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Abstract

In this paper, we develop the theory of nonlinear hybrid fractional differential equa-
tions involving Atangana–Baleanu–Caputo (ABC) fractional derivative. We construct
the equivalent fractional integral equation and establish the existence results through
it. Further, we build up the theory of inequalities for ABC–hybrid fractional differential
equations and use it to examine the uniqueness, existence of a maximal and minimal
solution and the comparison results.
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1 Introduction

Lakshmikantham and Vatsala [1, 2] developed the primary theory of fractional differential
inequalities with Reimann-Liouville and Caputo fractional derivative. Authors utilized the
investigated fractional inequalities and the comparison results to study the existence of local,
extremal and global solutions to nonlinear fractional differential equations (FDEs). Dhage
and Lakshmikantham [3] initiated the study of first order hybrid differential equations and
investigated the basic results pertaining to existence and uniqueness of solution. Further,
differential inequalities obtained in connection with hybrid FDEs utilized to examine com-
parison results and qualitative properties of solution. Adopting the similar approach of [3],
Zhao et al. in [4] extended the study of first order hybrid differential equations to hybrid
FDEs involving Riemann-Liouville fractional derivative. Further, different class of Hybrid
FDEs subject to various initial and boundary conditions have also been studied by several
researchers [5, 6, 7, 8, 9].

On the other hand, intending to eliminate the singular kernel in traditional fractional
derivatives, Caputo and Fabrizio [10] presented a fractional derivative with the exponential
kernel and Atangana–Baleanu [11] introduced a fractional derivative in the sense of Caputo
with Mittag–Leffler function as its kernel, which notable as ABC–fractional derivative. The
advantage of ABC–fractional derivative is that it is nonlocal and has a non-singular kernel.
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Because of which it has numerous applications in demonstrating different problems that
includes different diseases, such as, dengue fever outbreak [12], tumor-immune surveillance
mechanism [13], the clinical implications of diabetes and tuberculosis coexistence [14], the
free motion of a coupled oscillator [15], smoking models [16] and coronavirus [17]. For the
fundamental development in the theory nonlinear ABC-FDEs, we refer the reader to the
work of Jarad et al. [18], Baleanu et al.[19], Syam et al.[20], Afshari et al. [21], Shah et al.
[22] and Ravichandran et al. [23, 24, 25, 26].

Motivated by the works of [3, 4] and in continuation of a past work we have done in
[27], we develop the theory of nonlinear hybrid ABC-FDEs of the form

ABC
0D

α
τ

(

ω(τ)

f(τ, ω(τ))

)

= g(τ, ω(τ)), a.e. τ ∈ J, (1.1)

ω(0) = ω0, (1.2)

where,

(i) J = [0, T ], T > 0 and 0 < α < 1,
(ii) ABC

0D
α
τ denotes left ABC- fractional differential operator of order α with lower ter-

minal 0,

(iii) f ∈ C(J × R,R\ {0}), ω ∈ C(J) and ABC
0D

α
τ h ∈ C(J), where h(τ) =

ω(τ)

f(τ, ω(τ))
, τ ∈

J .
(iv) g ∈ C is such that g(0, ω(0)) = 0, where

C = {h | h : J × R → R is continious, h(τ, ·) is measurable and h(·, ω) is continious} .

The primary aim of the current study is to determine the equivalent fractional integral
equation to ABC–hybrid FDEs (1.1)-(1.2) and explore the existence results. Further, we
build up the theory of inequalities for ABC–hybrid FDEs and use it to examine the existence
of a maximal and minimal solution and the comparison results.

The current paper is coordinated as follows. In section 2, we review essential definitions
and results about ABC-fractional derivative. In section 3, we give equivalent fractional
integral equations and derive existence result through it. In section 4, we acquire fractional
differential inequalities for ABC–hybrid FDEs. Section 5 deals with the existence of maximal
and minimal solutions of ABC–hybrid FDEs. In section 6, we determine comparison results
relating to ABC–hybrid FDEs.

2 Preliminaries

In this section, we recall the basic definitions and the results about ABC-fractional derivative
which will be used later.

Definition 2.1 A function ω ∈ AC(J,R) is said to be solution of ABC-hybrid-FDEs (1.1)–

(1.2), if the mapping u →
u

f(τ, u)
is absolutely continuous for each u ∈ R and ω satisfies

ABC-hybrid-FDEs (1.1)–(1.2), where AC(J,R) = {h | h : J → R is absolutely continious }.
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Definition 2.2 [20] Let p ∈ [1,∞) and Ω be an open subset of R the Sobolev space Hp(Ω)

is defined as

Hp(Ω) =
{

f ∈ L2(Ω) : Dβf ∈ L2(Ω), for all |β| ≤ p
}

.

Definition 2.3 [11] Let ω ∈ H1(0, T ) and α ∈ [0, 1], the left Atangana–Baleanu–Caputo

fractional derivative of ω of order α is defined by

ABC
0D

α
τ ω(τ) =

B(α)

1− α

∫ τ

0
Eα

[

−
α

1− α
(τ − σ)α

]

ω′(σ)dσ,

where B(α) > 0 is a normalization function satisfying B(0) = B(1) = 1 and Eα is one

parameter Mittag-Leffler function [28, 29] defined by

Eα(z) =

n=∞
∑

n=0

zn

Γ(nα+ 1)
.

The associated fractional integral is defined by

AB
0I

α
τ ω(τ) =

1− α

B(α)
ω(τ) +

α

B(α)
0I

α
τ ω(τ).

where

0I
α
τ ω(τ) =

1

Γ(α)

∫ τ

0
(τ − σ)α−1ω(σ)dσ,

is the Riemann–Liouville fractional integral [28, 29] of ω of order α.

Lemma 2.1 [30] If 0 < α < 1, then AB
0I

α
τ

(

ABC
0D

α
τ ω(τ)

)

= ω(τ)− ω(0).

Lemma 2.2 [20, 23] The equivalent fractional integral equation to the the ABC-FDEs

ABC
0D

α
τ ω(τ) = f (τ, ω(τ)) , τ ∈ J = [0, T ], T > 0,

ω(0) = ω0,

is given by

ω(τ) = ω0 +
1− α

B(α)
f(τ, ω(τ)) +

α

B(α)Γ(α)

∫ τ

0
(τ − σ)α−1f(σ, ω(σ))dσ.

