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Abstract:  

The aim of this paper is to study the properties of natural numbers which are multiple of 3 using 
calculation of oneness factor, hit factor or convergent factor of every natural number with hailstone sequence 
to reach one.  
Keywords: 3݊	 + 	1 conjecture, Collatz conjecture, Collatz function, Hailstone sequence, Hasse algorithm, hit 
factor, Kakutani's problem, Thwaites conjecture, Ulam conjecture.  

 
after Lothar Collatz, who first proposed it in 1937. The conjecture is also known as the 3n +  1 conjecture, 
the Ulam conjecture after Stanisław Ulam, Kakutani's problem after Shizuo Kakutani, the Thwaites 
conjecture after Sir Bryan Thwaites, Hasse's algorithm after Helmut Hasse, or the Syracuse problem; the 
sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers because the values 
are usually subject to multiple descents and ascents like hailstones in a cloud, or as wondrous numbers. The 
eminent mathematician Paul Erdos suggested: "Mathematics is not ready for this kind of problem". 

One of the most tantalizing conjectures in number theory is the so called 3݊ + 1 conjecture, stated by 
L. Collatz (1937). The problem can be simply stated as, starts with any positive integer. If it is even number, 
halve it (which has been called "Half Or Triple Plus One", or HOTPO). Otherwise multiply it by 3 and add 1 
to it. Take the result and repeat the process.  Any such sequence seems to end up at one. The conjecture remain 
unanswered, although it has been proven that the process terminates for all values of n up to 5.764 × 10ଵ଼. 
Let ݂:ܰ → ܰ be Collatz function defined as:  

(ݔ)݂ = ൝
ݔ
2

݊݁ݒ݁	ݏ݅	ݔ	݂݅											,

ݔ3 + 1, 	݀݀	ݏ݅	ݔ	݂݅
 

Collatz conjecture states that if ݔ ∈ ℕ, then the sequence (ݔ)݂,ݔ,݂ ∘ ݂,(ݔ)݂ ∘ ݂ ∘  reaches to 1. If , ⋯,(ݔ)݂
ݔ = 21 then sequence produced is, 
 

        ૠ ࢋ࢚ࡿ

 1 2 4 8 16 32 64 21 ࢋ࢛ࢇࢂ
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The sequence has no obvious pattern, and no explanation that why the sequence should take 7 
iterations to reach 1. When ݔ = 27 it takes 111 steps. Hence the number of iterations is not proportional to the 
magnitude of the starting number. And hence remain unsolved yet. 
 
Oneness Of Natural Number, Oneness Factor/Hit Factor:- 
Definition 2.1:- (Oneness of Natural Number) The ability of a natural number reaching to 1 with collatz 
conjecture function f is called as oneness of natural number. 
Definition 2.2:- (Oneness factor or Hit Factor or Convergent factor or Stoppage Time of Natural 
Number)  The conjecture asserts that every natural number ݊ has a well-defined Hit Factor. Total number of 
steps required by a natural number ݊ to reach 1 using ݂(ݔ) is called as Total stoppage time, oneness factor of 
݊.  
Definition 2.3:- (Hit Factor Function) Let ܶ:ℕ → ℕ be Hit Factor function defined over set of natural 
number as the total number steps needed to reach 1. 
2.3.1 Hit Factor of Natural Number : 

ܶ(2) = ݊.  
e.g. ܶ(1) = 0, ܶ(2) = 1, ܶ(64) = 6. 

