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Abstract

In this paper, by employing fixed-point methods, we obtain the existence and unique-
ness results for the nonlinear implicit fractional differential equations in Banach spaces.
Further, we obtain the uniqueness, dependence of the solution on the initial condition
as well as on the functions involved on the right-hand side by means of Picard and
weakly Picard operator theory and Pompeiu–Hausdorff functional.
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1 Introduction

The initial and boundary value problems for fractional differential equations (FDEs) are
naturally appearing in the modeling of various physical phenomena that appearing in diverse
disciplines of science and engineering [1, 2, 3, 4, 5, 6]. Subsequently, this field is drawing the
attention of many mathematicians for researching numerous types of FDEs for its theory
and applicability. Basics of fractional calculus, detailed theoretical analysis and applications
of FDEs can be found in the interesting monographs by Kilbas et al.[7], Lakshmikantham et
al. [8], Podlubny [9], Diethelm [10]. Fundamental results on the existence and uniqueness of
solutions, comparison results, different types of data dependency, the existence of extremal
solutions and global existence of the nonlinear FDEs can found in [11, 12, 13, 14, 15, 16,
17]. Recently, there have been numerous papers that deal with the existence, uniqueness,
controllability and various qualitative properties of the solution for FDEs with initial and
boundary conditions [18, 19, 20, 21].

The implicit differential equation of the form

x(n)(t) = f
(

t, x(t), x′(t), x′′(t), · · · , x(n−1)(t)
)

,

with different kind of initial or boundary condition has been analyzed for existence, unique-
ness and various other qualitative properties of the solution, for instance, see [22] and the
references cited therein. Motivated by the investigations in the theory of integer order im-
plicit differential equation considered above and its different special from, Benchohra et al.
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[23, 24] and Nieto et al. [25] have initiated the study of implicit FDEs of the form

Dαx(t) = f(t, x(t),Dαx(t)),

with a different kind of initial and boundary condition. Nieto et al. [25] derived existence
and uniqueness results by employing fixed point theory and an approximation method.
Benchohra et al. [26, 27, 28] investigated the existence of integrable solutions for implicit
fractional functional differential equations with and without delay. Kucche et.al. in [30,
31, 32] have analyzed implicit FDEs for existence, uniqueness dependence of solution on
various initial data and Ulam–Hyers and Ulam–Hyers-Rassias stabilities.

On the other hand, Rus [33, 34] introduced the fundamental results of the weakly Picard
operators theory and employed it to analyze the Cauchy problem, boundary value problem,
integral equations, and difference equations. Wang [35] obtained some existence, unique-
ness, and data dependence results by means of Picard and weakly Picard operators theory
and the Bielecki norms. Then again, Otrocol and Ilea [36, 37] analyzed differential and
integrodifferential equations with abstract Volterra operators using the method of Picard
and weakly Picard operators.

Motivated by the work of [34, 35], in the present manuscript, we obtain the existence,
uniqueness and dependency of solution for the nonlinear implicit FDEs of the form,

c
0Dα

t x(t) = f (t, x(t),c0 Dα
t x(t)) , t ∈ J, 0 < α < 1 (1.1)

x(0) = x0 ∈ X, (1.2)

in the Banach space X = (X, ‖ · ‖), where J = [0, T ], T > 0, c
0Dα

t is the Caputo fractional
derivative operator of order α and lower terminal 0 and f : J ×X ×X → X is a nonlinear
function satisfying certain assumptions.

We obtain the existence and uniqueness of the solution by using fixed-point methods
in the space of Lipschitz function and considering the Bielecki norm. The dependency of
a solution is obtained through Picard operator theory and Pompeiu–Hausdorff functional.
It is observed that the single inequality obtained for the difference of solutions via Picard
operator theory gives simultaneously, the uniqueness of solution, the dependence of the
solution on the initial condition as well as on the functions involved on the right-hand
side of the problem (3.14)-(3.15). Whereas, the inequality obtained for the solutions via
Pompeiu–Hausdorff functional gives the dependency of the solution on functions involved
in the right hand side of the problem (3.14)-(3.15).

This paper is structured in the following way. In section 2, we present briefly the basic
definitions and results of fractional calculus, Picard and weakly Picard operators. In Section
3, we obtain the existence, uniqueness and dependency of solution for the nonlinear implicit
FDEs (3.14)-(3.15). In Section 4, we provide examples to illustrate our results. Finally,we
close the paper with concluding remarks.

