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Abstract

In the current paper, we consider multi-derivative nonlinear FDEs involving Riemann-
Liouville version of Atangana-Baleanu fractional derivative. We investigate the funda-
mental results about the existence, uniqueness, boundedness and dependence of the
solution on various data. The analysis is based on a fractional integral operator due
to T. R. Prabhakar involving generalized Mittag-Leffler function , the Krasnoselskii’s
fixed point theorem, and Gronwall-Bellman inequality with continuous functions.

Key words: Multi-derivative fractional differential equations, Atangana—Baleanu deriva-
tive, Existence and uniqueness, Dependence of solution, Gronwall-Bellman inequality.

2010 Mathematics Subject Classification: 26A33, 34A12, 34A08, 34A40

1 Introduction

Fractional differential equations (FDEs) [1, 2, 3, 4, 5] appeared as an excellent mathematical
tool for modeling of many physical phenomena appearing in various branches of science and
engineering such as viscoelasticity, self-similar protein dynamics, continuum and statistical
mechanics, dynamics of particles etc. For more details, one can refer [6, 7, 8, 9, 10, 11] and
furthermore articles referred in that. Crucial development about existence and uniqueness
theory, various sorts of stabilities, data dependency and the controllability results for a
different class of FDEs can be found in [12, 13, 14, 15, 16] and the references cited therein.

To avoid the singularity appearing in the classical fractional differential operators many
researchers are attempting to build up the theory of fractional calculus by constructing
different kinds of fractional derivative operators with the nonsingular kernel. In this sense,
Caputo and Fabrizio [17] constructed a new fractional derivative which a variant of Ca-
puto derivative with the singular kernel replaced by the exponential function as its kernel.
Atangana and Baleanu in [18] introduced non singular Caputo and Riemann-Liouville ver-
sion of fractional differential operator with Mittag-Leffler function as its kernel. Taking
advantage of the nonsingularity of Atangana-Baleanu fractional derivative operators, many
authors [19, 20, 21, 22, 23, 24] has attempted to handle the issue of diverse ailment mod-
eled in the form of FDEs involving Atangana-Baleanu fractional derivative. For additional
point by point concentrates on various qualitative and quantitative properties of solutions



to FDEs with Atangana-Baleanu fractional derivative, the interested reader can refer to
[25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

On the other hand, Mohamed et. al. [35], considered multi-derivative initial value prob-
lem for Caputo FDEs and studied the existence and uniqueness of the solution and obtained
numerical solution through Adomian, Picard, and predictoedrcorrector technique. Kucche
et. al. in [36] extended the work of [35] to the system of multi-derivative FDEs involving the
Caputo fractional derivative and studied existence, uniqueness and continuous dependence
of solution. Further, they have discussed validity, convergence, and error estimation for
Picards method.

Inspired by the work of [37, 38, 39], on the line of [35, 36], we consider multi-derivative
nonlinear FDEs involving Riemann-Liouville version of Atangana-Baleanu fractional deriva-
tive (ABR derivative) of the from:

=5 ABROD%U(T) = f(ryw(r)), 7€ J, (1.1)
w(()) =wo € R, (1'2)

where J = [0,T], T > 0, 0 < a < 1, 4BE DY denotes the ABR-fractional differential
operator of order a and f € C(J x R,R) is a non-linear function.

We derive an equivalent fractional integral equation to ABR-FDEs (1.1)-(1.2) ana-
lytically and via Lapalace transform. Using the properties of fractional integral oper-
ator S;%w;a . we derive some supplementary results. The existence of solution is ob-
tained by using Krasnoselskii’s fixed point theorem. We obtain uniqueness of solution
via Gronwall-Bellman inequality as well as using the properties of fractional integral oper-
ator £ , ;.41 The boundedness and the continuous dependence of the solution is obtained
through Gronwall-Bellman inequality for continuous function.

We organize our work as follows: In section 2, we recall basic definitions and results
about Atangana-Baleanu fractional derivative and the generalised Mittag-Leffler function.
In section 3, we derive an equivalent fractional integral equation to ABR-FDEs (1.1)—(1.2)
analytically as well as using the Laplace transform. In section 4, we derive supplementary
results and existence and uniqueness of solution. In section 5, we derive boundedness and
data dependence of solution. In section 6, an example is provided to illustrate the existence
results.