2.3.2 Hit Factor of odd Natural Numbers having  +  hit factor : 
Now we are familiar to the term than even number decreases, so we just emphasize on odd numbers. To find 
out odd number which transform to 2. 
2.3.1 Result: If ݇ be any natural number then 3|4 − 1. 
2.3.2 Result: If ܽ  be a odd natural number and ݎ = 2݇  be the power of 2  then 3ܽ + 1 = 2  and ܽ =
൫4ିଵ + 4ିଶ + ⋯+ 4 + 1൯. 
2.3.3 Result: The sequence of odd numbers ܽ such that 3ܽ + 1 = 4 are represented by recurrence relation, 
Ο୬ = 4Ο୬ିଵ + 1,	with initial condition	Οଵ = 1. 
2.3.4 Result: The sequence of odd numbers ܽ = 2݇ + 1,݇ ≥ 0  is an integer such that 6݇ + 4 = 4  are 
represented by recurrence relation, K୬ = 4K୬ିଵ + 2,	with initial condition	Kଵ = 0 and K୬	is	even. 
2.3.5 Result: K୬ାଵ = 2 + 2ଷ + 2ହ +⋯+ 2ଶ୬ିଵ ,  K୬ାଵ − K୬ = 2ଶ୬ିଵ,	where	n ≥ 1 .2.3.6 Result: 2	Ο୬ାଵ =
K୬ାଶ and Ο୬ାଵ −Ο୬ = 4୬, n ≥ 1. 
From Result 2.3.2 it is clear that none of the odd number converts to odd power of 2, the odd number which 
converts to even power of 2 is of the formܽ = ൫4ିଵ + 4ିଶ +⋯+ 4 + 1൯,݇ ∈ ℕ and hence we populate 
these number as,  

Set ભ ભ ભ ભ ભ ભ ભૠ .		.		. 

Base Value 4ଵ 4ଶ 4ଷ 4ସ 4ହ 4 4  
First Value 1 5 21 85 341 1365 5461 .		.		. 
Hit Factor 0 4 + 1 6 + 1 8 + 1 10 + 1 12 + 1 14 + 1  
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Above elements are generated using recurrence relation in Result 2.2.3, and solution of this recurrence 
relation is Ο୬ = ∑ 4୩୬ିଵ

୩ୀ . 
2.3.7 Result: From above table it is clear that every Natural number using Collatz function moves like a 
hailstone(i.e. increases, decreases) then first converges to 4 and then onwards it decreases and reaches to 1. 
3. Multiples of 3: 
We state that none of the odd natural number n converges to multiple of 3 natural number using Collatz 
function. 
3.1. Result: As 3|4 − 1where ݊ ≥ ,1 = (1 + 4 + 4ଶ +⋯+ 4ିଵ) where 4 − 1 =  .3
3.2. Result: 3|16 + 4 + 1where ݊ ≥ 1. 
Proof:  
We have  
16	 = 	15 + 1 then 16 = (15 + 1) = 15݇ଵ + 1. 
4	 = 	3 + 1 then 4 = (3 + 1) = 3݇ଶ + 1  
Hence, 16 + 4 + 1 = 15݇ଵ + 1 + 3݇ଶ + 1 + 1 = 3(5݇ଵ + ݇ଶ + 1) = 3݇ 
This show that result is true.  
3.3. Result: If 3݊ + 1 = 4ଷ  where ݊ ≥ 1 is an odd natural number and ݇ ≥ 1 then 3|݊. 
Proof:  
We have  
     3݊ + 1 = 4ଷ  

⇒ 3݊ = 4ଷ − 1 = ൫4൯
ଷ
− 1ଷ = ൫4 − 1൯൫4ଶ + 4 + 1൯ 

⇒ 3݊ = 3݇ଵ. 3݇ଶ ⇒ ݊ = 3݇ଵ.݇ଶ ⇒ 3|݊ 
3.4. Result: 21|൫1 + 4 + 4ଶ + 4ଷ + ⋯+ 4ଷିଵ൯ where ݇ ≥ 1. 
Proof:  
We know that  
21|21 = 1 + 4 + 4ଶ = 21. 4 
Similarly,  
21|4ଷ + 4ସ + 4ହ = 21. 4ଷ 
21|4ଷିଷ + 4ଷିଶ + 4ଷିଵ = 21. 4ଷିଷ 
Hence, 
21|൫1 + 4 + 4ଶ + 4ଷ +⋯+ 4ଷିଵ൯ 
 
3.5. Result: 3ห4 − 1, 7ห4 − 1, 9|4 − 1, 21|4 − 1 where ݇ ≥ 1. 
 
3.6. Result: If n is any even natural number and 3|݊ then there will be no odd natural number which converges 
to n. 
Proof:  
We have given that, 3|݊ 
contrary we suppose that, 
	∃ = 2݇ + 1	 ∈ 3	ݐℎܽݐ	ℎܿݑݏ	ܰ + 1 = ݊ 
3(2݇ + 1) + 1 = ݊ ⟹ 6݇ + 4 = ݊ 
Here 3 ∤ 6݇ + 4.  
hence our assumption is wrong. 
hence the given statement is true..  
 