Definition 2.4 [31, 32, 33] The generalized Mittag-Leffler function E
γ
α,β(z) for the complex

numbers α, β, γ with Re(α) > 0 is defined as

E
γ
α,β(z) =

∞
∑

k=0

(γ)k
Γ(αk + β)

zk

k!
,

where (γ)k is the Pochhammer symbol given by

(γ)0 = 1, (γ)k = γ(γ + 1) · · · (γ + k − 1), k = 1, 2, · · ·
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Note that,

E
1
α,β(z) = Eα,β(z) and E

1
α,1(z) = Eα(z).

Lemma 2.3 [30] Let 0 < α < 1 and β, σ, λ ∈ C (Re(β) > 0). Then

ABC
0D

α
τ

[

τβ−1
E
σ
α, β (λ τ

α)
]

=
B(α)

1− α
τβ−1

E
1+σ
α, β (λ τ

α).

Lemma 2.4 [27] If m is any differentiable function on J such that ABC
0D

α
τm ∈ C(J) and

there exists τ0 ∈ (0, T ] with m(τ0) = 0, m(τ) ≤ 0, τ ∈ [0, τ0), then
ABC

0D
α
τm(τ0) ≥ 0.

Lemma 2.5 [3] Let S be a non-empty, closed convex and bounded subset of Banach algebra

Ω and let F1 : Ω → Ω and F2 : S → Ω be two operators such that

(i) F1 is Lipschitzian with Lipschitz constant α,

(ii) F2 is completely continious,

(iii) ω = F1ωF2η =⇒ ω ∈ S for all η ∈ S, and

(iv) αM < 1, where M = sup {||F2(ω)|| : ω ∈ S},

then the operator F1ωF2ω = ω has a solution in S.

3 Existence result

In the following Theorem, we derive an equivalent fractional integral equation to ABC–
hybrid FDEs (1.1)-(1.2).

Theorem 3.1 Let g ∈ C(J × R,R) and assume that, ω →
ω

f(τ, ω)
is increasing in R a.e.

for each τ ∈ J . Then ω ∈ AC(J,R) is a solution of ABC–hybrid FDEs (1.1)–(1.2) if and

only if ω is a solution of fractional integral equation

ω(τ) = f(τ, ω(τ))

[

ω0

f(0, ω0)
+

1− α

B(α)
g(τ, ω(τ)) +

α

B(α)(1 − α)

∫ τ

0

(τ − σ)α−1g(σ, ω(σ))dσ

]

, τ ∈ J.

(3.1)

Proof: In the view of Lemma 2.2, if ω is a solution of ABC–hybrid FDEs (1.1)–(1.2), then
ω satisfies fractional integral equation

ω(τ)

f(τ, ω(τ))
=

ω0

f(0, ω0)
+

1− α

B(α)
g(τ, ω(τ)) +

α

B(α)(1− α)

∫ τ

0
(τ − σ)α−1g(σ, ω(σ))dσ, τ ∈ J,

(3.2)
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which gives Eq.(3.1). Conversely, let ω satisfies Eq.(3.1). Then it can be written in the
form of Eq.(3.2). Operating ABR

0D
α
τ on both sides of Eq.(3.2), we obtain

ABR
0D

α
τ

(

ω(τ)

f(τ, ω(τ))

)

= ABR
0D

α
τ

[

ω0

f(0, ω0)
+AB

0I
α
τ g(τ, ω(τ))

]

=
ω0

f(0, ω0)

ABR

0D
α
τ (1) + g(τ, ω(τ))

=
ω0

f(0, ω0)
Eα

[

−
α

1− α
τα

]

+ g(τ, ω(τ), τ ∈ J.

This gives,

ABR
0D

α
τ

(

ω(τ)

f(τ, ω(τ))

)

−
ω0

f(0, ω0)
Eα

[

−
α

1− α
τα

]

= g(τ, ω(τ)), τ ∈ J.

Using relation between fractional differential operators ABR
0D

α
τ and ABC

0D
α
τ given in The-

orem 1[11], we obtain

ABC
0D

α
τ

(

ω(τ)

f(τ, ω(τ))

)

= g(τ, ω(τ)), τ ∈ J.

Now putting τ = 0 in Eq.(3.2) and using the fact g(0, ω(0)) = 0, we obtain

ω(0)

f(0, ω(0))
=

ω0

f(0, ω0)
. (3.3)

For each τ ∈ J , consider the mapping hτ : R → R defined by,

hτ (η) =
η

f(τ, η)
, η ∈ R.

By assumption hτ : R → R is increasing and hence it is injective. Using definition of hτ ,
Eq.(3.3) can be written as

h0(ω(0)) = h0(ω0).

Since h0 is injective, we have ω(0) = ω0. This completes the proof of the Theorem. ✷

To prove existence results for solution of ABC–hybrid FDEs (1.1)-(1.2), we need follow-
ing assumptions on f and g.

(H1) The function f ∈ C (J × R,R\ {0}) is such that,

(i) |f(τ, ω)− f(τ, η)| ≤ L|ω − η|, L > 0,

(ii) the mapping ω →
ω

f(τ, ω)
is increasing in R a.e. for each τ ∈ J .

(H2) The function g ∈ C is such that, |g(τ, ω(τ)| ≤ h(τ), a.e. τ ∈ J, h ∈ C(J,R+).

Theorem 3.2 Suppose the hypotheses (H1)–(H2) hold. Then ABC–hybrid FDEs (1.1)–

(1.2) has a solution if

L

(∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖

B(α)

)

< 1. (3.4)
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Proof: Let Ω = (C(J,R), ‖ · ‖), where ‖ω‖ = sup
τ∈J

|ω(τ)|. Then Ω is Banach algebra with

multiplication defined by

(ωη)τ = ω(τ)η(τ), ω, η ∈ Ω, τ ∈ J.