2 Preliminaries

In this section, we recall basic definitions and results about Atangana-Baleanu fractional
derivative and the generalised Mittag-Leffler function.

Definition 2.1 [25] Let p € [1,00) and 2 be an open subset of R, the Sobolev space HP ()
is defined as

HP(Q) = {f € L2(Q) : D f € LX), for all |8] < p} .



Definition 2.2 [18] Let w € H*(0,1) and 0 < a < 1, the left Antagana-Baleanu fractional

derivative of w of order « is defined by

ABR pay(7) — 1B£ao)¢ % /OT E,, [_ - fa(f — a)o‘} w(o)do,

where B(a) > 0 is a normalization function satisfying B(0) = B(1) = 1 and E, is one

parameter Mittag-Leffler function.

Definition 2.3 [18] Let w € H'(0,1) and 0 < o < 1, the left Antagana-Baleanu-Caputo

fractional derivative of w of order « is defined by

ABC pay(r) = fiao)z /OT E, [_ - fa(r — a)o‘] W'(0)do,

where B(a)) > 0 is a normalization function satisfying B(0) = B(1) = 1 and E, is one

parameter Mittag-Leffler function.

Definition 2.4 [40, 41] The generalized Mittag-Leffler function Egﬁ(z) for the complex
a, B,y with Re(a) > 0 is defined as
o0 k
(%) kZ_O I(ak+B) k!’

where () is the Pochhammer symbol given by

o=1, Me=vy+1)--(v+k-1), k=12,

Note that
E} 5(2) = Ea5(2), Ef1(2) = Ea(2).

We need following results related with Laplace transformation.

Lemma 2.1 [18] If £ {f(r);p} = F(p), then £ {ABE D f(r);p} =

I—ap*+135
1me—0 k
Lemma 2.2 [2] L [TkaJ“B_lEgkz;(:taTo‘);p] _ K E® (1) = %E(T)
’ T

(pa T a)k—l—l’

Definition 2.5 [41, 42| Let p,pu,w,y € C (Re(p), Re(n) > 0). Then fractional integral

operator £, , ..y on a class L(a,b) is defined by

Epasas ) = [ (7 — o) B ol — 0)7]¢(0)do, T € [a,b].



Lemma 2.3 [41,42] Let p, i, w, 7y € C (Re(p), Re(pr) > 0),b > a, then the operator &), ..+

is bounded on Cla,b] such that

(€ wrar @) (T < QIS

where
(b )R S [Vl w(b — a)Rele) |k
@=tm kzzo T (pk + p)| [(Re(p)k + Re(p)] 3] '

Lemma 2.4 [41, 42] Let p, p,w,y € C (Re(p), Re(u) > 0), then the operator Slu’w;mr is

invertible in the space L(a,b) and for f € L(a,b) its left inversion is given by the relation

([g;u,w;a—s-] o f) T= (Dgiygp_,g+u,w;a+f) (1), a <7<,

where v € C, (Re(v) > 0) and DZ}:V is the Riemann-Liouville fractional differential operator

of order u+ v with lower terminal a.

Lemma 2.5 [41, 42] Let p, p,w,y € C (Re(p), Re(p) > 0). If the integral equation

/T(T o) E] (7 — 0)?]é(0)do = (1), a <7 <b,

is solvable in the space L(a,b), then its unique solution ¢(7) is given by

o) = (DU &y iviar ) (1), a <7 <,

where v € C, (Re(v) > 0) and D" is the Riemann-Liowville fractional differential operator

of order yu + v with lower terminal a.

Lemma 2.6 (Krasnoselskii’s Fixed Point Theorem [15]) Let Q be a Banach space. Let
S be a bounded, closed, convex subset of Q and let Fi,Fo be maps of S into Q such that
Frw+Fan € S for every pair w,n € S. If F1 is contraction and Fo is completely continuous,
then the equation

Firw+ Fow =w
has a solution on S.
Lemma 2.7 ( Gronwall-Bellman inequality [43]) Let u and f be continuous and non-

negative functions defined on J = [, 8], and let ¢ be a nonnegative constant. Then the

1nequality



implies that
¢

u(t) < Cexp ( f(s)ds> Jted

(&7

3 Equivalent Fractional Integral Equation

In this section we obtain an equivalent fractional integral equation to the ABR-FDEs (1.1)-
(1.2) in two different ways. Firstly we give the proof by analytical method and then by
using by the method of Laplace transform.

