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Abstract

In the present paper, we determine the estimations on Atangana–Baleanu–Caputo
fractional derivative at extreme points. With the assistance of the estimations obtained,
we derive the comparison results. Peano’s type existence results established for non-
linear fractional differential equations involving Atangana–Baleanu–Caputo fractional
derivative. The acquired comparison results are then utilized to deal with the existence
of local, extremal and global solution.
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1 Introduction

The fundamental theory of fractional calculus has been exhibited principally with the two
fractional derivative operators Riemann-Liouville and Caputo fractional derivatives. The
Riemann-Liouville (RL) fractional derivative plays an important role mainly in the develop-
ment of the theory of fractional derivatives, integrals and for application to develop various
theories in pure mathematics. The RL fractional integral of the Caputo fractional derivative
generates the initial conditions in the form of classical derivatives. As a result of which we
have a clear physical interpretation in the modeling of real-world phenomena in the form
of fractional differential equations (FDEs). Basic calculus and the theoretical development
FDEs involving these two fractional derivative operators have been excellently presented in
the monographs [1, 2, 3, 4, 5].

Kai et al. [6] researched the existence and uniqueness of solutions, structural stability
and the dependence of the solution on the order of the differential equation and on the
initial condition. Daftardar-Gejji et al. [7] broadened these investigations for the system
of fractional differential equations. Lakshmikantham and Vatsala [8, 9] built up the theory
of fractional differential and integral inequalities and employed it to explore the existence
of extremal and global solutions of nonlinear FDEs. Basic development relating to inves-
tigations on the theory of nonlinear FDEs can be found in [10, 11, 12, 13] and ongoing
advancements can be found in [14, 15] and references therein.
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Researchers working in the field of applied mathematics have been developing the theory
of fractional calculus in various directions by defining different types of arbitrary order
derivatives and integrals. It is very well known that the traditional fractional derivative
operators provide better mathematical modeling of many real-world phenomena than the
classical integer derivatives. In spite of this reality, numerous researchers accept that that
worthy exactness may not be accomplished in the modeling of physical phenomena involving
memory effect in the whole of the time duration due to the presence of a singular kernel in
the definition of traditional fractional derivatives.

To eliminate the singular kernel, a non-singular fractional derivative operator with expo-
nential kernel is proposed in [16] , which is well known as Caputo–Fabrizio (CF) fractional
derivative. For the development of the theory relating to FDEs involving CF derivative
and it’s real-world application one can refer[17, 18, 19, 20] and the references given therein.
Motivated by the investigations of [16], Atangana and Baleanu in [21] proposed new frac-
tional derivative having Mittag-Leffler (ML) function as its kernel, which is well known
as Atangana–Baleanu–Caputo (ABC) fractional derivative. The basic calculus of ABC-
fractional derivative can be found in [22, 23, 24, 25, 26]. Non-locality of ABC-fractional
derivative with singular ML kernel effectively permits taking care of the nonlocal dynamics,
computational purposes and capturing the various features of realistic systems more suit-
ably. Mathematical modeling via ABC-FDEs of the various outbreak, such as dengue fever,
the free motion of a coupled oscillator, a tumor-immune surveillance mechanism etc. and
efficient numerical method to tackle this has been explored in [27, 28, 29, 30, 31, 32].

Jarad et al. [33] provided sufficient conditions for the existence and uniqueness of the
solution of nonlinear ABC-FDEs. Authors derived the Gronwall inequality in the frame of
Atangana-Baleanu fractional integral and through it investigated Ulam-Hyers stability of
nonlinear ABC-FDEs. Baleanu et al.[34] considered the existence and uniqueness of solution
nonlinear ABC-FDEs and structured a numerical procedure dependent on the fractional Eu-
ler and predictor-corrector technique. Syam et al.[35] determined existence and uniqueness
results for the linear and nonlinear ABC-FDEs and exhibited a numerical technique depen-
dent on the Cheby-shev collocation technique. Afshari et al. [36] demonstrated the existence
results for ABC-FDEs utilizing the fixed point theorems for contractive mappings such as
α-γ–Geraghty type, α-type F-contraction in F-complete metric space. Ravichandran et al.
[38, 39, 40, 41] examined the existence and uniqueness of solution for ABC-fractional dif-
ferential and integrodifferential equations. Shah et al. [42] analyzed the qualitative theory
of existence and stability theory of Ulams type for evolution ABC-FDEs.

Even if, many researchers have investigated nonlinear ABC-FDEs, it ought to be seri-
ously analyzed for the qualitative properties. In this view, motivated by the applications
and the interesting literature on ABC-FDEs, on the line of [8, 9, 25], we investigates estima-
tion on ABC-fractional derivatives at extreme points, comparison results, local and global
existence of a solution and extremal solution for nonlinear ABC-FDEs of the form

ABC
0D

α
τ ω(τ) = f (τ, ω(τ)) , τ ∈ J = [0, T ], T > 0, (1.1)

ω(0) = ω0, (1.2)

where 0 < α < 1, ABC
0D

α
τ is the ABC- fractional derivative operator, ω, ABC

0D
α
τ ω ∈ C(J)

and f ∈ C(J × R,R) is continuous non-linear function. The local existence of solution to
ABC-FDEs (1.1)–(1.2) is based on Peano’s theorem and the comparison results which we
have derived in the present paper.
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The novelty of the present paper is that we have obtained comparison results, local and
global existence of a solution, and extremal solution without demanding the monotonicity
and Holder continuity assumption on the nonlinear function associated with ABC-FDEs
(1.1)–(1.2). Further, we provided alternative proofs to few results of [25] pertain to fractional
integral inequalities.