Define,

R =

MfL

(
∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+
[

1− α+ Tα

1−α

] ‖h‖

B(α)

)

1− L

(∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+
[

1− α+ Tα

1−α

] ‖h‖

B(α)

) , (3.5)

where Mf = sup
τ∈J

|f(τ, 0)|. In the view condition (3.4), R > 0.

Consider the set,
S = {ω ∈ Ω : ‖ω‖ ≤ R} .

One can verify that S is closed, convex and bounded subset of Banach algebra Ω. Consider
the operators F1 : Ω → Ω and F1 : S → Ω defined by,

(F1ω)(τ) = f(τ, ω(τ)), τ ∈ J, (3.6)

(F2ω)(τ) =
ω0

f(0, ω0)
+

1− α

B(α)
g(τ, ω(τ)) +

α

B(α)(1 − α)

∫ τ

0
(τ − σ)α−1g(σ, ω(σ))dσ, τ ∈ J,

(3.7)

The equivalent fraction integral Eq.(3.1) to the ABC–hybrid FDEs (1.1)–(1.2) can be writ-
ten in operator equation form given by

ω = F1ωF2ω, ω ∈ Ω.

We prove that the operators F1 and F2 satisfies conditions of Lemma 2.5. The proof of the
same have been given in following steps.

Step 1) F1 is Lipschitz.

Using Lipschitz condition on f , for any ω, η ∈ Ω and τ ∈ J we obtain,

|(F1ω)(τ)− (F1η)(τ)| = |f(τ, ω(τ))− f(τ, η(τ))| ≤ L|ω(τ)− η(τ)|,

This gives,
‖F1ω −F1η‖ ≤ L‖ω − η‖, ω, η ∈ Ω.

Step 2) F2 is completely continuous.

We show that F2 : S → Ω is a compact and continuous operator on S into Ω. First we
show that F2 is continuous on S. Let {ωn} be a sequence in S converging to a point ω ∈ S.
Then by the Lebesgue dominated convergence theorem,

lim
n→∞

(F2ωn)(τ) = lim
n→∞

[

1− α

B(α)
g(τ, ωn(τ)) +

α

B(α)(1 − α)

∫ τ

0
(τ − σ)α−1g(σ, ωn(σ))dσ

]

=
1− α

B(α)
lim
n→∞

g(τ, ωn(τ)) +
α

B(α)(1 − α)

∫ τ

0
(τ − σ)α−1

{

lim
n→∞

g(σ, ωn(σ))
}

dσ

=
1− α

B(α)
g(τ, ω(τ)) +

α

B(α)(1 − α)

∫ τ

0
(τ − σ)α−1g(σ, ω(σ))dσ
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= (F2ω)(τ),

for all τ ∈ J . This shows that F2 is a continuous operator on S. Using hypothesis (H2),
for any ω ∈ S and τ ∈ J , we have

|(F2ω)(τ)| ≤

∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+
1− α

B(α)
|g(τ, ω(τ))| +

α

B(α)(1 − α)

∫ τ

0
(τ − σ)α−1 |g(σ, ω(σ))| dσ

≤

∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+
1− α

B(α)
|h(τ)| +

α

B(α)(1− α)

∫ τ

0
(τ − σ)α−1|h(σ)|dσ

≤

∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+
1− α

B(α)
‖h‖ +

‖h‖

B(α)(1 − α)
τα,

This gives,

|(F2ω)(τ)| ≤

∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+

(

1− α+
Tα

1− α

)

‖h‖

B(α)
, ω ∈ S, τ ∈ J, (3.8)

which shows that F2 is uniformly bounded on J . Next we prove that F2(S) is equicontinious
set in Ω. Let any ω ∈ S and 0 ≤ τ1 < τ2 ≤ T . Then we have

|F2ω(τ1)−F2ω(τ2)| ≤
1− α

B(α)
|g(τ1, ω(τ1))− g(τ2, ω(τ2))|

+
α

B(α)(1− α)

∣

∣

∣

∣

∫ τ1

0
(τ1 − σ)α−1g(σ, ω(σ))dσ −

∫ τ2

τ1

(τ2 − σ)α−1g(σ, ω(σ))dσ

∣

∣

∣

∣

(3.9)

Since g(τ, ω) is continuous on compact set J × [−R, R], it is uniformly continuous there
and hence we have

|g(τ1, ω(τ1))− g(τ2, ω(τ2))| → 0, as |τ1 − τ2| → 0, for each ω ∈ S. (3.10)

Next using hypothesis (H2), we have

∣

∣

∣

∣

∫ τ1

0
(τ1 − σ)α−1g(σ, ω(σ))dσ −

∫ τ2

τ1

(τ2 − σ)α−1g(σ, ω(σ))dσ

∣

∣

∣

∣

≤

∫ τ1

0

{

(τ1 − σ)α−1 − (τ2 − σ)α−1
}

|g(σ, ω(σ))|dσ +

∫ τ2

τ1

(τ2 − σ)α−1|g(σ, ω(σ))|dσ

≤

∫ τ1

0

{

(τ1 − σ)α−1 − (τ2 − σ)α−1
}

|h(σ)|dσ +

∫ τ2

τ1

(τ2 − σ)α−1|h(σ)|dσ

≤ ‖h‖

(
∫ τ1

0

{

(τ1 − σ)α−1 − (τ2 − σ)α−1
}

dσ +

∫ τ2

τ1

(τ2 − σ)α−1dσ

)

≤ ‖h‖ ({τα1 + (τ2 − τ1)
α − τα2 }+ (τ2 − τ1)

α)

≤ 2‖h‖(τ2 − τ1)
α. (3.11)

Therefore,

∣

∣

∣

∣

∫ τ1

0
(τ1 − σ)α−1g(σ, ω(σ))dσ −

∫ τ2

τ1

(τ2 − σ)α−1g(σ, ω(σ))dσ

∣

∣

∣

∣

→ 0, as |τ1 − τ2| → 0, ω ∈ S.

(3.12)
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Therefore it follows from (3.9), (3.10) and (3.12) that

|(F2ω)(τ1)− (F2ω)(τ2)| → 0, as |τ1 − τ2| → 0, for each ω ∈ S.

This proves F2(S) is equicontinious set in Ω. Since F2(S) is uniformly bounded and equicon-
tinious set in Ω, by Ascoli-Arzela theorem F2 is completely continuous.