Theorem 3.1 For any function h € C(J), the function w € C(J) is a solution of ABR-
FDEs

dw

g + ABR\DY(7) = h(1),T € J, (3.1)
-

w(0) =wp € R, (3.2)

if and only if w is a solution of fractional integral equation

B(«)

/OT Eq [ — (r- a)"‘] w(o)do + /OT ho)do, T€J.  (3.3)

w(T) =wo — T o

Proof 1: Using definition of ABR-fractional derivative, Eq.(3.1) can be written as

d <w(7) G /0 E, [ @ (e a)a] w(a)da) —h(r), e

dr 11—« 1-a

Integrating both sides of above equation between the limits 0 to 7, we obtain

w(r) + 2@ /0 E, [ @ (e a)a] w(o)do — w(0) = /OTh(a)da, Y

l1—a 1-a

which gives desired fractional integral Eq. (3.3).

Conversely, if w € C(J) satisfies fractional integral Eq.(3.3), then differentiating both
sides of Eq.(3.3) with respect to 7, we obtain

% N fﬁo‘ii/;@a [_1 S (r- 0)0‘] w(o)do = h(r), T € J.

Using definition of ABR-fractional derivative, we get Eq. (3.1). Further putting 7 = 0 in
Eq. (3.3), we get initial condition (3.2).



Proof 2: Taking Laplace transform of both sides of Eq.(3.1), we get

LI (r);p] + L [*PFoDw(r);p] = L[A(7); p)-
Then using formula for Laplace transform of ordinary and ABR-fractional derivative given
in Lemma 2.1, we get

T B(a) p*W(p) _
W(p) — w(0) + 2L W)y,
pW(p) —w(0) [—ap'+ & (p)
where W (p) = L[w(7);p] and H(p) = L[h(7);p]. Using initial condition (3.2), we rewrite
the above equation as
1 Ble)p*'W(p) | 5 1

W =wyp— — + H(p)-.
(p) % T—ap T (p)p

Now taking inverse Laplace transform on both sides of above equation and using convolution
theorem, Lemma 2.2, we obtain

e [l Bl@) (a| ™!
LYW ()] = [,1[; ]— Lt —
W i) =wnl | o T

—Q

« LW (p); T])

R UnEYa L
B(a)

From above equation, we have

w(r) = wp — 2 /OTIEa { = a)a] w(a)da—f—/oTh(a)da.

l—«o l—«o

which is desired fractional integral Eq. (3.3).

Remark 3.2 Using the definition of fractional integral operator 5;Mw;a+ the equivalent

fractional integral equation (3.4) to the ABR-FDEs (3.1)-(3.2) is given by

Bla)gr )+ /0 " h(o)do, 7€ J.

wir) =wo = 7 oy e

Theorem 3.3 For any f € C(J xR, R), the function w € C(J) is a solution of ABR-FDEs

(1.1)=(1.2) if and only if w is a solution of fractional integral equation

() = wy — 2 /OT Eeo [ @ (s a)a} w(o)daJr/OTf(o,w(a))da, red.  (3.4)

l-« l-«
Proof: Proof follows by taking h(7) = f(7,w(7)), 7 € J, in the Theorem 3.1. O

The proof of following theorem is based on the properties of fractional integral operator

&) iy Studied in [42, 41].



4 Existence and uniqueness results

Theorem 4.1 Let 0 < o < 1. Define the function F on C(J) b

(Fw)(r) = fﬁo‘i (5;1 . 0+w) (1), we C(J), T € J. (4.1)

[t I PP

Then:

(i) F is bounded linear operator on C(J).
(ii) F satisfies Lipschitz condition.
(iii) F(S) is equicontinuous, where S is any bounded subset of C(J).

(iv) F is invertible and for any f € C(J), the operator equation Fw = f has unique
solution in C(J).

Proof: (i) Since, by definition and Lemma 2.3, the integral operator £} ol =a 0t is bounded

T—a?

and linear operator on C(.J), such that

‘e;l gy ]g@\wnmw,
where we find
= i R a
@= Tkz_orakﬂ Yak+1) —T;M—mw(l_aw),
we have
| Fuwl|| = ‘fﬁo‘i ‘ 5&,1,%;%” ' < Q|wl|, forallwe C(J).

