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Foreword 

The study of porous carbon materials is a comparatively adolescent discipline. It 
primarily gained eminence through the early eighteenth century, when the beginning 
of activated charcoal with well-defined structures revealed by scientists established 
to follow the research of this enthralling substance with a renewed vigor. In 1776, 
Russian Chemist Johann Lowitz revealed the preliminary discoloration properties of 
charcoal in liquid—a characteristic that built activated charcoal as water filters with 
admired preference even today. In consequence, the discovery of Graphene by Prof. 
Andre Geim and Prof. Kostya Novoselov in 2004 affords an enormous advance up and 
new measurements to materials research and nanotechnology. The multidisciplinary 
properties of porous carbon materials have an extensive range of applications from 
the medical sector to the aerospace industry. The first volume of the journal Carbon 
appeared in 1964, and 191 volumes of this journal had been published up to 2022 
that is reflecting the massive growth of this field. This time period also observes the 
progress of a broad variety of experimental methods that are enabling the exploration 
of different characteristics of the porous carbon materials with respect to energetic, 
kinetic, structural, electronic, magnetic, and dynamic properties of porous carbon 
materials with enormous precision. The discovery of scanning probe techniques 
permitted atomic processes to be considered in unparalleled detail. The study of 
the porous carbon field in recent research ranges from phenomena correlated with 
nanotechnology and thin-film development to heterogeneous catalysis processes to 
industrial applications.
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viii Foreword

The current handbook comprises 41 chapters that are contributions written by 
numerous specialists in this carbon field globally and covers the main aspects of this 
fascinating branch of science and engineering. It should establish precious contri-
butions to all those engrossed in this discipline. The editors and authors are to be 
eulogizing on the successful completion of this Handbook of Porous Carbon Mate-
rials. It will definitely be a work of enormous and lasting significance for the scientific 
community. 

Prof. Sabu Thomas 
Vice Chancellor 

Mahatma Gandhi University 
Priyadarshini Hills 

Kottayam, Kerala, India 

Director 
School of Energy Materials 

Founder Director 
International and Inter University Centre for 

Nanoscience and Nanotechnology 

Former Director 
Professor 

School of Chemical Sciences 
Mahatma Gandhi University 

Kottayam, Kerala, India



Preface 

Porous carbon materials such as activated carbon, carbon nanotubes, carbon 
nanofibers, and graphene are the novel visionary materials of this twenty-first century. 
These carbon materials are receiving extensive attention as novel materials to guide 
the prospects in the fields of electronics, biosensors, agriculture, wastewater remedia-
tion, composite materials, energy devices, hydrogen generation, secondary batteries, 
fuel cells, etc., not simply for nanoscaled dimensions but also due to their outstanding 
porosity, surface area, exceptional mechanical, chemical, physical, and electronic 
properties. Those who manage materials can organize technology, acknowledged by 
Eiji Kobayashi, Senior Scientist of Panasonic Corporation, elucidating the signif-
icance of materials science and engineering. We would interpret this quotation as 
researchers and scientists who control properties of materials to optimize technology 
and reflect on the influential growth of materials and technology on our large-scale 
infrastructure. 

Porous carbon materials have a determinative function in the fabrication of 
numerous superior products around us. From the development of filter membranes 
to aerospace technology, none of these could be shaped devoid of these wonderful 
materials. The editors consider this porous materials science as the understanding 
of composition; characteristics of materials predicted or explained with the help 
of this information; experimental and theoretical tools intended and recognized for 
preparing, characterizing, and modifying processes. Editors also listed all-important 
application possibilities of these resulted materials. After defining porous carbon 
materials, we can simply swap this depiction for porous carbon materials discipline. 
Porous carbon materials are considered in all advanced applications due to their 
configuration, processing, characterization, and difference from the macroscopic 
materials. This difference is due to nanosized dimensions and porous structures. 

The depiction of the porous carbon materials in this handbook pursues all fields but 
comprises short details of the synergy of composition, characteristics, processing, and 
applications. Distinctively, our aim was to point out the difference between the prop-
erties of bulk and nano-porous materials. We also discuss and explain the reasons for 
these differences. To accomplish these objectives, we present a reasonable descrip-
tion of the literature of each porous carbon materials group. The layouts pursue the
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x Preface

well-established configuration of the handbook with chapters as the basic units that 
are organized into several groups. In each chapter, authors cover materials of their 
proficiency; however, they centered not only on their own work, but account the 
remarkable and significant efforts in the society, ascertain stability between refer-
ences and scientific outcomes account in tables and figures. We illustrate porous 
carbon materials in textbook approach for beginners in this field. We also comprise 
encyclopedia-like ingredients and discuss the fast space of new results. We also 
review and include recent research reports for the familiar readers. Ahead of scien-
tific and ethical accuracy, we also seem for simplicity by summarizing and easy-to-
follow text, well-planned and apparent figures which were all proficiently drawn by 
experts. 

The book is divided into eight parts depicted as Parts I–VIII that cover porous 
carbon materials: graphene, graphene oxide, fullerenes, carbon nanotubes, activated 
carbon, carbon nanofibers, noble and common porous carbon-based composites, 
hybrid structures and solutions, and selective applications, correspondingly. This 
higher-level structure conforms to the porous classification of materials, and it is 
composed of chapters. Each chapter is self-consistent and builds up of similar parts, 
history, definitions, production of the given porous carbon materials, properties, and 
applications. All of these parts are opulently illustrated and consist of a reasonable 
proportion of imperative basics and recent results. 

Our pleasurable commitment is to express gratitude to all authors, contributors, 
and colleagues who help us with the establishment of this planned and implemented 
handbook. Firstly, we need to recognize the conscientious work of the authors in 
developing the chapters which engross more attempts than a review article, and the 
reward is not so instantaneous and apparent. Their proficiency, energy, and time are 
significantly appreciated. We also would like to show gratitude for the suggestions 
and help of our colleagues in keeping in contact with several authors. Our book 
is dedicated to the memory of French Scientist Antoine Lavoisier who named the 
elements carbon, hydrogen, and oxygen and discovered oxygen’s role in combustion 
and respiration.



Preface xi

The enormous workmanship of the Springer publishing team and the incessant 
support of the managing editors Priya Vyas and Silky Abhay Sinha are also appreci-
ated. We also need to thank our colleagues and friends that the association with them 
is leaning us to understand and develop materials science aspects. Last but not least, 
we are thankful to our family members for their continuous support to complete this 
work. We wish the readers an enjoyable and advantageous time when utilizing the 
Handbook of Porous Carbon Materials, and we anticipate that it serves as a regularly 
unwrapped reference textbook. 