Step 3) Let any η ∈ S. For ω ∈ Ω, consider the operator equation ω = F2ωF2η. Our aim
is to prove that ω ∈ S.

Using hypothesis (H1) and condition (3.8), we have

|ω(τ)| = |(F1ω)(τ)||(F2η)(τ)|

≤ |f(τ, ω(τ))||(F2η)(τ))|

≤ {|f(τ, ω(τ)) − f(τ, 0))|+ |f(τ, 0)|}

(∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖

B(α)

)

≤ {L|ω(τ)| +Mf}

(
∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖

B(α)

)

, τ ∈ J.

This gives,

|ω(τ)| ≤

MfL

(
∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+
[

1− α+ Tα

1−α

] ‖h‖

B(α)

)

1− L

(
∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+
[

1− α+ Tα

1−α

] ‖h‖

B(α)

) = R, τ ∈ J.

Therefore,

‖ω‖ ≤ R.

This proves ω ∈ S.

Step 4) The constants α and M of Lemma 2.5 corresponding to the operators F1 and F2

defined in equations (3.6) and (3.7) respectively are

α = L and M =

∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖

B(α)
.

By condition (3.4), it follows that

αM = L

(
∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖

B(α)

)

< 1.

From steps 1 to 4, it follows that all the conditions of Lemma 2.5 are satisfied. Therefore
by applying it, the operator equation

ω = F1ωF2ω

has a fixed point in S, which is a solution of ABC–hybrid FDEs (1.1)–(1.2). This completes
the proof of the Theorem. ✷
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4 ABC-hybrid fractional differential Inequalities

Theorem 4.1 Let f ∈ C (J × R,R\ {0}), g ∈ C(J ×R,R) and for each τ ∈ J the mapping

ω →
ω

f(τ, ω)
is increasing a.e. on R. Let v,w ∈ C(J) are such that

ABC
0D

α
τ

(

v(·)

f((·), v(·))

)

, ABC
0D

α
τ

(

w(·)

f((·), w(·))

)

∈ C(J)

and satisfies the ABC-hybrid fractional differential inequalities,

(i) ABC
0D

α
τ

[

v(τ)

f(τ, v(τ))

]

≤ g(τ, v(τ)), a.e. τ ∈ J,

(ii) ABC
0D

α
τ

[

w(τ)

f(τ, w(τ))

]

≥ g(τ, w(τ)), a.e. τ ∈ J,

where one of above inequality being is strict.

Then v(0) < w(0) implies

v(τ) < w(τ), τ ∈ J.

Proof: Suppose that the conclusion of the theorem does not holds. Since v,w ∈ C(J) there
exits τ0 ∈ J such that

v(τ0) = w(τ0) and v(τ) < w(τ) for all τ ∈ [0, τ0).

Then
v(τ0)

f(τ0, v(τ0))
=

w(τ0)

f(τ0, w(τ0))

and using increasing property of the mapping ω →
ω

f(τ, ω)
, we have

v(τ)

f(τ, v(τ))
≤

w(τ)

f(τ, w(τ))
, τ ∈ [0, τ0).

Let V (τ) =
v(τ)

f(τ, v(τ))
, W (τ) =

w(τ)

f(τ, w(τ))
, τ ∈ J . Define m(τ) = V (τ) −W (τ), τ ∈ J .

Then m, ABC
0D

α
τ m ∈ C(J). Further, τ0 ∈ J is such that

m(τ0) = 0 and m(τ) ≤ 0 for all τ ∈ [0, τ0).

Since m satisfies all assumptions of Lemma 2.4, we get, ABC
0D

α
τm(τ0) ≥ 0.

This gives
ABC

0D
α
τ V (τ0) ≥

ABC
0D

α
τW (τ0).

Suppose that the inequality (i) is strict. Then we get

g (τ0, v(τ0)) >
ABC

0D
α
τ V (τ0) ≥

ABC
0D

α
τW (τ0) ≥ g (τ0, w(τ0)) ,



10

which is contradiction to v(τ0) = w(τ0). Therefore we must have

v(τ) < w(τ), for all τ ∈ J.

This completes the proof of theorem. ✷

Theorem 4.2 Assume that the conditions of Theorem 4.1 holds with nonstrict inequalities

(i) and (ii). Suppose that

g(τ, ω) − g(τ, η) ≤L

(

ω

f(τ, ω)
−

η

f(τ, η)

)

, for all τ ∈ J ; ω, η ∈ R with ω ≥ η, 0 < L <
B(α)

1− α

(4.1)

Then v(0) ≤ w(0) implies

v(τ) ≤ w(τ), for all τ ∈ J.

Proof: For any fix ǫ > 0, we define

wǫ(τ)

f(τ, wǫ(τ))
=

w(τ)

f(τ, w(τ))
+ ǫEα(τ

α), τ ∈ J. (4.2)

This gives, for τ = 0

wǫ(0)

f(0, wǫ(0))
=

w(0)

f(0, w(0))
+ ǫ >

w(0)

f(0, w(0))

Again, using the Lipschitz condition on g and Eq.(4.2), we have

g(τ, wǫ(τ))− g(τ, w(τ)) ≤ L

(

wǫ(τ)

f(τ, wǫ(τ))
−

w(τ)

f(τ, w(τ))

)

= LǫEα(τ
α), τ ∈ J.

Using condition on L, from above inequality we obtain,

g(τ, w(τ)) ≥ g(τ, wǫ(τ))− LǫEα(τ
α) > g(τ, wǫ(τ)) −

B(α)

1− α
ǫEα(τ

α), τ ∈ J. (4.3)

In the proof of Theorem 3.6 [27] it is produced that,

ABC
0D

α
τ (Eα(τ

α)) ≥
B(α)

1− α
Eα(τ

α), τ ∈ J. (4.4)

Since ABC
0D

α
τ

w(·)

f(·, w(·))
, ABC

0D
α
τ Eα ∈ C(J), we have ABC

0D
α
τ

wǫ(·)

f(·, wǫ(·))
∈ C(J). Thus

using the inequalities (ii), (4.3) and (4.4), for any τ ∈ J we have

ABC
0D

α
τ

(

wǫ(τ)

f(τ, wǫ(τ))

)

= ABC
0D

α
τ

[

w(τ)

f(τ, w(τ))
+ ǫEα(τ

α)

]

= ABC
0D

α
τ

(

w(τ)

f(τ, w(τ))

)

+ ǫ ABC
0D

α
τ Eα(τ

α)
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≥ g(τ, w(τ)) + ǫ
B(α)

1− α
Eα(τ

α)

> g(τ, wǫ(τ))−
B(α)

1− α
ǫEα(τ

α) + ǫ
B(α)

1− α
Eα(τ

α)

= g(τ, wǫ(τ))

Therefore,

ABC
0D

α
τ

(

wǫ(τ)

f(τ, wǫ(τ))

)

> g (t, wǫ(τ)) , τ ∈ J.