Thus F is bounded linear operator on C(J).

(ii) Let any w,n € C(J). Then using linearity of 7 and boundedness of operator £ v, 04
7 ) 1 « )

we find for any 7 € J,

(Fa)) = F I = 1(Fw =)0 = T | (&, oy =) )
< 2 et ool - ) < QT ol

This gives
17w~ il < @2 o ), o, e ().

Thus the operator F satisfies Lipschitz condition with Lipschitz constant @@ = TE, 2 (ﬁTa) .



(iii) Let S = {w € C(J) : ||w|| < R} be any closed, bounded subset of C(J). Then for any
w € S and any 711,79 € J with 7 < 72, we find

(Frm = (Pl = |0 (&1, o g) () = T (L, o gy (7

B ("8, [ oo - [Be [t o] stone

< 1B£040)é /O” {Ea [—1 i[a(ﬁ — 0)0‘} —Eq [—1 f (19 — a)a} }w(g)da—
B0 e [ o)

: fi(a; —~ <1 > F(k:al+ 1) /OT1 (11 =) = (73 —0>k“‘W(0)Ida

(=)

Ba)
1 az

=0

o,

k
[e'e) a k el
< _ ko _ ko
= 1-a kzo( > Fka+1)/ {(TQ o) —(n—-o) }d"
RB(Q) = a " ko
1- akz()(l—a) Fka+1)/ (72 = 0)"do
< _ ka+1 ka+1 _ _ka+1 _ ka+1
<14 g (1 > ka+2) { (12 —71) + 75 7 4+ (2 — 1) }
ka+1 _ _ka+1
S az(l > k:oz+2){7— E }

K‘
O

From above inequality it follows that, if |73 — 72| — 0 then |(Fw)m — (Fw)m| — 0. This
prove that F(S) is equicontinious on J.

(iv) Using Lemma 2.4 and Lemma 2.5, for any f € C(J), we have

(531 o f)_l(f) - ( DUEL f) (r), 7 € (a,b), (1.2)

I 1—ar

where 8 € C, with Re(8) > 0.
Then using definition of operator F and Eq. (4.2), we have

-1
(]:—lf) (1) = <f£a0)[501«1’f—%;0+f) (1) = 1Bza0)é (Déiﬁgm;l%;wf) (1), 7 € (a,b).

This prove that F is invertible on C(J) and the operator equation
(Fw)(r) = f(7), T € J,

has the unique solution

w(T) = (]:_lf) (1) = 1BE03 ( Hﬁé’ }371_%7%]") (1), 7 € (a,b).




We have the following existence theorem for the particular case of ABR-FDEs (1.1)

Theorem 4.2 If the function f € C(JxR,R), then ABR-FDE ABE D (1) = f(1,w(7)),
T € J is solvable in C(J) and has solution in C(J) given by

11—« _ ~
o) = g (P o) (D) 7€

where 3 € C, (Re(B) > 0) and f(1) = Jo flo,w(o))do, T € J.
Proof: The equivalent integral equation of ABR-FDE
ABR Do) = f(r,w(T)), T € J,

is given by

B(«)

l—«

/OTEa {_ — (7~ U)a] w(o)do = /OT f(o,w(o))do, T € J.

11—«

Using definition of operator F defined in Eq. (4.1), above equation can be written as

(Fa)n) = [ fowlo)do = fr). T e . (4.3)
0
By Theorem 4.1, the operator Eq. (4.3) is solvable and has a solution in C(J) given by
_l-a /e 7 .
w(r) = Bla) <D0+ 5{175’%;%]’ (1), 7€ J; 8 €C,Re(B) > 0.

Now we derive existence and uniqueness results to the ABR-FDEs (1.1)—(1.2).

Theorem 4.3 (Existence Theorem.) Let the function f € C(J x R,R) satisfies Lips-

chitz type condition

|f(7—’w) - f(TJl)| < p(T)‘w - 77|’ w,n € C(J),

where p : J = RT, with L = sup p(t). If0 < L < min {1, 5=}, then ABR-FDEs (1.1)~(1.2)
TeJ
has a solution in C(J) provided

2B(0)TEq (1257°)

1. 4.4
T a < (4.4)
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Proof: Define,

M¢T
R |wol + My . , where My = sup|f(7,0)|.
1 _ LT B B(a)TE?f((mea) TeJ

By the choice of L and condition (4.4), we have R > 0.
Consider the set,
S={welCJ): ||lw| <R}.