Vellore, India 
February 2022 

Andrews Nirmala Grace 
Prashant Sonar 

Preetam Bhardwaj 
Arghya Chakravorty
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Chapter 12 
Core–Shell Nanostructures-Based Porous 
Carbon Nanomaterials for Oxygen 
Reduction Reaction 

Saravanan Nagappan, Malarkodi Duraivel, Shamim Ahmed Hira, 
Mohammad Yusuf, Sanjay S. Latthe, Kandasamy Prabakar, 
and Kang Hyun Park 

1 Introduction 

Core–shell nanostructures (CSNs) have attracted considerable attentions in various 
applications such as catalysis, electrocatalysis, energy conversion and storage (ECS), 
optical devices, drug delivery, biomedical, sensors, actuators, environmental reme-
diation, heavy metal adsorption due to the presence of unique structural properties 
[1–5]. Zhang et al. discussed the various parameters that are needed to be addressed 
before synthesizing the CSNs for a particular application [1]. Here, some of the points 
have to be considered mainly for the synthesis of various CSNs. (1) Selecting the 
required CSN based on the choice of mono-, di-, multi-, or porous CSNs. (2) Fix the 
proper shape and size requirements for constructing the CSNs with various shapes 
such as core–shell, yolk–shell, and hollow–shell nanostructures with controlled parti-
cles size. (3) Constructing the CSNs with proper core and shell based on the appli-
cation requirement. (4) Also selecting the core centre material with one or more 
materials to tune the surface and morphological properties [1]. On the other hand, 
Gawande et al. classified the CSNs based on the presence of inorganic/inorganic,
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inorganic/organic, organic/organic, organic/inorganic materials present in the struc-
ture [2]. The core and shell chemical compositions are also tuned based on the end-use 
of application. Generally, the more active materials can accumulate on the shell, and 
core material acts as support, so that the active material can easily react with the 
foreign matter and exhibit better reactivity in various applications. 

Recently, CSNs were used widely in electrocatalysis applications especially in 
oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolu-
tion reaction (HER), etc., owing to the higher catalytic performance and the mainte-
nance of excellent stability of the CSNs by the presence of active surfaces, defects, 
and higher pore volume and surface area, respectively for the electrocatalysis appli-
cations [6, 7]. Furthermore, CSNs also expressed considerable attentions in wide 
variety of fuel cells and battery applications [8–12]. One of the structural advantages 
of CSNs over other nanomaterials is the combinations of two or more materials in a 
single material with controlled size, shape, and morphology with abundant surface 
area and easy adjustable surface structure. 

Recently, carbon-based nanomaterials were used widely for electrochemical reac-
tions due to the ease of availability, possessing excellent stability under harsh envi-
ronments and the presence of high surface area and low cost as compared with the 
platinum or other metal-based electrocatalysts [13–16]. Similarly, porous carbon 
(PC) also showed huge interest in various applications. Porous carbon materials can 
exhibit high pore volume and surface area, excellent porosity, better durability, and 
improved electrical conductivity. Various carbon-based materials like carbon mate-
rials derived from different biomasses, activated carbon (AC), carbon nanotubes 
(CNTs), graphene, or graphene oxide (GO) were used to design the CSNs with 
exceptional properties [17–21]. The synthesis of porous carbon-containing CSNs 
also gains significant attentions in the recent days [8, 10, 17]. 

In this chapter, we briefly describe the importance of porous carbon-based CSNs 
for electrocatalytic ORR activity. We also cover how the porous and non-porous 
carbon nanostructures on the CSNs playing a vital role on enhancing the ORR activity 
as well as stability. In addition, the effect of transition metals and metal oxide on the 
porous carbon-based CSNs was also analysed deeply for ORR. Finally, we summa-
rize the various aspects of porous carbon-based CSNs and their future perspective for 
improving the catalytic activity, stability, and robustness from the recent literatures. 
Figure 1 clearly shows the possible directions of the CSNs-based porous carbons 
obtained at various methods with superior properties that can be used for ORR.

2 Oxygen Reduction Reaction (ORR) 

ORR is highly important in various fuel cells and battery applications because the 
reaction is controlled kinetically based on the four or two-electron transfer mech-
anisms. In most cases, platinum (Pt)-based electrode was used in fuel cell as well 
as ORR activity due to the superior electrocatalytic activity of Pt-based electrode
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Fig. 1 Schematic illustration of various porous carbon nanomaterials with core–shell nanostruc-
tures for oxygen reduction reaction

[22, 23]. At the same time, this can show severe drawbacks such as low toler-
ance, expensive, and low durability. These parameters are widely lacking to use 
the Pt-based electrodes for such applications. Much efforts were devoted to over-
come these drawbacks by reducing the Pt content, introducing heteroatoms as well 
as porous carbon-based materials, and use of highly abundant low-cost transition 
metals [24]. Recently, the CSNs with heteroatoms, Pt group free transition metals, 
and CSNs with PC nanostructures were expressed tremendous attentions in electro-
catalytic ORR activity as well as for other applications [13, 25–29]. Porous carbon 
nanotubes (CNTs) and graphene-based carbon materials with CSNs can display 
improved electrical conductivity, alcohol tolerance, and electrocatalytic activity. 

Dahal et al. obtained a PC nanofiber with core–shell nanostructures (CSNs) by 
first fabricating a zinc oxide-loaded polyacrylonitrile (PAN)-based nanofiber by in-
situ mixing of PAN and zinc acetate in dimethyl formamide (DMF) and electro-
spun followed by annealing at 350 °C for 2 h to obtain a ZnO-PAN nanofiber
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(Fig. 2a) [13]. The nanofiber is further modified with metal organic framework 
(MOF) using 2-methylimidazolate to form a zeolitic imadazolate framework (ZIF) 
structure on the Zno-PAN nanofiber which was further modified with boron (B) 
and nitrogen (N) heteroatoms using 0.1 M aqueous ammonium hydrogen borate 
trihydrate (NH4HB4)7.3H2O and 0.1 M aqueous sodium borohydride (NaBH4). The 
modified material pyrolyzed and washed with sulphuric acid (H2SO4), ethanol, and 
deionized water to give ZIF-8-based boron (B) and nitrogen (N)-doped PC nanofiber. 
The prepared nanofiber delivered an outstanding electrochemical ORR activity due 
to enhanced electrical conductivity as well as the presence of more active sites based 
on the presence of B and N heteroatoms.

Gebremariam et al. also disclosed the preparation of manganese (Mn) and cobalt 
(Co) loading on the carbon nanofibers followed by the surface modification with N-
doped carbon obtained from by the surface treatment of the metal-loaded nanofibers 
with dopamine and subsequent pyrolysis (Fig. 2b) [25]. The prepared electrocatalyst 
can perform excellent. 

ORR behaviour and also used as a cathode electrode in Zn-air battery as well as 
supercapacitor applications. 

