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The entropy of an ideal gas at

absolute zero 1is :

(A) oo

B) 0

(C) Nkg

(D) can not be calculated

This is also ca
Nernst’s Theore
third law states that
entropy of any body
vanishes at absolute
temperature, i.e. S = (
T =0.



For a system of N non-interacting
fermions e'r_iclosed in a volume V’ at
costant temperature T, the average
occupation number of the ‘rth’

energy level is given by :

- 1
(A) B = eB(er—u) o |

_ 1 -
(B) Ie'= Bler — ) _ _ _
(e ‘ 1) < ns >= Z e_ﬂ(ﬂ_es) +1 o

S

©) 7, = e Ber-w

D) 7, = (P -W 4+ 1)




"A first order phase transition is

characterised by :

‘(A) a divergence of the specific heat

at T, the critical temperature

(B) A cusp in the average energy

~at TC

(C) The constancy of entropy in the

transition

(D) A latent heat is involved in the

transition process

First order -

e Discontinuous change of
energy and sp. Volume

e Heat evolved / absorbed

» e.g. Solid - Liquid, Lig
Gas



A gas of molecules, each of mess ‘m’

is in thermal equilibrium at an

absolute temperature T". If v,, v,,

v, are the components of the velocity

‘U of each molecule, then the mean

2
value of U™ :

(A) 0

=T
(B) o B

3
(@) —rpl
m

(D) NEgT

flu,v,w) = n(

m )3/2 e-m(u2+vz+w2)/‘2kT

27kT




The Fermi energy of a free electroi

gas at absolute zero is of the orde

of : ' Principles of Equilibrium Stat
Mechanics Debashish Chowdh

Stauffer

(A) electron-volts

m’k:  m? [ 6x® NP
(B) MeV | FT oM T 2M{(2S+1)V}

(C) keV Calculate the Fermi energy in eV for Sodium assuming
that it has one free electron per atom. Given density of
(D) ergs ‘ , sodium = 0.97 g/cc, Atomic weight of sodium is 23.

Data: N, = 6.02 x 1026 atoms per kg mole,
0 =0.97 g/lcc = 0.97 x 103 kg/m3

h2 (3N Wi 23
€= = 6.62x10-% joule.sec
= 9.1 x1031 kg

No,p 6.02x10
w

N
Y

er = 5.04265 x 10-%° Joules
=3.147eV



Consider an ideal gas of N molecules
enclosed in a volume V' maintained
at a temperature ‘T". The correct
expression for the entropy of the
system is :

(A) S =Nkg 1nV+—Z-lano]

(B) S =Nkg _ln(—l\\—;)+%lnT+c]

(C) S=kBLln’V+—2—lnT+o}.

o o-n(3)n ()

§lnT+0].
2




If the temperature of a black
body is increased by a factor
of 2, the amount of energy/
volume radiated increases by a

factor of :
(A) 2

(B) 4

(C) 8

D) 16

u=aT*4,

where a is a constant,

s=%aTs3.



If the temperature of a free electron

gas is increased by a factor of 2, its

specific heat increases by a factor
of :

(A) 2

(B) 4
(&) 8-
D) 16

Cv % NK 77 2 (k—T]

Ss




The mean energy of a classical ideal
gas having N monatomic particles

at a temperature T will be :
1
(A) 2 NkT

(B) NKT

(C) 2 NkT

(D) g NkT

A(N,V,T)=—kT InQ,

U=A+TS




The volume of a perfect gas is
doubled, the number N of atoms and
the energy being held constant. The
change in entropy will be :

(A) Nk In V
(B) 2Nk In V

(C) Nk In 2

D) 5 Nk In @V)

S = NkLn[V( E J/ (47”"
N | 3n2
%
S = NkLn[ZV(E [
N

S'=NkLn2+ NKLn V(

S'=NkLn2+S



In a process, a thermally isolated
system goes over to one macrostate
to another, then the entropy tends
to :

(A) Increase only

(B) Decrease only

(C) Increase or remain constant

(D) Zero

Thus we can define the law o
increase in entropy in the follo
way:

“If the entropy of a closed sys
does not have its maximum vall
any time, then the entropy will
increase or at least remain co
at a later time”.