Since v(0) < wǫ(0), by application of Theorem 4.1 with w(τ) = wǫ(τ), for each ǫ > 0 we
have

v(τ) < wǫ(τ), τ ∈ J.

Taking limit as ǫ → 0, in the above inequality and utilizing equ. (4.2) we obtain

v(τ) ≤ w(τ), τ ∈ J.

✷

5 Existence of Maximal and Minimal solutions

In this section, we shall prove the existence of maximal and minimal solutions for the
ABC–hybrid FDEs (1.1)-(1.2) on J .

Definition 5.1 A solution r of the ABC–hybrid FDEs (1.1)-(1.2) is said to be maximal if

for any other solution ω to the ABC–hybrid FDEs (1.1)-(1.2) one has ω(τ) ≤ ω(τ) for all

τ ∈ J . Again, a solution ρ of the ABC–hybrid FDEs (1.1)-(1.2) is said to be minimal if

ρ(τ) ≤ ω(τ) for all τ ∈ J , where ω is any solution of the ABC–hybrid FDEs (1.1)-(1.2) on

J .

We give the proof only for the existence of maximal solution of the ABC–hybrid FDEs
(1.1)-(1.2), as the proof of existence of minimal solution one can complete on similar lines.
Given an arbitrary small real number ǫ > 0, consider the following ABC–hybrid FDEs

ABC
0D

α
τ

[

ω(τ)

f(τ, ω(τ))

]

= g(τ, ω(τ)) + ǫ, a.e. τ ∈ J, (5.1)

ω(0) = ω0 + ǫ, (5.2)

where g ∈ C is such that g(0, ω0 + ǫ) = 0.

Theorem 5.1 Assume that the hypotheses (H1)-(H2) and the condition (3.4)holds. Then

for every small ǫ > 0, the ABC–hybrid FDEs (5.1)–(5.2) possesses a solution on J .
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Proof: By hypothesis,

L

(
∣

∣

∣

∣

ω0

f(0, ω0)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖

B(α)

)

< 1

Then we can find ǫ0 > 0 such that

L

(
∣

∣

∣

∣

ω0 + ǫ

f(0, ω0 + ǫ)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖+ ǫ

B(α)

)

< 1, for 0 < ǫ ≤ ǫ0.

Following simillar steps as in the proof of Theorem 3.2, one can complete the remaining
part of the proof. ✷

Theorem 5.2 Assume that the hypotheses (H1)-(H2) and the condition (3.4)holds. Then

for each small ǫ > 0, the ABC–hybrid FDEs (1.1)–(1.2) possesses a maximal solution on J .

Proof: Let {ǫn}
∞

n=0 be a decreasing sequence of positive numbers converging to 0 where ǫ0
is such that,

L

(
∣

∣

∣

∣

ω0 + ǫ0

f(0, ω0 + ǫ0)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖ + ǫ0

B(α)

)

< 1.

Using ǫn ≤ ǫ0, n ∈ N ∪ {0}, it is easy to verify that

L

(∣

∣

∣

∣

ω0 + ǫn

f(0, ω0 + ǫn)

∣

∣

∣

∣

+

[

1− α+
Tα

1− α

]

‖h‖+ ǫn

B(α)

)

< 1, for all n ∈ N ∪ {0} .

Due to above condition, by Theorem 5.1, for each n ∈ N ∪ {0}, ABC–hybrid FDEs

ABC
0D

α
τ

[

ω(τ)

f(τ, ω(τ))

]

= g(τ, ω(τ)) + ǫn, a.e. τ ∈ J, (5.3)

ω(0) = ω0 + ǫn, (5.4)

has a solution, say ω(τ, ǫn), hence we get

ABC
0D

α
τ

[

ω(τ, ǫn)

f(τ, ω(τ, ǫn))

]

= g(τ, ω(τ, ǫn)) + ǫn > g(τ, ω(τ, ǫn)) a.e. τ ∈ J, (5.5)

ω(0, ǫn) = ω0 + ǫn, (5.6)

The equivalent integral equation of above ABC–hybrid FDEs is

ω(τ, ǫn) = f(τ, ω(τ, ǫn))

[

ω0

f(0, ω0 + ǫn)
+

1− α

B(α)
g(τ, ω(τ, ǫn))

+
α

B(α)(1 − α)

∫ τ

0
(τ − σ)α−1g(σ, ω(σ, ǫn) + ǫn)dσ

]

(5.7)

Let u be any solution of ABC–hybrid FDEs (1.1)–(1.2), hence we get

ABC
0D

α
τ

[

u(τ)

f(τ, u(τ))

]

= g(τ, u(τ)), a.e. τ ∈ J, (5.8)
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u(0) = ω0, (5.9)

Noting that, ω(0, ǫn) < u(0) for all n ∈ N ∪ {0}. Therefore using comparison Theorem 4.1,
we have

u(τ) < ω(τ, ǫn), τ ∈ J, n ∈ N ∪ {0} . (5.10)

Let ω(τ, ǫm), ω(τ, ǫn) be the solutions of ABC–hybrid FDEs (5.3)-(5.4) corresponding to
the mth, nth term of the sequence {ǫn}

∞

n=0, with m > n. Therefore we have,

ω(0, ǫm) = ω0 + ǫm < ω0 + ǫn = ω(0, ǫn)

ABC
0D

α
τ

[

ω(τ, ǫn)

f(τ, ω(τ, ǫn))

]

= g(τ, ω(τ, ǫn)) + ǫn

ABC
0D

α
τ

[

ω(τ, ǫm)

f(τ, ω(τ, ǫm))

]

≤ g(τ, ω(τ, ǫm)) + ǫn

Applying Lemma 4.1 to the above set of inequalities, we get

ω(τ, ǫm) < ω(τ, ǫn).