The oxygen evolution reaction requires higher overpotential and demonstrated a 
significant interest in metal-air battery and water electrolyser applications [30]. The 
combinations of ORR and OER electrodes were used as cathode and anode electrodes 
for battery application, whereas the combination of OER and HER was used in 
water-splitting application. OER took place by evolving a molecular oxygen via a 
chemical reaction with the support of four electrons and protons. Iridium (Ir)-based 
catalyst has displayed benchmark OER activity and stability especially under acidic 
condition than various transition metals or other nanomaterials [30]. Under acidic 
media, most of the transition metals have exhibited lower OER activity, whereas 
the transition metal oxides have significant OER effect only at basic condition. To 
overcome these drawbacks, much efforts were drawn to develop a high-performance 
OER electrocatalyst having significant stability at both acidic and basic conditions 
with almost comparable or improved activity than the Ir-based catalyst [30]. 

On the other hand, Pt-based electrocatalyst has displayed outstanding electrocat-
alytic activity for ORR as compared with various other existing materials. Both Ir and 
Pt are very expensive in the commercial aspects of mass production of the electrodes 
for practical applications. Much attentions were paid on a new these aspects and also 
improve the performances significantly than the commercial electrodes by creating 
nanomaterial that can have the ability to solve the drawbacks. The OER activity 
mainly studied the overpotential value of an electrode from their specific current 
density. A catalyst having lower overpotential can display superior OER activity 
[30]. The catalysts made for ORR as well as OER both have identical features based 
on the end-use of applications. Recently, significant attentions were paid for the high-
performance bifunctional electrocatalyst containing both OER and ORR as well as 
OER and HER electrocatalytic activities. 

The mechanisms for OER and ORR occur in acidic and alkaline environments 
based on the following ways [31, 32].
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Fig. 2 a Schematic illustration of the synthetic process of ZIF-8-assimilated B and N co-doped 
core–shell 3D CNFs. Reprinted with permission from Dahal et al. [13]. Copyright 2020 Elsevier 
B.V. b Schematic illustration of synthetic route of MCO/CNFs@NC catalysts. MCO is MnCo2O4, 
CNFs is carbon nanofibers, and NC is nitrogen-doped carbon. Reprinted with permission from 
Gebremariam et al. [25]. Copyright 2018 American Chemical Society

OER Acidic condition 
Alkaline condition 
Aprotic electrolyte 

2H2O → O2↑ +  4H+ + 4e− 

4OH− → O2↑ +  2H2O + 4e− 

O2 
2− → O2↑ +  2e− 

ORR Acidic condition O2 + 4e− + 4H+ → 2H2O(4e−) 
O2 + 2H+ + 2H2O → H2O2 (2 + 2e−) 
H2O2 + 2e− + 2H+ → 2H2O

(continued)
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(continued)

Alkaline condition O2 + 4e− + 2H2O → 4OH− (4e−) 
O2 + 2e− + H2O → HO2

−(2 + 2e−) 
HO2

− + 2e− + H2O → 3OH− 

Aprotic electrolyte O2 + e− → O2
− 

O2
− + e− → O2 

2− 

OER is mostly dependent on pH, because under acidic or neutral conditions, two 
water molecules were oxidized and generate an oxygen molecule and four electrons, 
whereas hydroxyl groups were oxidized to oxygen and water under basic conditions 
[32]. On the other hand, ORR can occur at two possible routes such as two and four-
electron pathways with partial or complete reduction. Both OER and ORR have some 
drawbacks such as slow kinetics, poor reversibility of oxygen, and high overpotential 
when using in metal-air battery [32]. 

3 Carbon-Based Nanomaterials (CBNs) 

Carbon materials are mainly composed of three types of forms such as amorphous 
carbon, graphic, and diamond like carbon which are varied based on the arrangement 
of carbon atoms [33]. In early 1985, the fullerenes-based CBNs such as C60, C70, C84 

were discovered and used in variety of applications due to the unique structural feature 
of the fullerenes [34]. Later on, CNTs with one-atom-thick tubular-shaped graphitic 
sheet, GO, graphene, and single-layered graphene-based CBNs were discovered via 
various physicochemical methods which dominate the overall research fields for 
the past few decades and also applied in various industrial products [34]. This is 
owing to the possesses of larger surface area, porosity, and superior chemical, elec-
trical, physical, and optical properties, respectively, as compared with various other 
nanomaterials due to the abundant availability, flexibility, low cost, environmental-
friendly, good chemical and thermal stability. CNTs have several advantages because 
of superior architecture obtained by the chemical vapour deposition with single or 
multi-layered tubular structure with uniform length and diameter, and the presence 
of extended SP2 carbon would responsible for enhancing the electrical and optical 
properties [35]. In addition, due to an exceptional mechanical stability, flexibility, 
and rigidity of CNTs, which can be widely used as a filler for the development of 
various composites for high-yield applications. 

In the recent days, noble metal-free materials such as platinum group metal 
(PGM) free transition metals, metal oxides, carbon-based nanomaterials (CBNs) 
were demonstrated with the wider applicability in various applications [36]. Among 
the transition metal-based material, CBNs were displayed with huge interest in catal-
ysis, ECS, biological, and environmental applications [16, 32, 37–41]. The structural 
incorporation by doping of heteroatoms such as nitrogen, sulphur, phosphorous, 
boron, respectively, on the CBNs may also enhance the physicochemical properties 
[37], owing to the creation of surface defects and edges as well as the presence
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of more active materials in the CBNs. Among the various CBNs, graphene, GO, 
CNTs, ACs illustrated a widespread usability in different application on account 
of unique physicochemical behaviours. So that these materials were used largely 
in several applications especially in electrocatalysis, ECS, biological, and environ-
mental remediation. Baby et al. briefly reviewed the important aspects of CBNs for 
the treatment of heavy metals from the polluted water as well as other environmental 
applications [41]. The author discussed the role of various dimensional CBNs for their 
effective metal adsorption and remediation. Based on the structural and dimensional 
parameters, CBNs can show different behaviours in numerous applications. 

The formation of CSNs on the graphite carbon surface by embedding with iron 
source has been achieved by two steps of processes such as first, mixing the graphene 
oxide (GO) with ellagic acid (EA) and iron (Fe3+) source to form a coordination 
complexes between these materials which further produces a well-ordered graphitic 
carbon which is wrapped with iron and forms CSNs on the surface under pyrolysis 
in the presence of urea (Fig. 3) [42]. The prepared electrocatalyst demonstrated an 
outstanding electrocatalytic ORR activity because of the presence of more active sites 
by the metal source as well as N heteroatom comes from the carbonization of urea 
[42]. The surface functionalization on carbon material can show a remarkable effect 
in the electrocatalytic ORR activity. Various methods were used to functionalize the 
carbon support such as strong acidic or alkali treatments, modifying the surface func-
tionality with heteroatoms, high-temperature pyrolysis treatment, electrochemical 
etching, and various other methods. 