One can verify that S is closed, convex and bounded subset of Banach space 2. Consider
the operators F1 : & — @ and F5 : S — () defined by,

(Fiw)(1) = wo + f(r,w(7)), T € J,
(Fow) (1) = = (Fw)(7), T € J,

where we take F as defined in the Eq.(4.1). The equivalent fractional integral Eq.(3.4) to
the ABR- FDEs (1.1)-(1.2) can be written as operator equation in the following form

w=Fiw + Fow, w e C(J).

We prove that the operators F1 and JF> satisfies conditions of Lemma 2.6. The proof of the
same have been given in following steps.

Step 1) F; is Lipschitz.

Using Lipschitz condition on f, for any w,n € C(J) and 7 € J we obtain,

[(Frw) () = (Fin)(7)| < [f(7,w(7)) = f(7.n(7))] < p(7T)|w(7) = n(7)| < Llw(r) — n(7)],
This gives,
[F1w = Finl| < Lilw = nl|, w,n € C(J).
Step 2) F3 is completely continuous.

Using Ascoli-Arzela theorem and Theorem 4.1, one can easily verify that the operator
Fo = —F is completely continuous.

Step 3) Fiw + Fan € S, for w,n € S.

For any w,n € S, using Theorem 4.1, we obtain
|[(Frw + Fan)(7)| < [(Frw)(7)] + |(Fan)(7)]

< ol + /OT|f<a,w<a>>|da+B(‘“)TEM( « Ta) I

l-« 1-«a
<faal + [ 100000 = f@.0ldo + [ 10l do+ T ({21 R

T T B
< \woy+L/ \w(a))\da—i—Mf/ do+ 1 (@) 1, (1 o TO‘>R
0 0

— —
B
< |wo| + LRT + My7 + 1(OC)TIE&72 (10‘Ta> R
—

B
< |wol + LRT + MT + 1(0‘)TEQ,2 <1aTa> R. (4.5)
—
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By definition of R i.e. condition(4.4), we get

B(a)TEaz (12577

MIT=R|1-LT—
|wol + My s

We write from inequalities (4.5) and (4.6)
|(Fiw + Fon)(7)| < R, T € J.

This gives
| Fiw + Fan|| < R, for all w, n € S.
This shows that Fiw + Fan € S, for w,n € S.

From steps 1 to 3, it follows that all the conditions of Lemma 2.6 are satisfied. Therefore
by applying it, the operator equation

w = Fiw + Faw,

has a fixed point in S, which is a solution of ABR-FDEs (1.1)-(1.2). This completes the
proof of the theorem. O

Following theorem provides, the uniqueness of solution to ABR-FDEs (1.1)-(1.2) via

properties of fractional integral operator 5; L= gy without using the Gronwall-Bellman

T a0

inequality.

Theorem 4.4 (Uniqueness Result) Under the assumptions of Theorem 4.3, the ABR-
FDEs (1.1)<(1.2) has unique solution in C(J).

Proof: The equivalent fractional integral equation to ABR-FDEs (1.1)—-(1.2) can be written
in operator equation form as

(5{1 | —a ,O+w)(7') = f(r), T € J, (4.7)

T "
where

~ _1—a

f(r) = Bla) (wO —w(T) + /OTf(J,w(J))dU) , TE

By Theorem 4.3, the operator Eq.(4.7) is solvable in C(J). Therefore by applying Lemma
2.5, the operator equation Eq.(4.7) has unique solution in C'(J), which is the unique solution
of ABR-FDEs (1.1)~(1.2). 0

Theorem 4.5 (Uniqueness Result) Under the assumptions of Theorem 4.3, the ABR-
FDEs (1.1)—(1.2) has unique solution in C(J).
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Proof: Let w,n be two solutions of ABR-FDEs (1.1)—(1.2). Using linearity of fractional
integral operator, we find for any 7 € J

w(r) — ()] = ‘(w _ Bl

— (€1, a0, @) () + /0 ' f(a,w(o-))dg)
- <w0 - fgao)z (1,22 04 () + /OT f(o,n(a))da>‘

6L gl )

11— obi=g
B(a) [T —o

E _ «
1—a/0 O‘<|1—a(7— o)

2 [TBa (1257 o) = n(@ldo + [ no)iuto) = nieldo

11—«

/oT [B(a) Ea <1 faTa> +P(U)] w(o) — n(o)|do.