This paper is organized as follows. In section 2, we recall basic definitions and results
related with ABC-fractional derivative. Section 3 deals with estimation on ABC-fractional
derivative at extreme points. In section 4, we derive comparison results for ABC-FDEs
involving initial and boundary conditions. Section 5 deals with local existence and extremal
of solution of ABC-FDEs (1.1)–(1.2). In section 5, the global existence of solution is proved
for ABC-FDEs (1.1)–(1.2).

2 Preliminaries

In this section, we recall some definitions and basic results about ABC-fractional derivative
operator and generalized Mittag–Leffler function.

Definition 2.1 [35] Let p ∈ [1,∞) and Ω be an open subset of R the Sobolev space Hp(Ω)

is defined as

Hp(Ω) =
{

f ∈ L2(Ω) : Dβf ∈ L2(Ω), for all |β| ≤ p
}

.

Definition 2.2 [21] Let ω ∈ H1(0, T ) and α ∈ [0, 1], the left Atangana–Baleanu–Caputo

fractional derivative of ω of order α is defined by

ABC
0D

α
τ ω(τ) =

B(α)

1− α

∫ τ

0
Eα

[

−
α

1− α
(τ − σ)α

]

ω′(σ)dσ,

where B(α) > 0 is a normalization function satisfying B(0) = B(1) = 1 and Eα is one

parameter Mittag-Leffler function [3, 5] defined by

Eα(z) =

n=∞
∑

n=0

zn

Γ(nα+ 1)
.

The associated fractional integral is defined by

AB
0I

α
τ ω(τ) =

1− α

B(α)
ω(τ) +

α

B(α)
0I

α
τ ω(τ).

where

0I
α
τ ω(τ) =

1

Γ(α)

∫ τ

0
(τ − σ)α−1ω(σ)dσ,

is the Riemann–Liouville fractional integral [3, 5] of ω of order α.
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Lemma 2.1 [22] If 0 < α < 1, then AB
0I

α
τ

(

ABC
0D

α
τ ω(τ)

)

= ω(τ)− ω(0).

Definition 2.3 [43, 44, 45] The generalized Mittag-Leffler function E
γ
α,β(z) for the complex

numbers α, β, γ with Re(α) > 0 is defined as

E
γ
α,β(z) =

∞
∑

k=0

(γ)k
Γ(αk + β)

zk

k!
,

where (γ)k is the Pochhammer symbol given by

(γ)0 = 1, (γ)k = γ(γ + 1) · · · (γ + k − 1), k = 1, 2, · · ·

Note that,
E
1
α,β(z) = Eα,β(z) and E

1
α,1(z) = Eα(z).

Lemma 2.2 [22] Let 0 < α < 1 and β, σ, λ ∈ C (Re(β) > 0). Then

ABC
0D

α
τ

[

τβ−1
E
σ
α, β (λ τ

α)
]

=
B(α)

1− α
τβ−1

E
1+σ
α, β (λ τ

α).

3 Estimates on ABC fractional derivatives at extreme points

Theorem 3.1 If m is any differentiable function defined on J such that ABC
0D

α
τm ∈ C(J)

and there exists τ0 ∈ (0, T ] with m(τ0) = 0, m(τ) ≤ 0, τ ∈ [0, τ0), then
ABC

0D
α
τm(τ0) ≥ 0.

Proof: Using integration by parts we write

ABC
0D

α
τm(τ) =

B(α)

1− α

∫ τ

0
Eα

(

−
α

1− α
(τ − σ)α

)

m′(σ)dσ

=
B(α)

1− α

{[

Eα

(

−
α

1− α
(τ − σ)α

)

m(σ)

]σ=τ

σ=0

−

∫ τ

0

(

d

dσ
Eα

(

−
α

1− α
(τ − σ)α

))

m(σ)dσ

}

=
B(α)

1− α

{

m(τ)− Eα

(

−
α

1− α
τα
)

m(0)−

∫ τ

0

(

d

dσ
Eα

(

−
α

1− α
(τ − σ)α

))

m(σ)dσ

}

.

Since m(τ0) = 0, we have

ABC
0D

α
τm(τ0) = −

B(α)

1− α

{

Eα

(

−
α

1− α
τα0

)

m(0) +

∫ τ0

0

(

d

dσ
Eα

[

−
α

1− α
(τ0 − σ)α

])

m(σ)dσ

}

.

(3.1)

From [25], we have

Eα(−τα) =

∫

∞

0
e−rτKα(r)dr, 0 < α < 1, for all τ > 0,
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where

Kα(r) =
1

π

rα−1 sin(απ)

r2α + 2rα cos(απ) + 1
> 0.

Since Kα(r), e
−r ( α

1−α
)

1
α τ0 > 0, for r > 0 and 0 < α < 1,, we have

Eα

(

−
α

1− α
τα0

)

= Eα

(

−

(

[

α

1− α

]
1

α

τ0

)α )

=

∫

∞

0
e
−r ( α

1−α
)

1
α τ0 Kα(r) dr > 0. (3.2)

Since, B(α) > 0 and m(0) ≤ 0, from (3.2) it follows that

−
B(α)

1− α
Eα

(

−
α

1− α
τα0

)

m(0) ≥ 0. (3.3)

In view of inequality (3.3), Eq. (3.1) reduces to

ABC
0D

α
τm(τ0) ≥ −

B(α)

1− α

∫ τ0

0

(

d

dσ
Eα

(

−
α

1− α
(τ0 − σ)α

))

m(σ)dσ.