Kim et al. briefly studied the important aspects of oxygen functionalization on 
the carbon containing Pt catalyst (Pt/C). The oxygen surface functionalization was 
carried out on the carbon black (CB-O) using strong acidic solutions followed by Pt 
loading by incipient-wetness impregnation method and subsequent hydrogen reduc-
tion [43]. The Pt/CB-O has displayed excellent ORR activity with excellent electro-
chemical active surface area (EASA) than the pristine Pt/CB. These results convey

Fig. 3 Schematic illustration of the synthetic procedure for GEFs. Reprinted with permission from 
Zhao et al. [42]. Copyright 2018 American Chemical Society 
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that the oxygen functionalization on carbon could effectively improve the electro-
chemical ORR activity as well as stability. The main reason behind that is the partial 
oxidation of Pt nanoparticles in the Pt/CB-O catalyst [43]. On the other hand, doping 
of one or more heteroatoms such as N, B, sulphur (S), and phosphorus (P), respec-
tively, to the carbon support can also increase the electrical conductivity and elec-
trochemical activity for ORR due to formation of more number of active sites and 
defects [44–46]. 

4 Porous Carbon-Based Materials (PCBMs) 

PCBMs also attracted huge interest for numerous applications than CBMs because 
of the controlled porosity and architecture. Porous carbon materials can be obtained 
by direct pyrolysis, chemical vapour deposition (CVD), templating method using 
hard (inorganic) or soft (organic) materials followed by calcination or pyrolysis, 
and electrospinning [47, 48]. Ma et al. briefly reviewed the synthesis of well-ordered 
mesoporous carbon nanostructures with higher surface areas and pore volumes using 
various kinds of hard and soft templates [49]. In particular, the authors suggested 
that the synthesis of mesoporous carbon is mainly based on the use of hard template 
by the following ways such as synthesis of mesoporous matrix followed by addi-
tion of necessary carbon precursor in order to modify the mesoporous structure 
by various approaches such as chemical vapour deposition, pyrolysis, calcination, 
hydro/solvothermal, and microwave-assisted methods, respectively. Further, poly-
merization of the organic precursor to develop an organic–inorganic hybrid material 
followed by carbonization and template removal using acidic or alcoholic wash to 
generate a highly PC [49]. The three-dimensional (3D) porous carbons and hollow 
carbon spheres derived from various sources have demonstrated the better hosting 
nature to S or various heteroatoms which can be used for battery, fuel cell, and other 
electrochemical applications [50, 51]. For example, S hosting on the PC can deliver 
outstanding electrochemical performance in lithium (Li)-S batteries on account of 
excellent loading of S atom on the PC [52]. Moreover, the presence copious amount 
pore structure and surface area in the PC can have better loading of S atom which 
boost the electron transport and Li-ion as well as stability. 

The porous carbon synthesized by the use of metal organic frameworks (MOFs) 
also has huge impact in various electrochemical reactions owing to the presence of 
heteroatoms with significant amounts of pore structures which improve the electro-
catalytic activity [53–55]. The ZIFs-based PC nanomaterial is also derived by the use 
of cobalt precursor with 2-methylimadazole (MeIM) which has abundant nitrogen 
atom in the PC and delivers an excellent electrochemical activity of ORR [56]. Luo 
et al. briefly discussed the important role of PC for supercapacitor applications with 
their effect of pore structure, surface area, surface heteroatoms and defects, and elec-
trode design [57]. The materials with reasonable porosity, higher surface area, and 
superior physicochemical stability can deliver an excellent electrical conductivity.



12 Core–Shell Nanostructures-Based Porous Carbon Nanomaterials … 331

Similarly, several research groups also discussed the use of various porous carbon-
like materials for supercapacitor and other electrochemical ECS applications [58, 59]. 
Although various heteroatoms doping on the carbon-based materials are studied so 
far for ORR or other electrochemical reactions, the use of oxygen-rich carbon instead 
of heteroatoms is also playing a significant role in the recent days for ORR, because 
oxygen-rich carbon materials are directly responsible for the four-electron transfer 
reaction [60]. At the same time, this can show some drawbacks of reducing the 
electron-transport behaviour, possibility of de-bonding the conjugated structure, and 
difficult to incorporate larger quantity of oxygen atoms on the carbon network [60]. 
As like as the PCBNs obtained from activated carbon, CNTs, graphene, the meso-
porous carbon nanospheres, nanoparticles, or hollow carbon nanomaterials obtained 
by the use of hard or soft template followed by pyrolysis also draw tremendous 
consideration in electrochemical ECS applications [47, 61]. 

Sun et al. synthesized a highly hierarchical PC by in-situ doping of N and S 
heteroatoms on the graphene like microstructures [47]. The porosity of the material 
was derived by the use of organic precursor by CVD followed by the impregna-
tion with poly(vinylpyrrolidone) (PVP) and ammonium persulfate (NH4)2S2O8 in 
aqueous solution and pyrolysed at 800 °C in an argon/hydrogen (Ar/H2) atmosphere 
followed by acid etching. The as-synthesized PC can express higher surface area 
and degree of graphitization, uniform porosity with well-controlled N and S doping 
as lead to superior electrochemical activity in Li-ion battery application due to the 
enhanced physicochemical properties [47]. A well-ordered mesoporous structure 
was fabricated by the mixing of polyaniline (PANI), dicyandiamide, and iron (III) 
nitrate nonahydrate (Fe3(NO)3.9H2O in dimethyl formamide (DMF), followed by 
loading of silica bead (30% ethylene glycol) and continued stirring of suspension and 
subsequent ultrasonication to develop a well-dispersed suspension and transferred to 
glass petri dishes and dried at 80 °C in an oven for overnight. The sample is further 
pyrolysed at 900 °C under nitrogen atmosphere to yield the N-doped mesoporous 
carbon (Fig. 4) [62]. The as-developed materials have excellent physicochemical 
properties, and also the fabricated cathode electrode demonstrated an excellent ORR 
activity because of the presence of well-controlled PC structure with high surface 
area, graphitic, and pyridinic N [62].