2 Preliminaries

In this section, we give some definitions and basic results of Caputo fractional derivative
[10, 9] and Picard and weakly Picard operator theory [33, 35, 38].
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Definition 2.1 The Riemann-Liouville fractional integral Iβ
0,t of order β > 0 of a function

g ∈ C[0, T ], T > 0 is defined as

Iβ
0,t g(t) =

1

Γ(β)

∫ t

0
(t− σ)β−1g(σ)dσ, t > 0,

provided the integral exists.

Definition 2.2 Let 0 < α ≤ 1 then the Caputo fractional derivative c
0Dα

t of order α with

lower terminal 0 of a function g ∈ C1[0, T ] is defined as

c
0Dα

t g(t) =
1

Γ(1− α)

∫ t

0
(t− σ)−αg′(σ)dσ, t > 0.

Next, we provide the basics of Picard and weakly Picard operators theory from [33, 35, 38].
Let X := (X, d) be a metric space and T : X → X an operator. Then:

(i) P (X) := {Y ⊆ X : Y 6= φ}.

(ii) FT := {x ∈ X : T (x) = x}– the fixed point set of T .

(iii) I(T ) := {Y ∈ P (X) : T (Y ) ⊆ Y } – a set of T -invariant nonempty subsets X.

(iv) The Pompeiu-Hausdorff functional Hd : P (X)× P (X) → R+ ∪ {∞} is defined as

Hd (Y,Z) = max

{

sup
a∈Y

inf
b∈Z

d(a, b), sup
b∈Z

inf
a∈Y

d(a, b)

}

.

Definition 2.3 ([35]) Let (X, d) be a metric space. An operator T : X → X is a Picard

operator if there exists x∗ ∈ X such that FT = {x∗} and the sequence (T n(x0))n∈N converges

to x∗ for all x0 ∈ X.

Definition 2.4 ([35]) Let (X, d) be a metric space. An operator T : X → X is a weakly

Picard operator if the sequence (T n(x0))n∈N converges for all x0 ∈ X and its limit ( which

may depend on x0 ) is a fixed point of T .

If T : X → X is a weakly Picard operator, then the operator T∞ : X → X defined by

T∞(x) = lim
n→∞

T n(x).

Lemma 2.1 ([35]) Let (X, d) be a metric space. Then T : X → X is a weakly Picard

operator if and only if there exists a partition of X, X =
⋃

λ∈Λ Xλ, where Λ is the indices’

set of partition, such that
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(i) Xλ ∈ I(T ),

(ii) T |Xλ
: Xλ → Xλ is a Picard operator, for all λ ∈ Λ

Lemma 2.2 ([35]) Let (X, d) be a complete metric space and T, S : X → X two operators.

We suppose the following

(i) T is a contraction with constant α and FT = {x∗T }.

(ii) S has a fixed points and x∗S ∈ FS.

(iii) There exists γ > 0 such that d (T (x), S(x)) ≤ γ, for all x ∈ X.

Then,

d (x∗T , x
∗
S) ≤

γ

1− α

Lemma 2.3 ([35]) Let (X, d) be a complete metric space and T, S : X → X two orbitally

continuous operators. We suppose the following:

(i) There exists α ∈ [0, 1) such that

d
(

T 2(x), T (x)
)

≤ α d (T (x), x)

d
(

S2(x), S(x)
)

≤ α d (S(x), x)

for all x ∈ X.

(ii) There exists γ > 0 such that d (T (x), S(x)) ≤ γ, for all x ∈ X.

Then,

Hd (FT , FS) ≤
γ

1− α
,

where Hd denotes Pompeiu-Hausdorff functional.

3 Main results

To derive our main results, we consider the spaces defined in [35].

Let C := C(J,X) be the space of all X-valued continuous functions defined on J . Then
C := (C, ‖ · ‖C) is the Banach space with the Chebyshev norm

‖x‖C := sup
t∈J

{‖x(t)‖} .
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Further, B = (C, ‖ · ‖B) is the Banach space endowed with the Bielecki norm

‖x‖B := sup
t∈J

{ ‖x(t)‖
Eα (θtα)

}

, x ∈ C for some θ > 0.

Let dB and dC are the metrics on C generated by the norms ‖ · ‖B and ‖ · ‖C .
Let L > 0 and define the set

CL(J,X) := {x ∈ C(J,X) : ‖x(t1)− x(t2)‖ ≤ L|t1 − t2|, ∀ t1, t2 ∈ J} .

Let R > 0, BR = S[0, R] = {x ∈ X : ‖x‖ ≤ R} and

CL(J,BR) := {x ∈ C(J,BR) : ‖x(t1)− x(t2)‖ ≤ L|t1 − t2|, ∀ t1, t2 ∈ J} .