Again from [25], we have
d

dτ
Eα

(

−
α

1− α
(τ0 − τ)α

)

≥ 0,

Therefore, m(τ) ≤ 0, τ ∈ [0, τ0) gives

d

dτ
Eα

[

−
α

1− α
(τ0 − τ)α

]

(−m(τ)) ≥ 0, τ ∈ [0, τ0). (3.4)

Using the inequality (3.4) and the fact B(α) > 0, it follows that

ABC
0D

α
τm(τ0) ≥

B(α)

1− α

∫ τ0

0

(

d

dσ
Eα

(

−
α

1− α
(τ0 − σ)α

))

(−m(σ)) dσ ≥ 0.

This completes the proof. ✷

The dual of the Theorem 3.1 is also hold.

Theorem 3.2 If m is any differentiable function defined on J such that ABC
0D

α
τm ∈ C(J)

and there exists τ0 ∈ (0, T ] with m(τ0) = 0, m(τ) ≥ 0, τ ∈ [0, τ0), then
ABC

0D
α
τm(τ0) ≤ 0.

Proof: One can observe that if m(τ) satisfies the assumptions of Theorem 3.2, then (−m)(τ)
satisfies the conditions of Theorem 3.1. Hence by applying Theorem 3.1 with m replaced
by (−m) we obtain, ABC

0D
α
τ (−m)(τ0) ≥ 0. This gives

ABC
0D

α
τm(τ0) ≤ 0.

✷

In the following Theorem, we give an alternative proof of Lemma 2.1 [25] utilizing the
outcome that we have gotten in Theorem 3.1.
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Theorem 3.3 Let a differentiable function f defined on J attain its maximum at a point

τ0 ∈ J and ABC
0D

α
τ f ∈ C(J). Then the inequality ABC

0D
α
τ f(τ0) ≥ 0 holds true.

Proof: Let fmax = f(τ0) = max
τ∈J

f(τ). Define m(τ) = f(τ) − fmax, τ ∈ J . Then m is

differentiable function defined on J such that, ABC
0D

α
τm ∈ C(J) and

m(τ0) = 0, m(τ) = f(τ)− fmax < 0, for all τ ∈ J \ {τ0}

Therefore, m(τ0) = 0 and m(τ) < 0, for all τ ∈ [0, τ0). Since m satisfies all the conditions
of Theorem 3.1, by applying it we obtain ABC

0D
α
τm(τ0) ≥ 0. Since,

ABC
0D

α
τm(τ) = ABC

0D
α
τ (f(τ)− fmax) =

ABC
0D

α
τ f(τ), τ ∈ J,

we have
ABC

0D
α
τ f(τ0) =

ABC
0D

α
τm(τ0) ≥ 0.

✷

In the next Theorem, we provide an alternating proof of Lemma 2.2 [25].

Theorem 3.4 Let a differentiable function f defined on J attain its minimum at a point

τ0 ∈ J and ABC
0D

α
τ f ∈ C(J). Then the inequality ABC

0D
α
τ f(τ0) ≤ 0 holds true.

Proof: Let fmin = f(τ0) = min
τ∈J

f(τ) and define m(τ) = f(τ) − fmin, τ ∈ J . Then, one can

complete the remaining proof by applying Theorem 3.2 and following the similar types of
steps as in the proof of Theorem 3.3. ✷

4 Comparison Results

Theorem 4.1 Let f ∈ C(J ×R,R). Let v,w be any differentiable functions on J such that

ABC
0D

α
τ v, ABC

0D
α
τw ∈ C(J), satisfying

(i) ABC
0D

α
τ v(τ) ≤ f (τ, v(τ)) , τ ∈ J,

(ii) ABC
0D

α
τw(τ) ≥ f (τ, w(τ)) , τ ∈ J,

one of the above inequalities being strict.

Then v(0) < w(0), implies

v(τ) < w(τ), τ ∈ J.

Proof: Suppose that the conclusion of the theorem does not holds. Then by continuity of
v,w there exits τ0 ∈ J such that

v(τ0) = w(τ0) and v(τ) < w(τ) for all τ ∈ [0, τ0).
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Define m(τ) = v(τ) − w(τ), τ ∈ J . Then the function m(τ) is differentiable on J with
ABC

0D
α
τm ∈ C(J) and τ0 ∈ J is such that

m(τ0) = 0 and m(τ) < 0 for all τ ∈ [0, τ0).

Since m satisfies all assumptions of Theorem 3.1, we get ABC
0D

α
τm(τ0) ≥ 0.

This gives
ABC

0D
α
τ v(τ0) ≥

ABC
0D

α
τw(τ0).

Suppose that the inequality (i) is strict, then we get

f (τ0, v(τ0)) >
ABC

0D
α
τ v(τ0) ≥

ABC
0D

α
τw(τ0) ≥ f (τ0, w(τ0)) .

This is contradiction with v(τ0) = w(τ0). Therefore, we must have

v(τ) < w(τ), for all τ ∈ J.

This completes the proof of theorem. ✷

Theorem 4.2 Assume that the conditions of Theorem 4.1 holds (ii). Suppose that

f(τ, ω)− f(τ, η) ≤ L(ω − η), for all ω, η ∈ R with ω ≥ η and 0 < L <
B(α)

1− α
.