1l—«

+ /OT |f(o,w(o)) = f(o,n(0))|do

IN

> w(o) = n(o)|do + /OT p(o)|w(o) —n(o)|do

IN

IN

Applying Lemma 2.7, we get
w(T) =n(7)| <0, 7€ J,

which shows that w(7) = n(7), for all 7 € J. This proves the uniqueness of solution of
ABR-FDEs (1.1)~(1.2). 0

5 Estimate on solution and data dependence

Theorem 5.1 Under the assumptions of Theorem4.3, if w(7) is a solution of ABR-FDEs
(1.1)~(1.2), then

B(a)
11—«

E, < a T“) —I—p(a)] da> cred  (5.1)

1l -«

[w(T)] < {lwol + M;T} exp </0 [

Proof: If w(7) is a solution of ABR-FDEs (1.1)—(1.2), then it satisfies equivalent intgeral
Eq.(3.4). Hence we write for any 7 € J,

o) < ool + 0 [ (|2 = 00"

<l 1 [T ({2 =0 ) le(oldo + [ 1f0.0(0) - S0l do

)wtoldo + [ 17towto)]do

+/0 |f(c,0)|do

<fool + 10 [ " ({21 ) et + [ plololdo + Mye

B(a)
11—«

= Gl + 21,7y + [ |78, (2017) 4 00)| (oo
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Applying Lemma 2.7, we obtain

lw(7)| < {Jwo| + M;T} exp </0T [BEOZEQ <1 a TO‘> +p(a)] da) , TEJ

1 _
O
In order to discuss the data dependence result, we consider ABR-FDEs
d _
T APRDI(r) = [ (r(n) 7 € (5.2)
n(0) =no € R. (5.3)

Theorem 5.2 Assume the conditions of Theorem 4.3 holds. Let ¢ > 0, i = 1,2 be any

two real numbers such that,

wo —mol < ex, |f(m,n(1)) = f(m,n(r)| < €2, T € J,

where n(T) is a solution of ABR-FDEs (5.2)—~(5.3). Then, the solution w(t) of (1.1)—(1.2)
depends continuously on the function involved on the right side of Eq. (1.1).

Proof: Since w, n are the solutions of ABR-FDEs (1.1)—(1.2) and (5.2)—(5.3) receptively. We
find for any 7 € J

o) = n(r)) = | (s = 2 [ B0 ({2t = )"l + [ toatoao
_ <770 S /0 'E. <1‘_"‘a (r - a)a) n(o)do + /0 ' f(a,n(a))da)‘
<loo =l + 10 [ (|2 ) loto) = n(o)] do
+ [ 1ftesto)) = Flom(o)ldo
<loo =l + 0 [ B (12— 07 le(o) oo
+ [ 1ftowto)  soneldo + [ Ifew(o) - Flom()ldo
<o+ DO /O o (1 faTa) () - n(o)ldo + /OTp(cr)|w(o*) —n(o)ldo + e /0 do

<arars [ [BW E. (1 j"aTa) +p<a>} w(0) = 1(0)\do.

l—«

Applying Lemma 2.7, we get

w(r) = n(7)| < (€1 + €2T) exp (/0 {B(O‘) E, < a Ta> —i—p(a)} da> TeJ  (54)

11—« l—«

From Eq. (5.4) we observe that the solution w(7) of ABR-FDEs (1.1)—(1.2) depends con-
tinuously on the function involved the right side of Eq. (1.1). O
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Remark:

(1) Theorem 5.2 gives the dependency of the solution of the ABR-FDEs (1.1)—(1.2)
simultaneously on the initial condition and the functions involved on the right-hand
side.

(2) If e =0 and €3 # 0in Eq. (5.4), then wg = 7o and Theorem 5.2 gives the dependency
of solution of ABR-FDEs (1.1)—(1.2) on the function involved on right hand side.

(3) If ¢, # 0 and €3 = 0 in Eq. (5.4), then f = f and Theorem 5.2 gives the dependency
of solution of ABR-FDEs (1.1)—(1.2) on initial condition.