We acquire our main results via equivalent fractional integral equation to the nonlinear
implicit FDEs (1.1)–(1.2) given in the following lemma.

Lemma 3.1 ([26]) The solution of the IVP (1.1)–(1.2) can be expressed by the integral

equation

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, t ∈ J ; (3.1)

where z is the solution of the functional integral equation

z(t) = f

(

t, x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

, t ∈ J. (3.2)

3.1 Existence and Uniqueness Results:

Theorem 3.2 Assume that:

(A1) f : J ×X ×X → X is a continuous function and satisfies Lipschitz type condition

‖f(t1, x1, y1)− f(t2, x2, y2)‖ ≤ M1|t1 − t2|+M2‖x1 − x2‖+M3‖y1 − y2‖, (3.3)

for all ti ∈ J and xi, yi ∈ X, where Mi > 0, i = 1, 2 and 0 < M3 < 1.

Then, the problem (1.1)–(1.2) has unique solution, provided that

M2

Γ(α+ 1)
Tα +M3 < 1. (3.4)

Further, the solution z∗ ∈ CL(J,BR) of functional integral equation (3.2) can be obtained

by successive approximation method starting from any element of CL(J,BR). Utilizing this

z∗, the solution x∗ of (1.1)–(1.2) is then acquired from the equation (3.1).
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Proof: In the view of condition (3.4), we can choose R > 0 such that

M2‖x0‖+K

1−
(

M2

Γ(α+ 1)
Tα +M3

) ≤ R, (3.5)

where K = supt∈J ‖f (t, 0, 0)‖. Further the condition 0 < M3 < 1 allows us to choose L > 0
such that

M1 +
2M2R

Γ(α+ 1)

1−M3
≤ L. (3.6)

With these choices of L and R consider the space

CL(J,BR) := {x ∈ C(J,BR) : ‖x(t1)− x(t2)‖ ≤ L|t1 − t2|, ∀ t1, t2 ∈ J} .

Define the mapping,

(Tz)(t) = f

(

t, x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

, t ∈ J, z ∈ CL(J,BR), (3.7)

We show that the operator T is a Picard operator on CL(J,BR). We divide the proof in the
two parts.

Part-(I): First we prove that T is self map on CL(J,BR). We give the proof in the following
steps.
Step 1: Tz ∈ C(J,X) for any z ∈ CL(J,BR).

Let any δ > 0. Then for any z ∈ CL(J,BR) and t ∈ J, we have

‖z(t + δ) − z(t)‖ ≤ L|t+ δ − t| = Lδ, and ‖z(t)‖ ≤ R. (3.8)

By Lipschitz type condition on f given in (A1) and using the inequalities in (3.8), we obtain

‖(Tz)(t+ δ) − (Tz)(t)‖

=

∥

∥

∥

∥

f

(

t+ δ, x0 +
1

Γ(α)

∫ t+δ

0
(t+ δ − s)α−1z(s)ds, z(t+ δ)

)

−f

(

t, x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)
∥

∥

∥

∥

≤ M1|(t+ δ) − t|+M2

∥

∥

∥

∥

(

x0 +
1

Γ(α)

∫ t+δ

0
(t+ δ − s)α−1z(s)ds

)

−
(

x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds

)
∥

∥

∥

∥

+M3‖z(t+ δ) − z(t)‖

≤ M1δ +
M2

Γ(α)

∫ t

0

[

(t+ δ − s)α−1 − (t− s)α−1
]

‖z(s)‖ds

+
M2

Γ(α)

∫ t+δ

t

(t+ δ − s)α−1‖z(s)‖ds +M3‖z(t+ δ) − z(t)‖

≤ (M1 +M3L)δ +
M2R

Γ(α)

∫ t

0

[

(t+ δ − s)α−1 − (t− s)α−1
]

ds+
M2R

Γ(α)

∫ t+δ

t

(t+ δ − s)α−1ds
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= (M1 +M3L)δ +
M2R

Γ(α+ 1)
{[−δα + (t+ δ)α − tα] + δα}

= (M1 +M3L)δ +
M2R

Γ(α+ 1)
[(t+ δ)α − tα] .

Therefore,

lim
δ→0

‖(Tz)(t+ δ) − (Tz)(t)‖ = 0.

This proves that Tz ∈ C(J,X).

Step 2: Tz ∈ CL(J,BR) for any z ∈ CL(J,BR).