Roberts et al. used ice as a hard template to synthesis hierarchical porous N-rich 
carbon monoliths [63]. They synthesized a hierarchical PC by various approaches 
using melamine, graphene, or the combination of melamine and graphene as an 
additive to synthesize the carbon monoliths. The porous N-rich carbon monoliths 
was prepared by dissolving polyacrylonitrile (PAN) in dimethyl sulfoxide (DMSO) 
and freeze-dried under liquid nitrogen which is used as an ice template followed by 
lyophilization in freeze drier for 48 h to remove an excess DMSO. The obtained 
PAN monolith immersed further in deionized water to remove the DMSO by solvent 
exchange method and dried at 60 °C for 3 h. The monoliths was treated under air 
atmosphere at 280 °C for 1 h with the heating rate of 1 °C min−1. The pyrolysis of 
PAN monoliths at 800 °C for 2.5 h with the heating rate of 5 °C min−1 in a steel 
pyrolysis chamber to stable and cross-linked polymer network in order to produce a 
hierarchical N-rich PC. An anode electrode fabricated by the use of the N-rich PC



332 S. Nagappan et al.

Fig. 4 Schematic illustration of the procedure of the synthesis of porous doped carbon nanostruc-
tures. Reprinted with permission from Kwon et al. [62]. Copyright 2019 The Korean Society of 
Industrial and Engineering Chemistry. Published by Elsevier B.V

delivered an excellent performance in Li-ion battery due to availability of sufficient 
porosity and hierarchical morphology. Moreover, the presence of more nitrogen atom 
in the PC is also responsible to enhance the Li-ion battery performance. Furthermore, 
the introduction of melamine, graphene during the preparation PC also increases the 
N-content as well as improves the electrical conductivity due to incorporation of 
conductive graphene in the PC with the reversible capacity of 300 mA h g−1 at 
10 A g−1 [63]. 

5 Biomass-Derived Porous and Non-Porous Carbon-Based 
Materials 

Recently, much attentions were paid on the design and development of various porous 
and non-porous CBMs derived from various bio-sources because of the abundant 
availability of the bio-sources in the earth crust [64, 65]. Biomass are mainly differ-
entiated based on the presence of agricultural and herbaceous sources, bacteria, 
fungus, plants and marine algae, animal, human, and industrial waste-based biomass 
which accounts for the maximum ways of developing different sources of biomass 
[64]. Kaur et al. briefly described the important role of biomass derived-PCBNs for 
electrochemical ORR activity with various ways of preparation and modification of 
carbon networks in the porous carbons [64]. He et al. also synthesized the bifunctional 
PCBNs with N and S heteroatoms for ORR and supercapacitor applications [66]. The 
synthesized bifunctional nanomaterials showed an excellent electrical conductivity 
with outstanding electrochemical performance for multiple applications.
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The CBNs were derived by the direct pyrolysis of bio-sources followed by 
some chemical treatments, also by hydrothermal or solvothermal methods, chem-
ical vapour deposition, and some other roots [64]. These CBNs are much useful 
in various applications especially in electrochemical ECS applications due to an 
improved electrical conductivity, abundant availability of the basic resources, devel-
opment of high pore diameter, surface area, and pore volume, respectively [64–70]. 
Sudhan et al. used a rice straw-based biomaterial to synthesize activated PC by 
washing chopped, dried rice straw in water followed by drying at 80 °C for 24 h in 
an oven and pyrolysed at 600 °C for 4 h in argon atmosphere at the heating rate of 
5 °C min−1 (Fig. 5) [69]. The carbon material was activated further using KOH to 
yield activated PC which exhibits a superior activity for supercapacitor and showed 
also the improved electrocatalytic activity in fuel cell application [69], whereas the 
shell of pumpkin seeds was also used to get the PC by first activating the cleaned shell 
using potassium hydroxide (KOH) followed by heat treatment for certain tempera-
ture and further pyrolysis to yield highly PCBNs [71]. The carbon material played a 
vital role in the absorption of microwave. 

Fig. 5 a CV profile of the AA-RSC symmetric two-electrode cell in [EMIM] [BF4], b CD profile 
of the AA-RSC symmetric cell at different current densities, c specific capacitance of the AA-RSC 
symmetric cell as a function of the cycle number at 0.5 A g−1 current density and the AA-RSC 
symmetric cell-powered LED (inset), and d ragone plot for the AA-RSC symmetric cell in an ionic 
liquid electrolyte. Reprinted with permission from Sudhan et al. [69]. Copyright 2016 American 
Chemical Society
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Yang et al. briefly reviewed the important aspects of bio-derived carbon for the 
microbial fuel cell application [72]. Liu et al. studied the N heteroatom-doped PC 
for ORR activity by preparing the PC from the water hyacinth biomaterial [73]. The 
water hyacinth washed with deionized water and cut it in to small pieces and dried at 
80 °C for 12 h followed by mixing with zinc chloride (ZnCl2) at the ratios of 1:6 and 
pyrolysed at 600 °C as well as 800 °C for 2 h in N2 atmosphere. The prepared carbon 
material was washed with 0.5 M nitric acid (HNO3) and 1 M hydrochloric acid (HCl) 
and deionized water followed by dried at 80 °C [73]. Similarly, lotus root, spinach 
leaves, soybean straw, and raw woods were also used to prepare the high PCBMs by 
activating with suitable activating agents and protocols and reported the better perfor-
mance in electrochemical ORR activity [74–77]. Various other biomaterials-based 
PC materials were also prepared in different approaches and used an electrocatalyst 
with superior stability and performance for ORR activity [78–80]. More recently, 
Sumboja et al. prepared the iron and cobalt (FeCo) loaded with N heteroatom-
doped PC using the combinations of pistachio and peanut shells which displayed 
an excellent performed in aluminium (Al)-air battery [81]. This finding clearly tells 
the important role of various biomass for the preparation of PCBMs and their wider 
applicability in various electrochemical energy storage and conversion as well as for 
other applications. 

6 Importance of CSNs-Based Porous Carbon 
Nanomaterials for ORR 

CSNs are highly important in various applications because the structure is controlled 
preciously based on the requirements with one or more atoms either in the core or 
shell [82]. In most cases, core is worked as a support to the shell, so that the deposition 
of a thin layer of Pt could have a huge impact in the electrocatalytic application. The 
Pt loading is also kinetically controlled by alloying with other earth-abundant Pt free 
transition metals or doping with heteroatoms to make more active sites or by creating 
defects at the edges as well as corners in shell which could make the material much 
suitable for superior electrocatalytic applications [83]. Likewise, the intrinsic activity 
of Pt-based catalyst is also controlled by the introduction of secondary transition 
metals by alloying with Pt such as the formation of the chemical compositions of 
PtCo, PtNi, PtFe, PtCu, and PtCr which also illustrated the creation of higher mass 
and specific activities than commercial Pt or Pt/C catalyst [84]. 

CSNs have reduced the impact of higher loading Pt by the introduction of low-
cost transition metal in the core which facilitates the easier display of catalytically 
active sites to molecular hydrogen as well as reduces the final cost of the electrocat-
alyst. At the same time, the introduction of only metal sources sometimes expressed 
poor stability against acidic and basic conditions due to decompose or precipitation 
behaviour at these condition. Further, the chemical, thermal, and mechanical stability 
and electrical conductivity of carbon or PC materials were improved using CSNs.
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In addition, the introduction of heteroatoms in the PC network structure of CSNs 
also eases the enhancement of electrical conductivity, specific and mass activities 
as well as various other properties necessary to improve the performance of the 
electrocatalyst for ORR and other electrochemical applications [13, 25, 84]. 