Then v(0) ≤ w(0) implies

v(τ) ≤ w(τ), for all τ ∈ J.

Proof: For ǫ > 0, we define

wǫ(τ) = w(τ) + ǫEα(τ
α), τ ∈ J. (4.1)

By choice of w and Lemma 2.2, the function wǫ is differentiable on J such that ABC
0D

α
τwǫ ∈

C(J) and

wǫ(0) = w0 + ǫ > w(0).

Since wǫ(τ) ≥ w(τ), τ ∈ J , by using Lipschitz condition on f , we have

f(τ, wǫ(τ))− f(τ, w(τ)) ≤ L(wǫ(τ)− w(τ)) = LǫEα(τ
α).

Using the condition on L, we have

f(τ, w(τ)) ≥ f(τ, wǫ(τ))− LǫEα(τ
α) > f(τ, wǫ(τ))−

B(α)

1− α
ǫEα(τ

α), τ ∈ J. (4.2)

By Lemma 2.2, we find

ABC
0D

α
τ (Eα(τ

α)) = ABC
0D

α
τ

(

E
1
α,1(τ

α)
)

=
B(α)

1− α
E
2
α,1(τ

α), τ ∈ J. (4.3)
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Since (2)0 = 1 and
(2)k
k!

= k + 1 > 1, k = 1, 2, · · · , we have

E
2
α,1(τ

α) =

∞
∑

k=0

zk

Γ(αk + 1)

(2)k
k!

≥

∞
∑

k=0

zk

Γ(αk + 1)
= Eα(τ

α), τ ∈ J. (4.4)

Using the inequality (4.4), Eq.(4.3) reduces to

ABC
0D

α
τ (Eα(τ

α)) ≥
B(α)

1− α
Eα(τ

α), τ ∈ J. (4.5)

Utilizing the inequalities (ii), (4.2) and (4.5), for any τ ∈ J , we have

ABC
0D

α
τ (wǫ(τ)) =

ABC
0D

α
τ [w(τ) + ǫEα(τ

α)]

= ABC
0D

α
t w(τ) + ǫ ABC

0D
α
τEα(τ

α)

≥ f(τ, w(τ)) + ǫ
B(α)

1− α
Eα(τ

α)

> f(τ, wǫ(τ))−
B(α)

1− α
ǫEα(τ

α) + ǫ
B(α)

1− α
Eα(τ

α)

= f(τ, wǫ(τ))

Therefore,
ABC

0D
α
τwǫ(τ) > f (τ, wǫ(τ)) , τ ∈ J.

Since v(0) < wǫ(0), by application of Theorem 3.1 with w(τ) = wǫ(τ), for each ǫ > 0 we
have

v(τ) < wǫ(τ), τ ∈ J.

Taking limit as ǫ → 0, in the above inequality and utilizing Eq. (4.1), we obtain

v(τ) ≤ w(τ), τ ∈ J.

✷

Corollary 4.3 If m is any differentiable function defined on J such that ABC
0D

α
τm ∈ C(J),

τ ∈ J and

ABC
0D

α
τm(τ) ≤

B(α)

1− α
m(τ), τ ∈ J,

m(0) = m0,

then m(τ) ≤ m0Eα(τ
α), τ ∈ J.

Proof: Define
λ(τ) = m0Eα(τ

α), τ ∈ J.

Then λ(0) = m0. Further using the inequality (4.5), we have

ABC
0D

α
τ λ(τ) ≥

B(α)

1− α
λ(τ), τ ∈ J.
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Applying Theorem 4.2, with v = m and w = λ, we get

m(τ) ≤ λ(τ) = m0Eα(τ
α), τ ∈ J.

✷

The following theorem is the comparison result for periodic boundary value problems
involving ABC-fractional derivative. The proof of the same one can finish watching the
comparable kind of steps of Theorem 2.6 [46].

Theorem 4.4 Let v,w be any differentiable functions on J such that ABC
0D

α
τ v,ABC

0D
α
τw ∈

C(J), τ ∈ J , and f ∈ C(J × R,R) satisfying

(i) ABC
0D

α
τ v(τ) ≤ f (τ, v(τ)) , τ ∈ J, v(0) ≤ v(T )

(ii) ABC
0D

α
τw(τ) ≥ f (τ, w(τ)) , τ ∈ J, w(0) ≥ w(T )

If the function f(τ, ω) is non increasing in ω for each τ then

v(τ) ≤ w(τ), τ ∈ J.

In the next Theorem, we will give an alternating proof of Lemma 2.3 [25] without
utilizing Cauchy-Schwartz inequality.

Theorem 4.5 If m is any differentiable function defined on J such that ABC
0D

α
τm ∈ C(J)

then ABC
0D

α
τm(0) = 0.

Proof: Letm is any differentiable function defined on J such that ABC
0D

α
τm ∈ C(J), τ ∈ J .

Since m′ exists and is continuous on J , we have m,m′ ∈ C(J), this implies m,m′ ∈ L1(J),
therefore sup

τ∈[0,T ]
|m′(τ)| ≤ M . Using the definition of ABC-fractional derivative operator,

|ABC
0D

α
τm(τ)| ≤

B(α)

1− α

∫ τ

0

∣

∣

∣

∣

Eα

(

−
α

1− α
(τ − σ)α

)∣

∣

∣

∣

|m′(σ)|dσ

≤
MB(α)

1− α

∫ τ

0
Eα

(

α

1− α
(τ − σ)α

)

dσ =
MB(α)

1− α
Eα,2

(

α

1− α
τα
)

τ

This gives, ABC
0D

α
τm(0) = 0. ✷

Corollary 4.6 If ω, ABC
0D

α
τ ω, u ∈ C(J) and ABC

0D
α
τ ω(τ) = u(τ), then u(0) = 0.