Let any z ∈ CL(J,BR). Then using inequalities (3.5) and (3.8), for any t ∈ J , we obtain

‖T (z)(t)‖ =

∥

∥

∥

∥

f

(

t, x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)
∥

∥

∥

∥

=

∥

∥

∥

∥

f

(

t, x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

− f (t, 0, 0)

∥

∥

∥

∥

+ ‖f (t, 0, 0)‖

≤ M2‖x0‖+
M2

Γ(α)

∫ t

0
(t− s)α−1‖z(s)‖ds +M3‖z(t)‖ +K

≤ (M2‖x0‖+K) +
M2R

Γ(α)

∫ t

0
(t− s)α−1ds+M3R

= (M2‖x0‖+K) +

[

M2

Γ(α+ 1)
Tα +M3

]

R

≤ R

[

1−
(

M2

Γ(α+ 1)
Tα +M3

)]

+

[

M2R

Γ(α+ 1)
Tα +M3R

]

= R.

This proves that any z ∈ CL(J,BR), Tz ∈ C(J,BR).
Step 3: For any z ∈ C(J,BR), T z is Lipschitz with Lipschitz constant L.

Let any z ∈ CL(J,BR) and t1, t2 ∈ J with t1 < t2. Then by Lipschitz type condition on f

given in (A1) and the inequality (3.8), we obtain

‖(Tz)(t1)− (Tz)(t2)‖

=

∥

∥

∥

∥

f

(

t1, x0 +
1

Γ(α)

∫ t1

0
(t1 − s)α−1z(s)ds, z(t1)

)

−f

(

t2, x0 +
1

Γ(α)
ntt20 (t2 − s)α−1z(s)ds, z(t2)

)
∥

∥

∥

∥

≤ M1|t1 − t2|+
M2

Γ(α)

∫ t1

0

[

(t1 − s)α−1 − (t2 − s)α−1
]

‖z(s)‖ds

+
M2

Γ(α)

∫ t2

t1

(t2 − s)α−1‖z(s)‖ds +M3‖z(t2)− z(t1)‖

≤ M1|t1 − t2|+
M2R

Γ(α)

∫ t1

0

[

(t1 − s)α−1 − (t2 − s)α−1
]

ds

+
M2R

Γ(α)

∫ t2

t1

(t2 − s)α−1ds +M3L|t2 − t1|
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= (M1 +M3L) |t1 − t2|+
M2R

Γ(α+ 1)
[(t2 − t1)

α + tα1 − tα2 ] +
M2R

Γ(α+ 1)
(t2 − t1)

α

≤ (M1 +M3L) |t1 − t2|+
2M2R

Γ(α+ 1)
(t2 − t1)

α =

(

M1 +
2M2R

Γ(α+ 1)
+M3L

)

|t2 − t1|

≤ (L(1−M3) +M3L) |t2 − t1| = L|t2 − t1|.

This shows that Tz is Lipschitz function with Lipschitz constant L. From Steps-1 to 3, we
get Tz ∈ CL(J,BR). Hence T is self mapping on CL(J,BR).

Part-(II): To prove T : CL(J,BR) → CL(J,BR) is a Picard Operator, we prove that T is
contraction. Let any z1, z2 ∈ CL(J,BR). Then for any t ∈ J , we have

‖T (z1)(t)− T (z2)(t)‖

=

∥

∥

∥

∥

f

(

t, x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z1(s)ds, z1(t)

)

−f

(

t, x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z2(s)ds, z2(t)

)
∥

∥

∥

∥

≤ M2

Γ(α)

∫ t

0
(t− s)α−1‖z1(s)− z2(s)‖ds +M3‖z1(t)− z2(t)‖

≤ M2

Γ(α)

∫ t

0
(t− s)α−1

Eα(θs
α) sup

s∈J

(‖(z1 − z2)(s)‖
Eα(θsα)

)

ds+M3Eα(θt
α) sup

t∈J

(‖(z1 − z2)(t)‖
Eα(θtα)

)

=
M2‖z1 − z2‖B

Γ(α)

∫ t

0
(t− s)α−1

Eα(θs
α)ds+M3Eα(θt

α)‖z1 − z2‖B .

But,

Iα0,tEα(θt
α) =

1

θ
[Eα(θt

α)− 1] ≤ 1

θ
Eα(θt

α), t ∈ J.

This gives

‖(Tz1)(t)− (Tz2)(t)‖ ≤ M2‖z1 − z2‖B
θ

Eα(θt
α) +M3Eα(θt

α)‖z1 − z2‖B , t ∈ J.

Therefore,

‖Tz1 − Tz2‖B = sup
t∈J

(‖(Tz1 − Tz2)(t)‖
Eα(θtα)

)

≤
(

M2

θ
+M3

)

‖z1 − z2‖B , t ∈ J.