This verifies that ω(τ, ǫm) decreasing sequence bounded bellow by any solution of ABC–
hybrid FDEs (1.1)–(1.2). Therefore ω(τ) = lim

n→∞

ω(τ, ǫn) exists on J . We show that this

converges is unoform on J . Therefore, it is enough to prove that the sequence {ω(τ, ǫn)} is
equicontinuous in C(J,R). Let τ1, τ2 ∈ J with τ1 < τ2 be arbitrary. Then,

|ω(τ1, ǫn)− ω(τ2, ǫn)| ≤

(

|ω0 + ǫn|

|f(0, ω0 + ǫn)|
+

1− α

B(α)
ǫn

)

|f(τ1, ω(τ1, ǫn))− f(τ2, ω(τ2, ǫn))|

+
1− α

B(α)
|f(τ1, ω(τ1, ǫn))g(τ1, ω(τ1, ǫn))− f(τ2, ω(τ2, ǫn))g(τ2, ω(τ2, ǫn))|

+
α

B(α)(1 − α)

∣

∣

∣

∣

f(τ1, ω(τ1, ǫn))

∫ τ1

0
(τ1 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

−f(τ2, ω(τ2, ǫn))

∫ τ2

0
(τ2 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

∣

∣

∣

∣

. (5.11)

Since f, g are continuous on compact set J × [−R,R], they are uniformly continuous there.
Hence, for each n ∈ N,

|f(τ1, ω(τ1, ǫn))− f(τ2, ω(τ2, ǫn))| → 0, as |τ1 − τ2| → 0 (5.12)

|f(τ1, ω(τ1, ǫn))g(τ1, ω(τ1, ǫn))− f(τ2, ω(τ2, ǫn))g(τ2, ω(τ2, ǫn))| → 0, as |τ1 − τ2| → 0
(5.13)

Let F = sup f(τ, ω)
(τ,ω)∈J×[−R,R]

. We find

∣

∣

∣

∣

f(τ1, ω(τ1, ǫn))

∫ τ1

0
(τ1 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

−f(τ2, ω(τ2, ǫn))

∫ τ2

0
(τ2 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

∣

∣

∣

∣
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=

∣

∣

∣

∣

(

f(τ1, ω(τ1, ǫn))

∫ τ1

0
(τ1 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

−f(τ1, ω(τ1, ǫn))

∫ τ1

0
(τ1 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

)∣

∣

∣

∣

+

∣

∣

∣

∣

(

f(τ1, ω(τ1, ǫn))

∫ τ2

0
(τ2 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

−f(τ2, ω(τ2, ǫn))

∫ τ2

0
(τ2 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

)
∣

∣

∣

∣

≤ F

{
∫ τ1

0

{

(τ1 − σ)α−1 − (τ2 − σ)α−1
}

|g(σ, ω(σ, ǫn)) + ǫn|dσ

+

∫ τ2

τ1

(τ2 − σ)α−1|g(σ, ω(σ, ǫn)) + ǫn|dσ

}

+ |f(τ1, ω(τ1, ǫn))− f(τ2, ω(τ2, ǫn))|

∫ τ2

0
(τ2 − σ)α−1 {|g(σ, ω(σ, ǫn)) + ǫn|} dσ

≤ 2F (‖h‖ + ǫ)(τ2 − τ1)
α + τα2 (‖h‖ + ǫ)|f(τ1, ω(τ1, ǫn))− f(τ2, ω(τ2, ǫn))|

This shows that,
∣

∣

∣

∣

f(τ1, ω(τ1, ǫn))

∫ τ1

0
(τ1 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

−f(τ2, ω(τ2, ǫn))

∫ τ2

0
(τ2 − σ)α−1 {g(σ, ω(σ, ǫn)) + ǫn} dσ

∣

∣

∣

∣

→ 0, as |τ2 − τ1| → 0.

(5.14)

Using inequalities (5.12), (5.13) and (5.14), we conclude from (5.11) that

|ω(τ1, ǫn)− ω(τ2, ǫn)| → 0, , as |τ2 − τ1| → 0,

This shows that {ω(τ, ǫn)} converges uniformly to ω(τ) as n → ∞. Hence taking limit as
n → ∞ of equation Equ.(5.7), we get

ω(τ) = f(τ, ω(τ))

[

ω0

f(0, ω0)
+

1− α

B(α)
g(τ, ω(τ)) +

α

B(α)(1 − α)

∫ τ

0
(τ − σ)α−1g(σ, ω(σ))dσ

]

.

Thus ω(τ) is a solution of ABC–hybrid FDEs (1.1)–(1.2). Taking limit as n → ∞ of
inequality (5.10), we get u(τ) < ω(τ), τ ∈ J . Hence ABC–hybrid FDEs (1.1)–(1.2) has a
maximal solution. ✷

6 Comparison Results

Theorem 6.1 Suppose the hypotheses (H1)-(H2) and condition (3.4) hold. Also assume

that the function g satisfies the condition (4.1). If there exists a function u ∈ AC(J,R)

such that

ABC
0D

α
τ

[

u(τ)

f(τ, u(τ))

]

≤ g(τ, u(τ)), a.e. τ ∈ J, (6.1)
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u(0) ≤ ω0, (6.2)

Then

u(τ) ≤ ω(τ), τ ∈ J,

where r is maximal solution of the ABC–hybrid FDEs (1.1)–(1.2).