Proof: Proof follows from the Theorem 4.5. ✷

Remark 4.7 From the Corollary 4.6 it follows that the ABC-FDEs (1.1)–(1.2) and its

equivalent fractional integral equation is consistent only if f(0, ω(0)) = 0, where ω is differ-

entiable function with ABC
0D

α
τ ω ∈ C(J).
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5 Existence of Local and Extremal Solution

In this section, we determine the results about the existence of local and extremal solutions
of the ABC-FDEs (1.1)–(1.2) through the equivalent fractional integral equation given in
the following Lemma.

Lemma 5.1 [38, 35] The equivalent fractional integral equation to the the ABC-FDEs

(1.1)–(1.2) is given by

ω(τ) = ω0 +
1− α

B(α)
f(τ, ω(τ)) +

α

B(α)Γ(α)

∫ τ

0
(τ − σ)α−1f(σ, ω(σ))dσ.

Let ǫ > 0 be arbitrary. Consider the ABC-FDEs of the form,

ABC
0D

α
τ ωǫ(τ) = f (τ, ωǫ(τ)) , τ ∈ J, (5.1)

ωǫ(τ)|τ=0 = ωǫ(0), (5.2)

where ωǫ,
ABC

0D
α
τ ωǫ ∈ C(J) and f ∈ C(J × R,R). Then by Lemma 5.1, the equivalent

fractional integral equation of the ABC-FDEs (5.1)-(5.2) is given by

ωǫ(τ) = ωǫ(0) +
1− α

B(α)
f(τ, ωǫ(τ)) +

α

B(α)Γ(α)

∫ τ

0
(τ − σ)α−1f(σ, ωǫ(σ))dσ, τ ∈ J.

Theorem 5.2 If the function f ∈ C(R0,R), R0 = {(τ, ω) : τ ∈ J, |ω − ω0| ≤ b} is such

that

|f(τ, ω)| ≤ M, for all (τ, ω) ∈ R0

and satisfies the Lipschitz type condition,

|f(τ1, ω)− f(τ2, η)| ≤ L1|τ1 − τ2|+ L2|ω − η|, τ1, τ2 ∈ J, ω, η ∈ R,

where L1 > 0 and 0 < L2 <
B(α)

(1− α)
, then the family {ωǫ} of solution of the ABC-FDEs

(5.1)–(5.2) is equicontinious on J .

Proof: Let ǫ > 0 be arbitrary. Let ωǫ(τ) be the solution of the ABC-FDEs (5.1)–(5.2). Let
τ1, τ2 ∈ J with 0 < τ1 ≤ τ2 < T . Then by hypotheses, we have

|ωǫ(τ1)− ωǫ(τ2)|

=

∣

∣

∣

∣

(

ωǫ(0) +
1− α

B(α)
f(τ1, ωǫ(τ1)) +

α

B(α)Γ(α)

∫ τ1

0
(τ1 − σ)α−1f(σ, ωǫ(σ))dσ

)

−

(

ωǫ(0) +
1− α

B(α)
f(τ2, ωǫ(τ2)) +

α

B(α)Γ(α)

∫ τ2

0
(τ2 − σ)α−1f(σ, ωǫ(σ))dσ

)
∣

∣

∣

∣

≤
1− α

B(α)
|f(τ1, ωǫ(τ1))− f(τ2, ωǫ(τ2))|
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+
α

B(α)Γ(α)

(
∫ τ1

0
((τ1 − σ)α−1 − (τ2 − σ)α−1)|f(σ, ωǫ(σ))|dσ +

∫ τ2

τ1

(τ2 − σ)α−1|f(σ, ωǫ(σ))|dσ

)

≤
1− α

B(α)
(L1|τ1 − τ2|+ L2|ωǫ(τ1)− ωǫ(τ2)|) +

Mα

B(α)Γ(α)

∫ τ1

0
((τ1 − σ)α−1 − (τ2 − σ)α−1)dσ

+
Mα

B(α)Γ(α)

∫ τ2

τ1

(τ2 − σ)α−1dσ

This gives,

|ωǫ(τ1)− ωǫ(τ2)| ≤
1

(

1−
1− α

B(α)
L2

)

[

(1− α)L1

B(α)
(τ2 − τ1) +

M

B(α)Γ(α)
(2(τ2 − τ1)

α + τα1 − τα2 )

]

.

Note that for any 0 < α < 1, (τ2 − τ1)
α ≤ (τ2 − τ1) and τα1 − τα2 ≤ 0. Therefore, we have

|ωǫ(τ1)− ωǫ(τ2)| ≤
Γ(α)(1 − α)L1 + 2M

Γ(α) {B(α)− (1− α)L2}
(τ2 − τ1).

One can check that for any ǫ̃ > 0 there exists δ̃ = ǫ̃
Γ(α) {B(α)− (1− α)L2}

Γ(α)(1 − α)L1 + 2M
such that if

|τ1 − τ2| < δ̃, then
|ωǫ(τ1)− ωǫ(τ2)| < ǫ̃.