Since 0 < M3 < 1, we can choose sufficiently large θ, so that
M2

θ
+M3 < 1. This proves

that T : CL(J,BR) → CL(J,BR) is contraction and hence Picard operator. By contraction
principle there is z∗ in CL(J,BR) such that z∗ = Tz∗. This z∗ is the unique solution of
functional integral equation (3.2). Further for any z ∈ CL(J,BR), ‖T nz − z∗‖B → 0 as
n → ∞. Substituting this z∗ in (3.1), we obtain the unique solution x∗ of the nonlinear
implicit FDEs (1.1)–(1.2). ✷
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3.2 Dependency of solution Through Picard Operator Theory:

To investigate the data dependency of the solution of the nonlinear implicit FDEs (1.1)–
(1.2), we consider the another nonlinear implicit FDEs of the form

c
0Dα

t x(t) = g (t, x(t), c
0Dα

t x(t)) , t ∈ [0, T ], (3.9)

x(0) = y0 ∈ X, (3.10)

where g : J ×X ×X → X is any nonlinear function need not equal to f .

Theorem 3.3 Assume that the functions f and g satisfies the hypothesis (A1). Let there

exists η ∈ L1(J,R+) ∩ C(J,R+) such that

‖f(t, x, y)− g(t, x, y)‖ ≤ η(t), t ∈ J, x, y ∈ X.

If the condition (3.4) holds and θ > 0 is such that
M2

θ
+M3 < 1, then the solution x∗ of

(1.1)–(1.2) and the solution y∗ of (3.9) –(3.10) satisfies the inequality

‖x∗ − y∗‖B ≤ ‖x0 − y0‖+
Kη

θ

[

1−
(

M2

θ
+M3

)] , (3.11)

where Kη = max {η(t) : t ∈ J}.

Proof: By Lemma 3.1, the equivalent integral equation to the nonlinear implicit FDEs
(3.9) –(3.10) is given by

x(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, t ∈ J, (3.12)

where z is the solution of the functional integral equation

z(t) = g

(

t, y0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

, t ∈ J. (3.13)

Since g : J × X × X → X satisfies the conditions of Theorem 3.2, proceeding as in the
proof of Theorem 3.2, the condition (3.4) allows us to choose L̃ > 0 and R̃ > 0 such that
the mapping

S : CL̃(J,BR̃) → CL̃(J,BR̃)

defined by

S(z)(t) = g

(

t, y0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

, t ∈ J

has unique fixed point FS ∈ CL̃(J,BR̃). Define L∗ = max{L, L̃} . Then one can verify that
FT , FS ∈ CL∗(J,BR∗).

Now, for any z ∈ CL∗(J,BR∗) and t ∈ J , we have

‖(Tz)(t) − (Sz)(t)‖
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=

∥

∥

∥

∥

f

(

t, x0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

− g

(

t, y0 +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)∥

∥

∥

∥

≤ η(t) ≤ Kη .

Since Eα(θt
α) ≥ 1 for all t ∈ J, we have

‖Tz − Sz‖B = sup
t∈J

(‖(Tz − Sz)(t)‖
Eα(θtα)

)

≤ Kη.

Since the operators T, S satisfies the conditions of Lemma 2.2, by applying it, we obtain

‖FT − FS‖B ≤ Kη

1−
(

M2

θ
+M3

) .

Note that

x∗(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1FT (s)ds, t ∈ J ;

and

y∗(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1FS(s)ds, t ∈ J ;

are the unique solutions of nonlinear implicit FDEs (1.1)–(1.2) and (3.9) –(3.10) respectively.
Then for any t ∈ J , we have

‖x∗(t)− y∗(t)‖ ≤ ‖x0 − y0‖+
1

Γ(α)

∫ t

0
(t− s)α−1‖FT (s)− FS(s)‖ds

≤ ‖x0 − y0‖+
1

Γ(α)

∫ t

0
(t− s)α−1

Eα (θs
α) sup

s∈J

(‖FT (s)− FS(s)‖
Eα (θsα)

)

ds

= ‖x0 − y0‖+
‖FT − FS‖B

Γ(α)

∫ t

0
(t− s)α−1

Eα (θs
α) ds

= ‖x0 − y0‖+ ‖FT − FS‖B
(

Eα (θt
α)− 1

θ

)

≤ ‖x0 − y0‖+
Eα (θt

α)Kη

θ

[

1−
(

M2

θ
+M3

)] .