3.7. Result: If 3݊ + 1 = 4ଷ  where ݊ ≥ 1 is an odd natural number and ݇ ≥ 1 then 21|݊. 
 
3.8 Result: The sequence of odd numbers ܽ such that 3ܽ + 1 = 4ଷ  are represented by recurrence relation, 
Ο୬ = 64Ο୬ିଵ + 21,	with initial condition	Οଵ = 21. 
Proof:  
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If ܽ = 21 then 3ܽ + 1 = 4ଷ.   
Let, Ο୬ିଵ = , Ο୬ = ݉ are odd natural numbers such that  < ݉ and 3 + 1 = 4ଷ , 3݉ + 1 = 4ଷାଷ. 
3݉ + 1
3 + 1

=
4ଷାଷ

4ଷ
⇒

3݉ + 1
3 + 1

= 4ଷ ⇒ 3݉ + 1 = 4ଷ(3 + 1) 

⇒ 3݉ + 1 = 3	. 4ଷ + 4ଷ ⇒ 3݉ = 3	. 4ଷ + 4ଷ − 1 ⇒ 3݉ = 3	. 4ଷ + 63 
⇒ ݉ = 4ଷ + 21 
⇒ Ο୬ = 64Ο୬ିଵ + 21 
Hence proved. 
 
3.9 Result: The sequence of odd numbers ܽ = 2݇ + 1,݇ ≥ .ݏ	0 .ݐ 3ܽ + 1 = 4ଷ 	  is an integer such that 
6݇ + 4 = 4ଷ are represented by recurrence relation,                              K୬ = 64K୬ିଵ + 42,	with initial 
condition	Kଵ = 10 and K୬	is	even. 
Proof:   
If k = 10 then 64 = 4୬ ⇒ n = 3 ⇒ Kଵ = 10.   
from Result 3.8 we have, Ο୬ = 64Ο୬ିଵ + 21 
Since, Ο୬ is odd natural number Ο୬ = 2K୬ + 1 
2K୬ + 1 = 64(2K୬ିଵ + 1) + 21 ⇒ K୬ = 32(2K୬ିଵ + 1) + 10 
⇒ K୬ = 64K୬ିଵ + 42	and	2|K୬ 
Hence proved. 
 
3.10 Result: K୬ = 2 + 2ଷ + 2ହ + ⋯+ 2ଷ(ଶ୬ିଵ), K୬ାଵ − K୬ = 2ଶ୬ାଵ. 21,	where n ≥ 1. 

 .		.		. ࢯ ࢯ ࢯ ࢯ ࢯ ࢯ ࢚ࢋࡿ

  4ଷ 4 4ଽ 4ଵଶ 4ଵହ 4ଵ଼ ࢋ࢛ࢇࢂ	ࢋ࢙ࢇ
 .		.		. 22906492245 357913941 5592405 87381 1365 21 ࡻ
  11453246122 178956970 2796202 43690 682 10 ࡷ

 
Conclusion: 

It is clear that every Natural number using Collatz function moves like a hailstone(i.e. increases, 
decreases) then first converges to  and then onwards it decreases and reaches to 1. 
Here we conclude that no odd number will converges to multiple of 3 natural number. 
If we try to find Hit factor for every natural number and if it is finite then we can say that Collatz conjecture is 
true for every natural number. If focus only on odd natural numbers then we can get results more fast. 
Scope: 
In graph theory we can describe it as “In every circuit free directed graph every node has path from node 
labeled with natural number to node labeled 1 which the root node. 
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