This proves that the family of solution {ωǫ} of the ABC-FDEs (5.1)–(5.2) is equicontinious
on J . ✷

Theorem 5.3 Assume that the conditions of Theorem 5.2 hold. If M(1 − α) < bB(α),

then the ABC-FDEs (1.1)–(1.2) has at least one solution on J ′ = [0, β], where β =

min

{

T,

[

Γ(α)(bB(α) −M(1− α))

M

]
1

α

}

.

Proof: Fix δ > 0. Let ω0 ∈ C[−δ, 0] be any real valued function satisfying the conditions

ω0(0) = ω0, |ω0(τ)− ω0| ≤ b.

For any ǫ, 0 < ǫ < δ, define β1 = min {β, ǫ}. Consider the ABC-fractional delay differential
equations

ABC
0D

α
τ ωǫ(τ) = f (τ, ωǫ(τ − ǫ)) , τ ∈ [0, β1], (5.3)

ωǫ(τ) = ω0(τ), τ ∈ [−δ, 0]. (5.4)

Then by Lemma 5.1, equivalent fractional integral equ. of the ABC-FDEs (5.3)–(5.4) is

ωǫ(τ) =



















ω0(τ), τ ∈ [−δ, 0],

ω0 +
1− α

B(α)
f(τ, ωǫ(τ − ǫ))

+
α

B(α)Γ(α)

∫ τ

0 (τ − σ)α−1f(σ, ωǫ(σ − ǫ))dσ, τ ∈ [0, β1].

(5.5)
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In the view of Corollary 4.6, the ABC-FDEs (5.3)–(5.4) is consistent only if

f(0, ωǫ(−ǫ)) = f(0, ω0(−ǫ)) = 0 (5.6)

One can observe that ωǫ is continuous on [−δ, β1] expect possibly at τ = 0. Using continuity
of f and Eq.(5.6), we have

lim
τ→0+

ωǫ(τ) = lim
τ→0+

(

ω0 +
1− α

B(α)
f(τ, ωǫ(τ − ǫ)) +

α

B(α)Γ(α)

∫ τ

0
(τ − σ)α−1f(σ, ωǫ(σ − ǫ))dσ

)

= ω0 + f(0, ω0(−ǫ)) = ω0

Hence the function ωǫ(τ) : [−δ, β1] → R is continuous. Note that,

|ωǫ(τ)− ω0| = |ω0(τ)− ω0| ≤ b, τ ∈ [−δ, 0]. (5.7)

Also for any τ ∈ [0, β1],

|ωǫ(τ)− ω0| ≤
1− α

B(α)
|f(τ, ωǫ(τ − ǫ))|+

α

B(α)Γ(α)

∫ τ

0
(τ − σ)α−1|f(σ, ωǫ(σ − ǫ))|dσ

≤
(1− α)M

B(α)
+

Mα

B(α)Γ(α)

∫ τ

0
(t− σ)α−1dσ

=
M

B(α)

(

1− α+
τα

Γ(α)

)

≤
M

B(α)

(

1− α+
βα
1

Γ(α)

)

. (5.8)

Since β1 ≤ β ≤

[

Γ(α)(bB(α) −M(1− α))

M

]
1

α

, we have

βα
1

Γ(α)
≤

M

B(α)

(

bB(α)

M
− 1 + α

)

(5.9)

From (5.8) and (5.9), we have

|ωǫ(τ)− ω0| ≤ b, τ ∈ [0, β1] (5.10)

From (5.7) and (5.10), we have

|ωǫ(τ)− ω0| ≤ b, τ ∈ [−δ, β1]. (5.11)

If β1 < β, we consider fractional integral Eq.(5.5) on the interval [−δ, β2], where β2 =
min{β, 2ǫ}, such that

|ωǫ(τ)− ω0| ≤ b, τ ∈ [−δ, β2].

Continuing in this way, ωǫ(τ) can be extended to [−δ, β], such that

|ωǫ(τ)− ω0| ≤ b, τ ∈ [−δ, β].

This gives
|ωǫ(τ)| ≤ |ωǫ(τ)− ω0|+ |ω0| ≤ b+ |ω0|, τ ∈ [−δ, β].

Therefore
‖ωǫ‖ ≤ b+ |ω0|, τ ∈ [−δ, β],
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and hence {ωǫ} is uniformly bounded family of function defined on [−δ, β]. Since, the
hypothesis of Lemma 5.1 are satisfied, the family {ωǫ} is equicontinious. Applying Ascoli-
Arzela’s theorem there exists a decreasing sequence {ǫn} with ǫn > 0 for all n and ǫn → 0
such that ωǫn → ω, ω ∈ C([0, β],R) uniformly on [0, β]. Since f ∈ C(R0,R), we have
f(τ, ωǫn(τ − ǫn)) → f(τ, ω). By replacing ǫ with ǫn in equation (5.5) and then taking limit
as n → ∞, we obtain

ω(τ) = ω0 +
1− α

B(α)
f(τ, ω(τ)) +

α

B(α)Γ(α)

∫ τ

0
(τ − σ)α−1f(s, ω(s))dσ, τ ∈ [0, β],

which gives the required solution of the ABC-FDEs (1.1)–(1.2). ✷

Theorem 5.4 Assume that the conditions of Theorem 5.2 hold. If (2M + b)(1 − α) <

bB(α), then the ABC-FDEs (1.1)–(1.2) has extremal solution on J ′′ = [0, β0], where β0 =

min

{

T,

[

(bB(α)− (2M + b)(1 − α))Γ(α)

(2M + b)

]
1

α

}

.