This gives,

‖x∗ − y∗‖B = sup
t∈J

(‖(x∗ − y∗)(t)‖
Eα (θtα)

)

≤ ‖x0 − y0‖+
Kη

θ

[

1−
(

M2

θ
+M3

)] ,

which is the desired inequality (3.11). ✷
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Remark:

(1) Theorem 3.3 gives the dependence of the solution of the problem (1.1)-(1.2) on the
initial condition as well as on the functions involved on the right-hand side.

(2) If Kη = 0 in (3.11), that is when f = g, Theorem 3.3 gives the dependency of solution
of (1.1)-(1.2) on initial condition.

(3) If x0 = y0 and Kη 6= 0 in (3.11), then Theorem 3.3 gives the dependency of solution
of (1.1)-(1.2) on functions involved in the right hand side of equation.

(4) If x0 = y0 and Kη = 0 in (3.11), Theorem 3.3 gives the uniqueness of solution of the
problem (1.1)-(1.2).

3.3 Dependency of solution through Pompeiu–Hausdorff functional

Next, we consider an equation of the form,

xz(t) = z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, t ∈ J ; (3.14)

where z is a solution of fractional functional equation

z(t) = f

(

t, z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

, t ∈ J, (3.15)

where f is as in the problem (1.1)-(1.2). From equations (3.14)–(3.15) it follows that
xz(0) = z(0) = f(0, z(0), z(0))

Theorem 3.4 Let f : J ×X ×X → X satisfies the assumptions (A1) and f(0, x, x) = x,

for all x ∈ X. Then the equation (3.14) has a solution in CL(J,BR) for some L,R > 0. If

S ⊂ CL(J,BR) is its solution set, then card S= card BR.

Proof: Consider the operator T∗ : (CL(J,BR), ‖ · ‖B) → (CL(J,BR), ‖ · ‖B) defined by,

T∗(z)(t) = f

(

t, z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

, t ∈ J (3.16)

Proceeding as in proof of Theorem 3.2, there exist constants L,R > 0 such that T∗ is a
continuous operator on CL(J,BR). One can verify that, the operator T∗ does not satisfies
Lipschitz condition and hence T∗ is not a Picard operator.

Next, We apply Lemma 2.1 to prove that the operator T∗ is a weakly Picard operator. For
each α ∈ BR, we defineXα = {z ∈ CL(J,BR) : z(0) = α}. Clearly, CL(J,BR) =

⋃

α∈BR
Xα.

By assumption for any z ∈ Xα, we have

T∗(z)(0) = f (0, z(0), z(0)) = f (0, α, α) = α.

Therefore, for each α ∈ BR, Xα is invariant under T∗. Proceeding as in the proof of
Theorem (3.2), one can verify that for each α ∈ BR, the operator T∗|Xα

: Xα → Xα is a



12

Picard operator. Using Lemma 2.1, T∗ is weakly Picard operator. By definition 2.2, for any
x0 ∈ CL(J,BR ) the seq T n

∗ (x0) converges to the fixed point of T ∗, which is the solution
of fractional functional equation (3.15), from which we can obtain the solution of (3.14).
Following the similar steps of Theorem 4.1 of [35], one can complete the proof of

card S = card BR.

✷

In order to discuss the data dependency of solution, we consider the equations (3.14)–
(3.15), and the equations

xz(t) = z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, t ∈ J, (3.17)

where z is a solution of functional equation

z(t) = g

(

t, z̃(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

, t ∈ J, (3.18)

and g ∈ C(J ×X ×X,X) is any other nonlinear function need not equal to f .

Theorem 3.5 Assume that f and g satisfies the hypothesis (A1) and f(0, x, x) = x =

g(0, x, x) for all x ∈ X. Let there exists K > 0 such that

‖f(t, x, y)− g(t, x, y)‖ ≤ KEα(θt
α), t ∈ J, x, y ∈ X,

for sufficiently large θ > 0 satisfying
M2

θ
+M3 < 1. If S and Ŝ are the solution sets of the

equation (3.15) and (3.17) respectively, then there exists L∗, R∗ > 0 such that

H‖·‖B

(

S, Ŝ
)

≤ KTα

Γ(α+ 1)

[

1−
(

M2

θ
+M3

)] , (3.19)

where H‖·‖B is the Pompeiu-Hausdorff functional with respect to ‖ · ‖B on CL∗(J,BR∗).