Proof: Let ǫ > 0 be arbitrary small. Then by Theorem 5.2, ω(τ, ǫ) is a solution of the
ABC–hybrid FDEs (5.1)–(5.2). Therefore

ABC
0D

α
τ

[

ω(τ, ǫ)

f(τ, ω(τ, ǫ))

]

= g(τ, ω(τ, ǫ)) + ǫ, a.e. τ ∈ J,

ω(0, ǫ) = ω0 + ǫ

This gives,

ABC
0D

α
τ

[

ω(τ, ǫ)

f(τ, ω(τ, ǫ))

]

> g(τ, ω(τ, ǫ)), a.e. τ ∈ J, (6.3)

ω(0, ǫ) > ω0 (6.4)

Therefore u is lower solution and ω(τ, ǫ) is upper solution of

ABC
0D

α
τ

[

ω(τ)

f(τ, ω(τ))

]

= g(τ, ω(τ)).

Further,
u(0) ≤ ω0 < ω0 + ǫ = ω(0, ǫ).

By applying Theorem 4.1, we obtain

u(τ) < ω(τ, ǫ), for all τ ∈ J,

In limiting case as ǫ → 0, we get

u(τ) ≤ ω(τ), τ ∈ J.

✷

The proof of the following Theorem can be given in similar way as in the case of Theorem
6.1.

Theorem 6.2 Suppose the hypotheses (H1)-(H2) and condition (3.4) hold. Also assume

that the function g satisfies the condition (4.1). If there exists a function v ∈ AC(J,R)

such that

ABC
0D

α
τ

[

v(τ)

f(τ, v(τ))

]

≥ g(τ, v(τ)), a.e. τ ∈ J, (6.5)
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v(0) ≥ ω0, (6.6)

Then

ρ(τ) ≤ v(τ), τ ∈ J.

where ρ is minimal solution of the ABC–hybrid FDEs (1.1)–(1.2).

Using Theorem 6.1, we can prove the uniqueness result for ABC–hybrid FDEs (1.1)–
(1.2). The detail of which is given in the following Theorem.

Theorem 6.3 Suppose the hypotheses (H1)-(H2) and condition (3.4) hold. Also assume

that there exists a function G : J × R
+ → R

+ satisfying

|g(τ, ω) − g(τ, η)| ≤ G

(

τ,

∣

∣

∣

∣

ω

f(τ, ω)
−

η

f(τ, η)

∣

∣

∣

∣

)

, for all τ ∈ J ; ω, η ∈ R.

If identically zero function is the only solution of the ABC–hybrid FDEs

ABC
0D

α
τ m(τ) = G(τ,m(τ)), a.e. τ ∈ J, 0 < α < 1, (6.7)

m(0) = 0, (6.8)

Then the ABC–hybrid FDEs (1.1)–(1.2) has a unique solution on J.

Proof: As the required assumptions (H1)-(H2) and the condition (3.4) hold, the ABC–
hybrid FDEs (1.1)–(1.2) has a solution on J. Suppose there exists two solutions ω, η for
ABC–hybrid FDEs (1.1)–(1.2).

Define

m(τ) =

∣

∣

∣

∣

ω

f(τ, ω)
−

η

f(τ, η)

∣

∣

∣

∣

, τ ∈ J.

We find by using linearity

ABC
0D

α
τ

(

ω

f(τ, ω)
−

η

f(τ, η)

)

= ABC
0D

α
τ

[

ω(τ)

f(τ, ω(τ))

]

− ABC
0D

α
τ

[

η(τ)

f(τ, η(τ))

]

= g(τ, ω(τ)) − g(τ, η(τ)) ≤ |g(τ, ω(τ)) − g(τ, η(τ))|

≤ G

(

τ,

∣

∣

∣

∣

ω

f(τ, ω)
−

η

f(τ, η)

∣

∣

∣

∣

)

= G(τ,m(τ)), τ ∈ J. (6.9)

Again by using the fact that |f |′ ≤ |f ′|, we find

ABC
0D

α
τ m(τ) =

B(α)

1− α

∫ τ

0
Eα

[

−
α

1− α
(τ − σ)α

] ∣

∣

∣

∣

ω

f(τ, ω)
−

η

f(τ, η)

∣

∣

∣

∣

′

dσ

≤
B(α)

1− α

∫ τ

0
Eα

[

−
α

1− α
(τ − σ)α

] ∣

∣

∣

∣

(

ω

f(τ, ω)
−

η

f(τ, η)

)

′
∣

∣

∣

∣

dσ
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≤

∣

∣

∣

∣

B(α)

1− α

∫ τ

0
Eα

[

−
α

1− α
(τ − σ)α

](

ω

f(τ, ω)
−

η

f(τ, η)

)

′

dσ

∣

∣

∣

∣

= ABC
0D

α
τ

(

ω

f(τ, ω)
−

η

f(τ, η)

)

(6.10)

Combining inequalities (6.9) and (6.10), we obtain

ABC
0D

α
τ m(τ) ≤ G(τ,m(τ)), τ ∈ J. (6.11)

Using definition of m(τ), we find

m(0) =

∣

∣

∣

∣

ω(0)

f(0, ω(0))
−

η(0)

f(0, η(0))

∣

∣

∣

∣

=

∣

∣

∣

∣

ω0

f(0, ω0)
−

ω0

f(0, ω0)

∣

∣

∣

∣

= 0 (6.12)

From equations (6.11) and (6.12), using assumption, we get m(τ) = 0, τ ∈ J. From which
we can easily show that

ω

f(τ, ω)
=

η

f(τ, η)
, τ ∈ J.

Hence ω = η. This proves the uniqueness of solution. ✷

Conclusion

Fractional integral inequalities and comparison results acquired in the present paper can
utilized to analyze the various qualitative and quantitative properties of solutions for a
different class of ABC–hybrid FDEs subject to enhanced initial and boundary conditions.

References

[1] V. Lakshimikantham, A. S. Vatsala, Basic Theory of fractional differential equations,
Nonlinear Analysis, 69 (2008), 2677-2682.

[2] V. Lakshimikantham, A. S. Vatsala, Theory of fractional differential inequalities and
applications, Communications in Applied Analysis, 11 (2007), 395-402.

[3] B.C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Non-
linear Anal. Hybrid 4 (2010) 414-424.

[4] Y. Zhao, S. Suna, Z. Hana, Qiuping Li, Theory of fractional hybrid differential equa-
tions, Computers and Mathematics with Applications, 62 (2011), 1312-1324.