Proof: We give the proof only for the existence of maximal solution of the ABC-FDEs
(1.1)–(1.2), as the proof of existence of minimal solution one can complete on similar lines.

For 0 < ǫ ≤ b
2 , consider the ABC-FDEs

ABC
0D

α
τ ω(τ) = f (τ, ω(τ)) + ǫ := fǫ (τ, ω(τ)) , τ ∈ J, (5.12)

ω(0) = ω0 + ǫ = ω(0, ǫ). (5.13)

Define Rǫ =

{

(τ, ω) : τ ∈ J, |ω − ω(0, ǫ)| ≤
b

2

}

. Clearly Rǫ ⊂ R0. Consider the function

fǫ : Rǫ → R defined by
fǫ (τ, ω(τ)) = f (τ, ω(τ)) + ǫ.

Then, fǫ satisfies the Lipschitz type condition with same Lipschitz constants L1, L2 as
defined in Theorem 5.2. Further,

|fǫ (τ, ω(τ)) | ≤ M +
b

2
, (τ, ω) ∈ Rǫ.

Since fǫ satisfies all assumptions of Theorem 5.3, by applying it, the ABC-FDEs (5.12)–
(5.13) has at least one solution ω(τ, ǫ) on J ′′.

Let 0 < ǫ2 < ǫ1 ≤ ǫ, then we have

ω(0, ǫ2) = ω0 + ǫ2 < ω0 + ǫ1 = ω(0, ǫ1);
ABC

0D
α
τ ω(τ, ǫ2) = f (τ, ω(τ, ǫ2)) + ǫ2, τ ∈ J ′′;

ABC
0D

α
τ ω(τ, ǫ1) > f (τ, ω(τ, ǫ1)) + ǫ2, τ ∈ J ′′.

Note that ω(τ, ǫ1) and ω(τ, ǫ2) respectively are lower and upper solutions of ABC-FDEs,
with ω(0, ǫ2) < ω(0, ǫ1). Therefore by applying Theorem 4.1 we have,

ω(τ, ǫ2) < ω(τ, ǫ1), τ ∈ J ′′.
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Next we show that the family {ω(τ, ǫ)} of solutions of the ABC-FDEs (5.12)–(5.13) is
uniformally bounded on J ′′. Proceeding as in the proof of Theorem 5.3, for any τ ∈ J ′′, we
have

|ω(τ, ǫ) − ω(0, ǫ)| ≤
2M + b

2B(α)

(

1− α+
βα
0

Γ(α)

)

, τ ∈ J ′′.

Since β0 ≤

[

(bB(α) − (2M + b)(1− α))Γ(α)

(2M + b)

]
1

α

, above inequality reduces to

|ω(τ, ǫ)− ω(0, ǫ)| ≤
2M + b

2B(α)

(

1− α+
bB(α)

2M + b
− 1 + α

)

≤
b

2
< b, τ ∈ J ′′.

Since fǫ satisfies assumptions of Theorem 5.2, the family {ω(τ, ǫ)} is equicontinious on J .
Applying Ascoli-Arzela’s theorem there exists a decreasing sequence {ǫn} with ǫn > 0 for all
n and ǫn → 0 such that ω(τ, ǫn) → η(τ) uniformly on J ′′, where η ∈ C([0, β0],R) uniformly
on [0, β]. By uniform continuity of fǫ, we have

fǫn(τ, ω(τ, ǫn)) → f(τ, η(τ)), τ ∈ J ′′.

By replacing ǫ with ǫn in equation (5.12) and then taking limit as n → ∞, we obtain

ABC
0D

α
τ η(τ) = f (τ, η(τ)) , τ ∈ J ′′,

η(0) = ω0.

This proves that η(τ) is a solution of ABC-FDEs(1.1)–(1.2).

It remains to prove that η(τ) is the maximal solution of the ABC-FDEs (1.1)–(1.2). Let
ω(τ) be any solution of (1.1)–(1.2) on J ′′. Then for any ǫ > 0,

ω0 = ω(0) < ω0 + ǫ = ω(0, ǫ);
ABC

0D
α
τ ω(τ) > f (τ, ω(τ, ǫ2)) + ǫ, τ ∈ J ′′;

ABC
0D

α
τ ω(τ, ǫ) = f (τ, ω(τ, ǫ)) + ǫ, τ ∈ J ′′.

Note that ω(τ) and ω(τ, ǫ) respectively are lower and upper solutions of ABC-FDEs, with
ω0 < ω0 + ǫ. Therefore by applying Theorem 4.1 we have,

ω(τ) < ω(τ, ǫ), τ ∈ J ′′.

Taking limit as ǫ → 0, we obtain

ω(τ) ≤ η(τ), τ ∈ J ′′.

This proves that η(τ) is the maximal solution of the ABC-FDEs (1.1)–(1.2) on J”. ✷
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6 Existence of Global Solution

Theorem 6.1 Assume that m is any differentiable function defined on J such that ABC
0D

α
τm ∈

C(J) and g ∈ C(J × R+,R+) such that

ABC
0D

α
τm(τ) ≤ g(τ,m(τ)), τ ∈ J (6.1)

and let η(τ) is the maximal solution of the ABC-FDEs

ABC
0D

α
τ u(τ) = g (τ, u(τ)) , τ ∈ J,

u(0) = u0.