Proof: Since g : J ×X ×X → X satisfies the conditions of Theorem 3.4, proceeding as in
the proof of Theorem 3.4, we can choose L̃ > 0 and R̃ > 0 such that the mapping

S∗ :
(

CL̃(J,BR̃), ‖ · ‖B
)

→
(

CL̃(J,BR̃), ‖ · ‖B
)

defined by

S∗(z)(t) = g

(

t, z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

(3.20)
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has a fixed point FS∗
∈ CL̃(J,BR̃). Define L∗ = max{L, L̃} and R∗ = max{R, R̃}, then one

can verify that FT∗
, FS∗

∈ CL∗(J,BR∗). Now, for any z ∈ CL∗(J,BR∗) and t ∈ J , we have

‖T 2
∗ (z)(t)− T∗(z)(t)‖ = ‖T∗(T∗(z)(t)) − T∗z(t)‖

=

∥

∥

∥

∥

f

(

t, T∗(z)(0) +
1

Γ(α)

∫ t

0
(t− s)α−1T∗(z(s))ds, T∗(z(t))

)

−f

(

t, z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)∥

∥

∥

∥

≤ M2

∥

∥

∥

∥

(

z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1T∗(z(s))ds

)

−
(

z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds

)∥

∥

∥

∥

+M3‖T∗(z)(t)− z(t)‖

≤ M2

Γ(α)

∫ t

0
(t− s)α−1‖T∗(z(s))− z(s)‖ds +M3‖T∗(z)(t) − z(t)‖

≤ M2

Γ(α)

∫ t

0
(t− s)α−1

Eα(θs
α)

‖T∗(z(s))− z(s)‖
Eα(θsα)

ds+M3Eα(θt
α)

‖T∗(z(t)) − z(t)‖
Eα(θtα)

≤ M2

Γ(α)
‖T∗(z)− z‖B

∫ t

0
(t− s)α−1

Eα(θs
α)ds+M3Eα(θt

α)‖T (z) − z‖B

≤ M2‖T∗(z)− z‖B
Eα(θt

α)

θ
+M3Eα(θt

α)‖T∗(z)− z‖B .

This gives
‖T 2

∗ z(t)− T∗z(t)‖
Eα(θtα)

≤ M2

θ
‖T∗z − z‖B +M3‖T∗z − z‖B

Therefore

‖T 2
∗ z−T∗z‖B ≤ M2

θ
‖T∗z−z‖B+M3‖T∗z−z‖B =

(

M2

θ
+M3

)

‖T∗z−z‖B , z ∈ CL∗(J,BR∗).

On the similar line, we have

‖S2
∗z − S∗z‖B ≤

(

M2

θ
+M3

)

‖S∗z − z‖B , z ∈ CL∗(J,BR∗)

Further, for any z ∈ CL∗(J,BR∗) and t ∈ J , we have

‖T∗(z)(t)− S∗(z)(t)‖

=

∥

∥

∥

∥

f

(

t, z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)

−g

(

t, z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1z(s)ds, z(t)

)∥

∥

∥

∥

≤ KEα(θt
α)

This gives,

‖T∗z − S∗z‖B = sup
t∈J

‖T∗z(t)− S∗z(t)‖
Eα(θtα)

≤ K, z ∈ CL∗(J,BR∗).
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Since, the operators T∗, S∗ fulfills the requirements of Lemma (2.3), by an application of
it, we obtain

H‖·‖B (FT∗
, FS∗

) ≤ K

1−
(

M2

θ
+M3

) .

Note that

x∗z(t) = z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1FT∗

(s)ds, t ∈ J ;

and

y∗z(t) = z(0) +
1

Γ(α)

∫ t

0
(t− s)α−1FS∗

(s)ds, t ∈ J ;

are the solutions of (3.14) and (3.17) respectively. Therefore, for any t ∈ J , we have

‖x∗z(t)− y∗z(t)‖ ≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖FT∗

(s)− FS∗
(s)‖ds

This gives,

H‖·‖B (x
∗
z, y

∗
z) ≤

1

Γ(α)

∫ t

0
(t− s)α−1H‖·‖B (FT∗

, FS∗
)ds

≤ K

Γ(α)

[

1−
(

M2

θ
+M3

)]

∫ t

0
(t− s)α−1ds

=
Ktα

Γ(α+ 1)

[

1−
(

M2

θ
+M3

)]

≤ KTα

Γ(α+ 1)

[

1−
(

M2

θ
+M3

)]

Therefore,

H‖·‖B

(

S, Ŝ
)

≤ KTα

Γ(α+ 1)

[

1−
(

M2

θ
+M3

)] ,

which is the desired inequality (3.19) ✷

Remark 3.6 Theorem 3.5, gives the dependency of solution on functions involved in the

right hand side of the problem (3.14)-(3.15). In particular, if K = 0 then f = g, and we

obatin uniquness of the solution.