Wang et al. developed a N-doped ZIF-67-based PC by first synthesizing ZIF-67 
and pyrolysed at 600 °C for 2 h in Ar atmosphere followed by Pt loading on the 
shell structure by galvanic replacement mechanism (Fig. 6) [84]. The synthesized 
nanostructure exhibits sufficient active sites and high specific surface area as well 
as better tolerance with robust property and durability in the CSNs which are prac-
tically much important to the improve ORR performance. Various MOF-based PC 
nanostructures also demonstrated efficient electrocatalytic applications due to the 
constrained architecture of MOF with interesting properties based on the presence 
of organic–inorganic materials used to develop the materials [54, 85]. Porous mate-
rial can easily control the reaction between the electrolyte and electrode due to the 
easier transport of electrons and protons between the pore channels which facilitate 
an enhanced electrocatalytic activity as compared to the non-porous carbon-based 
materials. In some cases, the oxygen and N-rich porous metal-free carbons also 
delivered outstanding ORR activity and also used for fuel cell applications due to 
the presence of low overpotential, large specific capacitance, long-term stability, 
higher surface area and controlled porosity, uniform distribution of heteroatoms on 
the pore channel or carbon networks, and excellent electrical conductivity [86, 87]. 
Similarly, the presence transition metal with heteroatom-doped porous carbons also 
demonstrated a significant advancement in order to improve the electrocatalytic ORR 
activity [88, 89]. The structural defects are also playing a vital role in upgrading the 
electrocatalytic activity for ORR. Jia et al. discussed in detail the various parameters 
such as etching, doping, ball-milling, annealing, plasma treatment, electrochemical 
method, photoreduction, and hydrogenation methods, respectively, which were used 
to create the defects in the electrocatalyst [90]. Controlling the defects and vacancies 
in the CSNs containing PC frameworks would improve the catalytic activity.

7 Transition Metals and Metal Oxides-Embedded Porous 
Carbon Nanomaterials for ORR 

Earth-abundant transition metals and metal oxides are playing a pivotal role in elec-
trochemical ECS applications due to abundant availability of the transition metals as 
well as their low cost as compared with the noble metals such as Pt, Ru, Ir, Au, and 
Ag, respectively [51, 91]. The modification of these transition metals to achieve a 
highly porous carbon-based transition metals also considers an effective approach in 
electrochemical ECS because of the generation of an excellent porosity, surface area, 
pore volume. Moreover, the PC would facilitate an enhanced electrical conductivity 
and stability. Ahn et al. modified the surface of a one-dimensional nanotubes such as 
porous tellurium nanotubes (Te NTs) with ZIF-8 structure and embedded further by
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Fig. 6 Schematic of the preparation of Co@Pt-NC nanocomposites. Reprinted with permission 
from Wang et al. [84]. Copyright 2017 Elsevier B.V.

using dopamine hydrochloride as well as with ferric chloride and subsequent pyrol-
ysis at 950 °C for 2 h with heating rate of 5 °C min−1 to yield a highly PC [92]. The 
electrode fabricated by using these materials delivered an outstanding ORR activity 
under both acidic and basic media. The well-ordered FeNx active site present on the 
PC with large graphitic layers at the surface would be responsible for the efficient 
catalytic activity. In addition, the fabricated electrode also showed an outstanding 
result in zinc-air battery application [92]. 

Song et al. briefly reviewed the important role of non-precious transition metal-
based carbon materials with N heteroatom for the ORR as well as their future use 
in proton exchange membrane in fuel cell application [93]. These types of hybrid 
electrocatalyst with M-NxC (where M = metal source, x = 2 or 4 based on metal 
and nitrogen bonding such as MN2 or MN4) structures have acquired much obser-
vation in the recent days because of the low cost, earth abundant, excellent elec-
trical conductivity, easier reproducibility, and existence of more active sites, respec-
tively. The improvement in the electrocatalytic activity of ORR observed for the 
M-NxC-based electrode would depend up on the carbon support on the transition 
metals because an excellent dispersibility was encountered based on the presence 
of carbon atom which eases better dispersibility and enhances the electrocatalytic 
activity for ORR [93]. In addition, the heteroatom doping on the carbon-supported 
transition metals also displayed better catalytic activity as compared with the absence 
of heteroatom [93, 94]. This is due to the creation of more numbers of active sites 
on the carbon-supported transition metals by the heteroatom. 

The porous carbon polyhedral (PCP) synthesized with the decoration of cobalt 
and diselenide by simple selenization of the as-synthesized ZIF-67 with selenium by 
pyrolysis technique can deliver the uniform embedding of metal sources within the 
PCPs and also displayed an excellent properties and also manifested an outstanding
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performance in the electrocatalysis of ORR (Fig. 7a) [95]. The organic ligand in 
the ZIF-67 structure was converted to graphitic carbon polyhedral (GCP) during the 
carbonization process, and at the same time, the then diselenide also loaded uniformly 
throughout the cobalt (Co)/GCP [95]. These can yield a stable and strong connection 
between the carbon surface and metal sources which ease the formation of more active 
sites. Moreover, the synthesized material displayed an excellent dispersibility, elec-
trical conductivity, and also a high surface area which are responsible to show superior 
durability and catalytic activity in alkaline media [95]. Similarly, a recent study of 
synthesizing the iron-loaded ZIF-67 structure followed by pyrolysis also yields the 
transition metal-embedded PC which also conveys an outstanding electrocatalytic 
activity to ORR (Fig. 7b) [96].

8 Heteroatom-Doped CSNs with Porous Carbon 
Nanomaterials for ORR 

Heteroatoms such as N, P, B, S, and the combination of two or more heteroatoms 
present in the CSNs-based PC have displayed an excellent electrocatalytic activity. 
These heteroatoms-doped porous carbons can be applied in various ECS applica-
tions owing to the availability of abundant active sites, surface defects as well as the 
presence of lone pair of electrons which boost up the electron transfer and enhance 
the electrical conductivity for electrocatalysis applications [97–102]. The ZIF-67-
based material itself having N heteroatom from the ligand and subsequent pyrolysis 
may indicate the appearance of more active sites and the formation graphene like 
carbon in their structure which is responsible for the effective ORR electrocatalytic 
activity as like as the commercial platinum/carbon (Pt/C) electrode [95, 96]. The 
synthesis of phosphorous and iron-doped PC can be easily obtained by mixing the 
triphenylphosphine precursor with zinc and ferric chlorides followed by carboniza-
tion at different temperatures such as 800 °C, 900 °C, and 1000 °C, respectively, and 
further acid washing using hydrochloric acid followed by deionized water to get the 
PC (Fig. 8) [103]. Various other kinds of low-cost Pt group free transition metals and 
metal oxide with PC were also well executed for an effectively electrocatalytic ORR 
reaction, because of abundant availability, low cost, compared performance as like as 
commercial Pt/c electrode, possessing [29, 104–107]. More studies also performed 
the synthesis of much effective heteroatom-doped CSNs-based porous carbons in 
the recent years for ORR activities because the heteroatom doping in the CSNs as 
well as in porous carbons not only enhances the electrochemical activities, it also 
enhances various physicochemical properties which are much important in various 
applications.
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Fig. 7 a Schematic illustration of fabrication of ZIFs-derived CoSe2/GCP hybrid composites. 
Reprinted with permission from Wu et al. [95]. Copyright 2016 Elsevier B.V. b Schematic illustration 
for the fabrication of FC@NCs. Reprinted with permission from Luo et al. [96]. Copyright 2021 
Elsevier Inc.

