. TO HAPURAGE hthorat (Prof. S.P. Thorat) HEAD Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Ankita M. Sathe Programme - B.Sc III Semester - V Subject: Mathematics Course Title: Modern algebra | ctober | | Module/Unit: II | Sub-units planned | | |-----------------|--------------------------|---|---|--| | Practicals | Total | Field | Definition and basic properties Fields, Integral domains, divisors of zer
and cancellation laws The characteristic of a ring, some non
commutative rings Examples | | | 00 | 12 | | | | | Month: November | | Module/Unit: II | Sub-units planned | | | Practicals | Total | Field | matrices over a field, The real quaternions | | | 00 | 12 | | Homomorphism of rings Definition and elementary properties | | | | | | 3. Maximal and Prime ideals, Prime fields | | | | e o ovember Practicals | Practicals Total ovember Practicals Total | Practicals Total Field oo 12 ovember Module/Unit: II Practicals Total Field | | Name and Signature of Teacher (Ankita M. sathe) ESTD. CO JUNE III 1964 C* # Vivekanand College, Kolhapur (Autonomous) Department of mathematics Academic Year: 2022-2023 **Annual Teaching Plan** Name of the teacher: Ms. A. M. Sathe Programme - B.Sc III Semester - VI Subject: Mathematics Course Title: Complex Analysis | Month : April | | | Module/Unit: II | Sub-units planned | | |---------------|------------|------------------|-----------------------------|--|--| | Lectures | Practicals | Total | Singularities | Convergence of sequences and series of complex variables | | | 12 | | 12 | | Taylor series and its examples,
Laurent series and its examples,
absolute and uniform
convergence of power series. | | | Month - Mon | | Madala/III-it II | 3. Isolated singular points | | | | Month: May | | | Module/Unit: II | Sub-units planned | | | Lectures | Practicals | Total | Singularities | Residues, Cauchy's residue
theorem, Residue at infinity, T | | | 12 | | 12 | | three types of isolated
singularities, Residues at poles
and examples | | | | | | | Zeros of analytic functions,
Zeros and poles | | | | | | | Application of residue theorem to evaluate real integrals | | A Prout Name and Signature of Teacher (Ankita M. sathe) ESTD. FOR JUNE 1964 (Prof. S.P. Thorat) HEAD Name of Teacher: Ms. A.M. Sathe Program: B.Sc. III Semester: VI Subject: Mathematics Coarse Title: Core Course Practical In Mathematics (CCPM-VI) | Month: February | | | Module/Unit I | Subunits Planed | |-----------------|--------------|----------|--------------------------------------|---| | Lectures
00 | Practical 02 | Total 02 | System of linear algebraic equations | System of linear algebraic equations | | | | | | 2) Roots of equations | | Month: N | | | Module/Unit II | Subunits Planed | | Lectures | Practical | Total | Initial value | 1) Initial value problem | | 00 | 02 | 02 | problem | Magic square and area calculation without measurement | | Month: A | pril | | Module/Unit III | Subunits Planed | | Lectures | Practical | Total | Graph Theory | 1) Graph Theory: Network | | 00 | 02 | 02 | | Collaz conjuncture and monte Hall problem | | Month: M | lay | | Module/Unit IV | Subunits Planed | | Lectures | Practical | Total | Data visualization | Data compressing using Numpy | | 00 | 02 | 02 | in Python | Data visualization in Python | Name and Signature of Teacher (Ankida M. sathe) ESTD. JUNE 1964 (Prof. S.P. Thorat) HEAD Department/of/Mathamatacs Vivekanand College, Kölhapar hthorat Name of Teacher: Ms. Ankita Mahipati Sathe Program: B.Com. I Semester: II Subject: Mathematics Course Title: Business Mathematics Paper-II | Month: February | | | Module/Unit I | Subunits Planed | |-----------------|--------------|-------------|---------------------------------|--| | Lectures 16 | Practical 00 | Total
16 | | Linear, Quadratic, exponential (of type y = a^x) Limit of function- Theorems on Limit Continuity of a function at a point, discontinuity of a function Algebra of continuous function | | Month: M | 1arch | | Module/Unit II | Subunits Planed | | Lectures 17 | Practical 00 | Total
16 | Differentiation | Definition, derivative using first Principle Method of differentiation of sum, difference, product, quotient of two functions Second order derivative | | Month: A | Month: April | | Module/Unit III | Subunits Planed | | Lectures
16 | Practical 00 | Total
16 | Application of differentiation | Maxima and minima Case of one variable involving second order derivatives Elasticity of demand | | Month: M | lay | | Module/Unit IV | Subunits Planed | | Lectures
17 | Practical 00 | Total
17 | Integration and its application | Integration-An Anti derivative Process, Standard forms Method integration by substitution and by parts Definite integral and their Properties | Name and Signature of Teacher (ANK Ha M, Sathe) Department of mathematics Academic Year: 2022-2023 #### **Annual Teaching Plan** Name of the teacher: Ms. Ankita Mahipati
Sathe Programme - M.Sc. I Semester - II Subject: Mathematics Course Title: Partial Differential Equations | | hmom | • | Course Title: Partial Differential Equation | | | | |----------------|------------|-------------|--|--|--|--| | Month February | | | Module/Unit: I | Sub-units planned | | | | Lectures 14 | Practicals | Total | 1. Partial Differential Equation | First order Partial Differential
Equations Linear equations of first order. Pfaffian differential equations Compatible systems of first order
partial differential equations. | | | | Month Ma | arch | | Module/Unit: I and II | Sub-units planned | | | | Lectures | Practicals | Total | 1. Partial Differential
Equation | Compatible systems of first order partial differential equations. | | | | 20 | - | 20 | | partial unierential equations. | | | | | | | 2. Non-Linear Partial
Differential Equation | Charpits method, Jacobi method of solving partial
differential equations, CauchyProblem, | | | | Month : April | | | Module/Unit: II and III | Sub-units planned | | | | Lectures
22 | Practicals | Total
22 | 2 Non-Linear Partial
Differential Equation | Method of characteristics to find the integral surface of a quasi linear partial differential equations. | | | | | | | 3. Higher Order Partial
Differential Equation | Second order Partial Differential
Equations. Classification of second order
partial differential equation. Vibration of an infinite string | | | | Month : May | | | Module/Unit: III and IV | 4. Method of separation of variables Sub-units planned | | | | Lectures | Practicals | Total | 3. Higher Order Partial
Differential Equation | Uniqueness of solution of wave equation | | | | 14 | - | 14 | 4. Boundary Value
Problems: | Cauchy problems. Laplace equation, Solution of Laplace equation, Dirichlets problems and Neumann problems. maximum and minimum principles Stability theorem. | | | Sandan. Name and Signature of Teacher LAND CO LAND CO JUNE 1964 (Prof. S. P. Thorat) HEAD