15

4 Example

Consider the nonlinear implicit FDEs of the form,

c
0D

1

2

t x(t) =

√
π

4
− 1

2
t
1

2 +
1

2

(

x(t) + |c0D
1

2

t x(t)|
)

, t ∈ J := [0, 0.5], (4.1)

x(0) = 1 ∈ X (4.2)

in the Banach space X = (R, | · |). Define f : J ×X ×X → X by

f(t, x, y) =

√
π

4
− 1

2
t
1

2 +
1

2
(x+ |y|)

For any t1, t2 ∈ J and xi, yi ∈ X, i = 1, 2, we have

|f(t1, x1, y1)− f(t2, x2, y2)| =
∣

∣

∣

∣

(√
π

4
− 1

2
t
1

2

1 +
1

2
(x1 + |y1|)

)

−
(√

π

4
− 1

2
t
1

2

2 +
1

2
(x2 + |y2|)

)
∣

∣

∣

∣

≤ 1

2
|t

1

2

1 − t
1

2

2 |+
1

2
(|x1 − x2|+ ||y1| − |y2||)

≤ 1

2
|t1 − t2|+

1

2
(|x1 − x2|+ |y1 − y2|)

Therefore, the function f satisfies hypothesis (A1) with constants M1 = M2 = M3 =
1

2
.

Note that,

M2T
α

Γ(α+ 1)
+M3 =

1
2 (0.5)

1

2

Γ(32 )
+M3 =

√

0.5

π
+

1

2
= 0.8989 < 1.

Since the function f satisfies all conditions of Theorem 3.2, the problem (4.1)–(4.2) has
unique solution. By direct calculation one can verify that the solution of the problem
(4.1)–(4.2) is

x∗(t) = t
1

2 + E 1

2

(t
1

2 ), t ∈ J.

Next, we consider another implicit FDEs

c
0D

1

2

t x(t) =
t
1

2

2
+ +

1

2

(

x(t) + |c0D
1

2

t x(t)|
)

, t ∈ [0, 0.5], (4.3)

x(0) = 1−
√
π

2
∈ X (4.4)

Define g : J ×X ×X → X by

g(t, x, y) =
t
1

2

2
+ +

1

2

(

x(t) + |c0D
1

2

t x(t)|
)

, t ∈ J.

One can verify that the function g : J ×X ×X → X defined by

g(t, x, y) =
t
1

2

2
+ +

1

2
(x+ |y|) ,
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satisfies all conditions of Theorem 3.2 with constants M1 = M2 = M3 =
1

2
. One can verify

that

y∗(t) = t
1

2 + E 1

2

(t
1

2 )−
√
π

2
, t ∈ J.

is a exact solution of (4.3)-(4.4). Note that for any t ∈ J and x, y ∈ X

|f(t, x, y)− g(t, x, y)| =
∣

∣

∣

∣

∣

(√
π

4
− 1

2
t
1

2 +
1

2
(x+ |y|)

)

−
(

t
1

2

2
+ +

1

2
(x+ |y|)

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

√
π

4
− t

1

2

∣

∣

∣

∣

≤
√
π

4
+ t

1

2 := η(t).

Since f, g satisfies all the conditions of Theorem 3.3, by applying it, we obtain

‖x∗ − y∗‖B ≤ ‖x0 − y0‖+
Kη

θ

[

1−
(

M2

θ
+M3

)] , (4.5)

where Kη = maxt∈J η(t) = maxt∈J

(√
π

4
+ t

1

2

)

=

√
π

4
+ (0.5)

1

2 = 1.1502. Take θ = 2, we

have
M2

θ
+M3 < 1. With this choice of θ, from (4.5), we have

‖x∗ − y∗‖B ≤ |1− (1−
√
π

2
)|+ 1.1502

2 [1− 0.75]
=

√
π

2
+ 2.3004 (4.6)

Using the exact solution and by actual calculation, we have

‖x∗ − y∗‖B = sup
t∈J

|x∗ − y∗|
E 1

2

(θt
1

2 )
≤ |x∗ − y∗| =

√
π

2
<

√
π

2
+ 2.3004 (4.7)

Remark 4.1 Form the inequalities (4.6) and (4.7), it is observed that the difference of

solution calculated by applying Theorem 3.3 is similar to the difference of solution that

calculated actually.

5 Concluding remarks

Observing the applicability of Caputo–Fabrizio (CF) fractional derivative operator [39]-
[41] and Atangana–Baleanu–Caputo (ABC) fractional derivative operator [43, 44, ?] that
possesses a non-singular kernel, one can analyze and extend results of the present papers
for the implicit FDEs with CF and ABC fractional derivative operators.
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