9 CSNs with Carbon Nanomaterials for ORR or OER 
with Supercapacitor Behaviour 

Supercapacitors are playing an important role for the current demand of energy 
storage [108]. The materials with good cyclic performance, high specific power, 
flexibility, fast charge–discharge rate, high surface area, and cyclic stability can be 
used widely for supercapacitor application [109]. A binder-free electrode fabrica-
tion method is the most desirable approach for designing an electrocatalyst for ECS
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Fig. 8 Schematic illustration of the preparation of iron phosphide-doped PC for ORR. Reprinted 
with permission from Norouzi et al. [103]. Copyright 2020 American Chemical Society

application due to the presence of binder would increase the contact resistance of the 
electrode. The electrode having an electrocatalytic ORR activity with supercapac-
itor behaviours attracted huge interest in fuel cell and supercapacitor applications 
[108, 109]. Recently, numerous works were focused on ORR as well as superca-
pacitive behaviours using various nanomaterials [68, 108, 109]. Gao et al. prepared 
the nitrogen and oxygen dual-doped carbon (NODC-800); electrocatalyst obtained 
from catkins was used as superior ORR catalyst in alkaline fuel cell with superior 
capacity of 109 F g−1 at 0.5 A g−1 and maintained the stability over 1000 cycles 
[108]. The author also prepared N-doped PC spheres at large scale using fermented 
rice-based biomass as an active material. The prepared material has high porosity 
(1.14 cm3 g−1) with maximum surface area (2105.9 m2g−1), and outstanding elec-
trocatalytic four-electron ORR activity [110]. In addition, the electrocatalyst also 
exhibits good cyclic stability and specific capacitance of 219 F g−1 at the discharge 
current density of 15 A g−1. Kim et al. synthesized a nickel-mediated metal organic 
frameworks (MOFs)-based macroporous carbon (Ni-MOF@mC) which can deliver 
an outstanding electrocatalytic ORR activity and superior supercapacitive behaviour 
because of well-defined pore size, presence of high surface area, chemical tenability, 
and conductivity of the material [111]. The Ni-MOF@mC can show the specific 
surface area with normalized capacitance of 26.5 mF cm−2 as well as high capacitance 
performance of 109 F g−1. 

Likewise, a material possessing both OER and supercapacitor characteristics also 
displays significant interest in ECS applications [112–116]. OER took place by the 
oxidation of two water molecules with four electrons followed by the removal of four 
protons to produce a weak O–O bond [117]. The important drawbacks of OER are 
the need of high overpotential to reach a desirable current density as well as the use 
of expensive iridium- or ruthenium-based catalysts [118]. Khalid et al. have prepared 
highly active and low-cost electrode using natural sugar powder as a biosource by
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reacting with red phosphorous to form a carbon particle [119]. The carbon-based 
electrode prepared from the sugar source displays the overpotential of 1.69 V versus 
Reversible hydrogen electrode (RHE) at 10 mA cm−2 current for the OER also 
showcases the specific capacitance of 105.8 F g−1with 100% of the initial capacitance 
retention even after 3000 voltammogram cycles. More recently, Kale et al. fabricated 
a binder-free nanocrystalline cobalt sulphide (CoS) on stainless steel (SS) substrate 
by chemical bath deposition (CBD) that has showed a remarkable supercapacitive and 
OER activity [120]. The prepared electrocatalyst showcases the specific capacitance 
of 252.39 F g−1@ 5 mV s−1 and maintained the initial capacitance over 1000 cycles 
of CV. In addition, the electrode can also present the overpotential of 300 mV@ 
10 mA cm−2 and Tafel slope of 57 mV decade−1. The excellent properties of the 
prepared electrode were due to the origination of uniform thin films of nanocrys-
talline hexagonal CoS on the SS substrate [120]. The surface corrosion/oxidation 
effects worsen the performance of most of the fabricated electrodes in both ECS 
[121]. This drawback can be encountered by synthesizing CSNs with conductive core 
and nanostructured outer shell. The core–shell FeO@CuCo2S4 was fabricated on a 
nickel foam (NF) substrate by two-step synthesis approaches such as hydrothermal 
growth of CuCo2S4 on NF substrate followed by FeO deposition on the substrate via 
magnetic sputtering technique. The fabricated electrode offers an excellent specific 
capacitance of 3213 F g−1 at 1 A g−1 and withholds over 99% of efficiency after 
10,000 charge/discharge cycles. On the other hand, the electrode also displays low 
overpotential of ~240 mV at 10 mA cm−2 and Tafel slope of 51 mV dec−1. Moreover, 
the electrode can be usable up to the current density of 100 mA cm−2 for over 25 h 
[121]. Chu et al. fabricated phosphorous-doped NiCo2O4 (P-NCO) nanowires on NF 
substrate by two steps such as growth of NiCo2O4 on NF substrate by hydrothermal 
method followed by phosphatization via pyrolysis step [122]. The P-NCO electrode 
can have the superior specific capacitance of 2747.8 F g−1 at 1 A g−1as well as low 
overpotential of 300 mV at 10 mA cm−2 (1 M KOH) activity during OER. 

10 Factors that Affect the Performance of Carbon 
Materials in ORR 

There are several factors that affect the production of carbon-based materials in 
ORR such as surface defects and active sites, porosity, electronic configuration, types 
dopants, presence of inorganic impurities, acidic and basic solutions concentration, 
band gap. Tian et al. discussed the important role of N-content in the transition metal 
carbides (TMCs) as well as kind of graphitic shells that can largely affect the perfor-
mance of the carbon-based electrode during ORR [123]. Carbon-based materials like 
carbon nanotubes, graphene, activated carbon, carbon black, mesoporous carbon, and 
carbon nanofibers are considered to be inactive electrocatalyst due to unavailability 
of catalytic active sites for the ORR [124]. At the same time, the electrocatalytic
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ORR activity was increased by the introduction of heteroatoms to the carbon mate-
rial via in-situ doping during the synthesis or post-treatment of the carbon material 
with dopants [123, 124]. In both ways, the fabricated electrocatalyst can deliver a 
remarkable catalytic activity for the ORR. Likewise, the introduction of some kinds 
of defects to the carbon material also showed much-improved ORR activity [125]. 