[5] B. Ahmad, S.K. Ntouyas, J. Tariboon, A Nonlocal Hybrid Boundry Value Problem
of Caputo fractional integro-differential equations, Acta Mathematica Scientia, (6)36B
(2016), 1631-1640.

[6] S. Ferraoun, Z. Dahmani, Existence and stability of solutions of a class of hybrid frac-
tional differential equations involving RL-operator, Journal of Interdisciplinary Math-
ematics,(2020) DOI: 10.1080/09720502.2020.1727617.



18

[7] J. Caballero, M. A. Darwish, K. Sadarangani, Solvability of a fractional hybrid ini-
tial value problem with supremum by using measures of noncompactness in Banach
algebras, Applied Mathematics and Computation, 224 (2013) 553-563.

[8] S.Sitho, S. K. Ntouyas, J. Tariboon, Existence results for hybrid fractional integro-
differential equations, Boundary Value Problems (2015), 1-13.

[9] S. Sun, Y. Zhao, Z. Han,, Y. Li, The existence of solutions for boundary value problem
of fractional hybrid differential equations, Commun Nonlinear Sci Numer Simulat, 17
(2012), 4961-4967.

[10] M. Caputo, M. Fabrizio, A New Definition of Fractional Derivative Without Singular
Kernel, Progress in Fractional Differentiation and Applications, 1(2015),73-85.

[11] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular
kernel: theory and application to heat transfer model, Therm Sci 2016 20(2), 763-69.

[12] A. Jajarmi, S. Arshad, D. Baleuno, A new fractional modeling and control strategy for
the outbreak of dengue fever, Physica A, 535 (2019), 122524.

[13] D. Baleanu,A. Jajarmi, S.S.Sajjadi, D. Mozyrska, A new fractional model and op-
timal control of a tumor-immune surveillance with non-singular derivative opera-
tor, Chaos: An Interdisciplinary Journal of Nonlinear Science,(8) 29 2019, :083127,
https://doi.org/10.1063/1.5096159.

[14] A. Jajarmi, B.Ghanbari, D. Baleanu, A new and efficient numerical method for the
fractional modeling and optimal control of diabetes and tuberculosis co-existence,
Chaos: An Interdisciplinary Journal of Nonlinear Science, (9) 29 (2019),093111,
https://doi.org/10.1063/1.5112177.

[15] A. Jajarmi, D. Baleuno,S.S.Sajjadi, J. H. Asad, A new features of the fractional Euler-
Lagrange equation for a coupled oscillator using a nonsingular operator approach,
Front. phys. doi:10.3389/fPhy.2019.00196.

[16] S. Ucar, E. Ucar, N. Ozdemir, Z. Hammouch, Mathematical analysis and numerical
simulation for a smoking model with Atangana–Baleuno derivative, Chaos, Solitons
and Fractals,118 (2019), 300–306.

[17] M. S. Abdo, K. Shah, H. A. Wahash, S. K. Panchal, On comprehensive model of the
novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos, Solitons and
Fractals, 135 (2020), 109867.

[18] Fahd Jarad , Thabet Abdeljawad, Zakia Hammouch, On a class of ordinary differential
equations in the frame of AtanganaBaleanu fractional derivative, Chaos, Solitons and
Fractals 117 (2018) 16-20.

[19] D. Baleuno, A. Jajarmi, M. Hajipour, On the nonlinear dynamical systems within the
generalized fractinal derivative with Mittag–Leffler kernel, Nonlinear Dyn 94 (2018),
397–414.



19

[20] M.I. Syam, Mohammed Al-Refai, Fractional differential equations with Atangana-
Baleanu fractional derivative: Analysis and applications, Chaos, Solitons and Fractals,
X 2 (2019) 100013.

[21] Hojjat Afshari, Dumitru Baleanu, Applications of some fixed point theorems for frac-
tional differential equations with Mittag-Leffler kernel, Advances in Difference Equa-
tions, (2020) 2020:140.

[22] K. Shah, M. Sher, T. Abdeljawad, Study of evolution problem under
Mittag–Leffler type fractional order derivative, Alexandria Eng. (2020),
htpp://doi.org/10.1016/j.aej.2020.06.050.

[23] C. Ravichandran, K. Logeswari, Fahd Jarad, New results on existence in the frame-
work of AtanganaBaleanu derivative for fractional integro-differential equations, Chaos,
Solitons and Fractals, 125 (2019), 194–200.

[24] K. Jothimani, K Kaliraj, Zakia Hammouch and C. Ravichandran, New results on con-
trollability in the framework of fractional integrodifferential equations with nondense
domain, The European Physical Journal Plus, (441) 134, (2019).

[25] C. Ravichandran, K. Logeswari, S. K. Panda, K. S. Nisar, On new approach of frac-
tional derivative by Mittag–Leffler kernel to neutral integro–differential systems with
impulsive conditions, Chaos, Solitons and Fractals,139 (2020), 110012.

[26] N. Valliammal, C. Ravichandran, K. S. Nisar , Solutions to fractional neutral delay
differential nonlocal systems, Chaos, Solitons and Fractals, 138 (2020) 109912.

[27] K. D. Kucche, S.T. Sutar, Analysis of Nonlinear Fractional Differential Equations
Involving Atangana-Baleanu-Caputo Derivative, https://arxiv.org/abs/2007.09132v1,
(2020).

[28] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional
differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science
B.V., Amsterdam, 2006.

[29] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Math-
ematics, Springer-verlag Berlin Heidelberg, 2010.

[30] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlo-
cal fractional derivative with Mittag-Leffler nonsingular kernel, J Nonlinear Sci Appl
(3)10(2017), 1098-1107.

[31] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function
in the kernel, Yokohama. Math. J., 19, 7–15.(1971).

[32] A. A. Kilbas, M. Saigo, K. Saxena, Generalized Mittag-Leffler function and generalized
fractional calculus operators, Integral Transforms Spec. Funct., 15 (2004) 31-49.

[33] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,(1953), Higher Transcen-
dental Functions, Vol. I.


	1 Introduction
	2 Preliminaries
	3 Existence result
	4 ABC-hybrid fractional differential Inequalities 
	5 Existence of Maximal and Minimal solutions
	6 Comparison Results