Then m(0) ≤ u(0), implies m(τ) ≤ η(τ), τ ∈ J.

Proof: Let ǫ > 0 be arbitrary. Let u(τ, ǫ) be a solution of the ABC-FDEs of the form

ABC
0D

α
τ u(τ) = g (τ, u(τ)) + ǫ, τ ∈ J,

u(0) = u0 + ǫ.

Therefore,

ABC
0D

α
τ u(τ, ǫ) > g (τ, u(τ, ǫ)) , τ ∈ J,

u(0) = u0 + ǫ (6.2)

Therefore m is lower solution and u(τ, ǫ) is upper solution of the ABC-FDE

ABC
0D

α
τ ω(τ) = g (τ, ω(τ)) , τ ∈ J.

Further,
m(0) ≤ u(0) < u(0) + ǫ = u(0, ǫ).

By applying Theorem 4.1, we obtain

m(τ) ≤ u(τ, ǫ), τ ∈ J, ǫ > 0.

Taking ǫ → 0, and following similar approach as in the proof of Theorem 5.4, we obtain

m(τ) ≤ η(τ), τ ∈ J.

✷

Theorem 6.2 Assume that f ∈ C([0,∞) × R,R) and g ∈ C([0,∞) × R+,R+) are such

that |f(τ, ω)| ≤ g(τ, |ω|). Further, suppose that there exists local solution ω(τ, ω0) of the

ABC-FDEs

ABC
0D

α
τ ω(τ) = f (τ, ω(τ)) , τ ∈ [0,∞), (6.3)
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ω(0) = ω0, (6.4)

and maximal solution η(τ) of

ABC
0D

α
τ u(τ) = g (τ, u(τ)) , τ ∈ [0,∞),

u(0) = u0 ≥ 0.

Then the largest interval of existence of solution ω(τ, ω0) of the (6.3)–(6.4) such that |ω0| <

u0 is [0,∞).

Proof: By assumption there exists a local solution ω(τ, ω0) of the (6.3)–(6.4) on the interval
[0, β), where β < ∞ with |ω0| < u0. Suppose on contrary β can not be increased further.

Define m(τ) = |ω(τ, ω0)|, τ ∈ [0, β). As |f |′ ≤ |f ′|, for any τ ∈ [0, β), we find

ABC
0D

α
τm(τ) =

B(α)

1− α

∫ τ

0
Eα

(

−
α

1− α
(τ − σ)α

)

m′(σ)dσ

=
B(α)

1− α

∫ τ

0
Eα

(

−
α

1− α
(τ − σ)α

)

|ω(σ, ω0|
′dσ

≤
B(α)

1− α

∫ τ

0
Eα

(

−
α

1− α
(τ − σ)α

)

|ω′(σ, ω0|dσ

=

∣

∣

∣

∣

B(α)

1− α

∫ τ

0
Eα

(

−
α

1− α
(τ − σ)α

)

ω′(σ, ω0)dσ

∣

∣

∣

∣

= |ABC
0D

α
τ ω(τ, ω0)|

Therefore,

ABC
0D

α
τm(τ) ≤ |ABC

0D
α
τ ω(τ, ω0)| = |f(τ, ω(τ, ω0))| ≤ g(τ, |ω(τ, ω0)|) = g(τ,m(τ)), τ ∈ [0, β).

This implies m(τ) is lower solution of

ABC
0D

α
τ u(τ) = g (τ, u(τ)) , τ ∈ [0, β). (6.5)

Further by assumption η(τ) is the maximal solution of the problem (6.5). Since m(0) =
|ω0| ≤ u0, by applying Theorem 4.1, we obtain

m(τ) = |ω(τ, ω0)| ≤ η(τ), τ ∈ [0, β).

By assumption η(τ) exists on [0,∞). Therefore by continuity of g on [0, β] × R+, there
exists M > 0 such that,

|g (τ, η(τ)) | ≤ M, τ ∈ [0, β).

Let 0 ≤ τ1 ≤ τ2 < β. Then following similar steps as in the proof of Theorem 4.1, we have

|ω(τ1, ω0)− ω(τ2, ω0)| ≤
Γ(α)(1 − α)L1 + 2M

Γ(α) [B(α)− (1− α)L2]
(τ2 − τ1).
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From above inequality it follows that,

lim
τ1, τ2→β−

ω(τ1, ω0) = lim
τ2, τ1→β−

ω(τ2, ω0),

for any τ1, τ2 with 0 ≤ τ1 ≤ τ2 < β. This implies that lim
τ→β−

ω(τ, ω0) exists. Let

ω(β, ω0) = lim
τ→β−

ω(τ, ω0).

Then by assumption the ABC-FDEs

ABC
0D

α
τ ω(τ) = f (τ, ω(τ)) , τ ≥ β,

ω(β) = ωβ,

has a local solution. This implies that ω(τ, ω0) can be continued beyond β which is a
contradiction our assumption. Hence every solution ω(τ, ω0) of the ABC-FDEs (6.3)–(6.4)
exists on [0,∞). ✷

Conclusion

The comparison results, local, extremal, and global existence of a solution, derived without
demanding the monotonicity and Holder continuity assumption on the nonlinear function
involving ABC-FDEs. The estimations on ABC-fractional derivative and the comparison
results obtained to ABC-FDEs one can use to research the existence, uniqueness and qual-
itative properties of solutions for various classes of ABC-FDEs.
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