Some studies were demonstrated that the existence of less content of N in the 
carbon-based material after high-temperature treatment can deliver outstanding posi-
tive onset potential and also provide almost four-electron transfer number than the 
presence of larger contents of N in the carbon-based material [125]. Because the 
introduction of N atom to the C can activate the electronic structure of the neigh-
bouring carbon atom that facilitates the active role for ORR. So, the synthesis of 
defective carbon with adjustable electronic configuration can play a vital role in 
ORR [125]. The ORR activity of the pristine carbon can also be activated by phys-
ical intermolecular charge transfer, introducing of non-metal heteroelements to the 
carbon matrix, and developing structural defects [126]. The introduction of boron 
and nitrogen dopant to the carbon would slightly alter the energy gap, whereas 
increasing more dopants to the carbon would significantly increase the energy gap 
and reduce the conductivity [127]. So, the use of average quantity of B and N on 
the carbon can show outstanding ORR activity. The porosity of the carbon material 
with various length scales as well as the presence of dopants also showed an adverse 
effect in the mass transfer during ORR [126]. The availability of microporosity in 
the carbon material can present superior ORR activity than the mesoporosity. At the 
same time, some studies were suggested that the mesoporosity with larger pore size 
and specific surface area would facilitate the easier contact of the reactant through 
the pore channels [128]. On the other hand, the combination of micro and meso-
porosity with wider porosity as well as hydrophilic behaviour can further enhance 
the electrocatalytic ORR activity [129–131]. The band gap of carbon material also 
plays an important role to decide the ORR activity. When the dopants are attached to 
the same sublattice, parts of the carbon material can deliver the maximum band gap 
and closed, while the dopants are placed adjust to carbon sublattice [132]. The band 
gap of carbon material increases with increasing doping concentrations. In general, 
band gap is inversely proportional to the conductivity. The outstanding ORR activity 
was achieved with the reduced band gap of the carbon material [133]. The B and 
N-doped carbon material can show smaller energy gap as compared to the pristine 
graphene, whereas overdoping to the carbon material can lead to increase of energy 
gap. The lowest energy gap of the B and N-doped carbon can demonstrate the highest 
chemical reactivity and catalytic performance [132, 134]. We also compared various 
CSNs obtained with PC nanomaterials for ORR in 0.1 M KOH (Table 1).

11 Future Perspectives and Outlooks 

The CSNs-based PC has attracted considerable attentions in the recent days due to 
the maintenance of excellent properties such as high surface area, pore diameter, pore
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Table 1 Comparisons of CSNs-based porous carbon nanomaterials for ORR performance in 0.1 M 
KOH 

Catalyst Loading 
(mg cm−2) 

Electrolyte Eonsetvs RHE E1/2vs RHE References 

ZIF-67–900 0.7 0.1 M KOH 0.91 0.85 [135] 

NC-900 (ZIF-8) 0.11 0.1 M KOH 0.83 0.68 [136] 

GNPCSs-800 0.2 0.1 M KOH 0.957 0.82 [137] 

NPCS-800 – 0.1 M KOH 0.95 0.83 [138] 

N-doped Fe/Fe3C@C 0.7 0.1 M KOH 0.91 0.83 [139] 

CNS-800 0.28 0.1 M KOH 0.914 – [140] 

NDCN-22 0.6 0.1 M KOH 0.954 – [141] 

CoP-CMP800 0.6 0.1 M KOH 0.88 0.82 [142] 

NHPC1:3–900 0.42 0.1 M KOH – 0.87 [143] 

CNM@C – 0.1 M KOH 0.72 0.62 [144] 

B1.0CNM@C1.0 – 0.1 M KOH 0.78 0.68 [144] 

Co@Pt-NC – 0.1 M KOH 0.99 0.87 [84] 

CoOx/Co@GC-NC 0.464 0.1 M KOH 0.957 0.858 [145] 

Co@Co3O4@C-CM 0.1 0.1 M KOH 0.93 0.81 [146] 

PCN-FeCo/C 0.2 0.1 M KOH 1.0 0.85 [147] 

CoS NWs@NSC-2 – 0.1 M KOH 0.93 0.84 [148] 

Co–C@NWCs 0.1 0.1 M KOH 0.94 0.83 [149]

volume, good electrical and thermal conductivity. Furthermore, the introduction of 
heteroatoms as well as non-precious transition metals to the CSNs-based PC also 
facilitates the much-improved physicochemical properties and excellent usability in 
electrocatalytic applications. These materials would help to replace the usability of 
precious metal consumption by doping of small quantity of heteroatoms as well as 
non-precious transition metals. This obviously reduces the product cost and delivers 
almost identical or better electrocatalytic behaviour and also improves the stability 
under acidic, basic as well as alcoholic solutions as compared with the commercial 
high-yield products made by the use of noble metal catalysts. So, the recent studies 
are largely focused under this area in order to reduce the product cost and enhancing 
the performance of the electrocatalyst. Especially, the nitrogen heteroatom-doped 
porous carbons are synthesized widely using various kinds of nitrogen-containing 
organic compounds because the carbonization of these materials would successfully 
form a negatively charged pyridinic N as well as graphitic N in their structure due to 
the availability of lone pair of electron by the N atom. Moreover, the presence of N 
heteroatom in the PC would facilitate the emergence of more active sites as well as 
defects in the carbon nanostructures. In the addition, the presence of carbon nearer to 
N atom would act like Lewis basicity which helps to absorb more oxygen molecules 
on the carbon sites. A noticeable change in the pyridinic N was due to conversion of 
pyridinic N to pyridonic N which can confirm the successful ORR activity occurred
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on the N-doped PC electrocatalyst. In contrast, the presence of graphitic N also 
exhibits some defects and active sites in the PC which are also helpful in enhancing 
the electrochemical oxygen adsorption and reduction activity. Based on these reasons, 
the N-doped porous carbons were demonstrated as an excellent electrocatalyst for 
ORR activity and also illustrated an outstanding stability against alcoholic solution 
as well as acidic and basic conditions which are much-important properties for fuel 
cell and battery applications. In the addition, the hierarchical porous architecture 
in the PC would help the easier diffusivity oxygen molecules and electrolyte in the 
porous networks and improve the performance of the electrocatalyst of ORR. The 
heteroatom doping as well as non-precious transition metal ions or oxide doping on 
the porous carbons also has some drawbacks due to some sensitivity against moisture 
or other physicochemical changes by prolonged exposure which obviously reduces 
the performance of the developed products. More focused studies need to be carried 
out in order to enhance the electrocatalytic activity and improve the stability against 
various stimuli. 
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