(4) If ¢, = 0 and €2 = 0 in Eq. (5.4), then Theorem 5.2 gives the uniqueness of solution
of ABR-FDEs (1.1)—(1.2).

Let any 4,09 € R and consider the following system of ABR-FDEs

d
=+ APRDRw(r) = g (rw(r),6) 7 € J, w(0) = wo € R, (5.5)
d
ﬁ + ABRODgw(T) =g(r,w(1),00),7 € J, w(0) =wp € R. (5.6)

Following Theorem shows dependency of solution of ABR-FDEs (5.5) and (5.6) on param-
eters.

Theorem 5.3 Let the function g satisfies conditions of Theorem 4.3. Suppose there exists

p,q € C(J,R") such that

|g(7—7w76) _9(7—77775)‘ < p(T)|w - 77|7

‘g(T7w)5) _g(T,W,(SO)‘ < Q(T)|6 - 60|?

If wi, wy are the solutions of ABR-FDEs (5.5) and (5.6) respectively, then

) = ()] < QTS — ol esp ([ |0 ({27 ) 40t o) e .

11—« l—«

where @ = sup q(T).
TeJ

Proof: We find for any 7 € J

jwi(7) — wa(T)]

N ‘ <w0 a ffai /OT Eq (1__aa (T — 0)”) wi(o)do + /OTg(a, wi (o), 5)da)
- <w0 - fiafi /oT fo (1_—aa (7 - U)a> wz(0)do + /OT g(o,ws(0), 50)da> ’

< Bl@) /OTEa< - (T—U)a> (—wi1(0) + wa(0)) do +/0T l9(o,w1(0),8) — g(o,wa(o), do)|do

T 1« 11—«
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IN

m/OT]Ea (‘ (o

) w1(0) — wn(o)ldo + /0 "lg(0.1(0),8) — g(o,wa(o). 8)|do

+ /T lg(0,w2(0),8) — g(o,wa(0), d)|do
0
< IBEOZ/O Eq (1 (_IQ(T — a)a> lw1(0) — wa(o)|do —i—/o p(o)|wi (o) — wa(o)|do

+ / 4()|6 — boldo
0

< 7 [Th ({257 k(o) — wnloldo + [ plolento) = watollda + Qi — ol [ do

11—« 1l -«

1l -« 11—«

s/OT[B(O‘)Ea< « Ta>+p<o>} w1(0) — wa(0)]do + QTI5 — 8.

Applying Lemma 2.7, we get

w1 (7) — wa(7)| < QT|5 — do| exp (/OT [BEOQIEQ ( a T”‘) —i—p(a)} da> Tl

1 l1—a
O
6 Example
Consider a nonlinear ABR-FDEs of the form
d 1
T4 ABRDRw(r) = £ (r.w(r), 7 € J = (0,2, (6.1)
w(0) =1, (6.2)

where f : J X R — R is a continuous nonlinear function such that

w(r)[ +1
2

p(t) =B <;) {TE%,Q (—r%) +E, (—r%> - 1}.

We observe that for any w,n € R and for any 7 € J,

= sl = (B o ) - (M 40 )
1

:§|

f(rw(r)) = +p(1), TE€J,

and

1
(jwl = Il < Slw —nl.

Thus the function f satisfies Lipschitz condition with Lipschitz constant L = % Compare

with Theorem 4.3, we have o = £ and T'= 2. Then the condition (4.4) reduces to

1 1
SEy, (28) B 5) <t
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This implies

1 1
B () <t
2/ 8By, (22)
27

If we choose a normalizing function B(«) satisfying above condition, then by applying
Theorem 4.3, ABR-FDEs (6.1)-(6.2) has unique solution. One can verify that ABR-FDEs
(6.1)-(6.2) has the unique solution

w(T) zg—i—l, 7€ 10,2].

Conclusion

Because of the presence of the nonsingular kernel in the equivalent fractional integral
equation to FDEs involving Atangana-Baleanu derivatives, we can reasonably apply the
Gronwall-Bellman inequality with continuous functions to investigate the qualitative prop-
erties. Also, one can acquire various qualitative properties of the higher class of fractional
integrodifferential equations involving the Atangana-Baleanu fractional derivative in the
sense of Caputo and Riemann-Liouville through the inequalities derived by B. G. Pach-
patte [43].
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