For the Fermi-Dirac distribution, the
probability of occupation of a single

particle energy level is equal to :

(A) the average occupancy of that

level

(B) one

1
(C) 9 the average occupancy of that

level

D) 0




Consider degenerate Fermi gas at
T = 0 with the Fermi energy

Ep. The mean energy per particle

will be :
3
(A) 5 Eg
1
(B) 5 Ep
2 Substituting equation (28) in equation (27) the total ground state energy of
(C) § EF given by
9 U, 27ng (2m)/ Ie/ de
(D) - Ep
3 <n> =1 fore<e;

=0 fore>¢e;

e (

h3 5 u, :lrch(z )9/1 5

From equation (29) and (32), we get

3

Thus the average energy per particle of the Fermigasat T=0is
energy eg.




The equation of state of an ideal gas
in the non-relativistic state is given

by :

(A) PV=§U

(B) PV=§U

1

(C) PVv==-U

o |

M) PV==0U

N | O

U=§NkT 1- 1 N
2 42 gV | 22mkT

2
pv = NkT| |1 N [_D
42 gV | 27mkT

PV = 2
3




Considering Hydrogen (H,) and
Helium (He) as classical ideal
Maxwell-Boltzmann gas, the ratio of
root mean square speeds of H,
molecules to that of He atoms at the

same temperature T is :

(A) 2

B) 2

1
(C) \g

1
(D) 5

flu,v,w) = n( m )3/2 e-m(u2+v2+w2)/2kT

27kT
C2 =
c_2 _
3KkT -
VRMS(H2)= m c
HZ
3KkT U = v
Vews (He) = -
He —_— —
2 — ,2
3T ur =
VRMS(HZ)_ My, _ 3KT My, _ My, _ i:\/i T
my, 3kT m,, 2




The molar specific heat of conduction

electrons at 300 K is :

3
(A) >>§R

3
(B) ER

(C) << % R

(D) R

Here R is the gas constant.

|ldeal Fermi gas at

71'2 kBT
cy = —nkpg
2 €F
71'2 kBT
(cv)electron = ? . (cv)classical-

\

<< 1



Two identical particles are to
be distributed over 3 energy
levels. Treating the particles as
distinguishable Maxwell-Boltzmann
particles, the number of ways in
which the particles can be
distributed is :

A) 9 Find number of possible ways of distributia
electrons in 3 states according to MB, BE an
(B) 6 SFPB}SPf%'No. of electrons
(C) 3 & g; = 3 : No. of states
MB statistics| BE statistics:
D) 8 0
D) =n|H£ =gi(gi+ni -1)
X n; gi!n!
K _33+2-1)
:2'3 3!
) Ix3 _ Ix4x3x2x1
B '17  3x2x1x2x1
=9 =0




A system of N identical independent
three dimensional harmonic
oscillators vibrating with the same
frequency . The system is contact
with a heat reservoir at temperature
T. Treating the oscillators as
classical, the molar specific heat of

the system is :

3
(A) SR N
QN{k—T} F=U-TS=A
10)
(B) 3NK
A(N,V,T)=-KkT InQ, A(N,V,T)=-NKT In
3
(C) \/;R P=—(%j pz_(i
oV NT oV
(D) 3R
oA
S= —(ij S = Nk[1+ In
U=A+TS U = NKT
cv= _ O \KT =NK=R

or or



A system has a relaxation time of
the order of a millisecond. A
quasistatic process on this system
can be carried out on the time scale

of the order of :

(A) 0.001 s

(B) 0.1 s

(C) 0.0001 s

(D) 1 us




Let E be the mean kinetic energy
and V be the volume of a classical
ideal gas. The pressure of the gas

is numerically equal to :

ZE _VN 272'ka 3N/2
(A) §v Qu _W( h2 j
1E
B) - A(N,V,T) =-kT InQ, A=—NkT{1+In
3V
3E p=| 2 P = NKT
RV 6V N, T
o 3 ) (
1E s={ A S=Nk(
(D) 2V (GT]N,V




In an adiabatic expansion of an
ideal monatomic gas using Joule-

Thompson effect :
(A) Cooling effect is produced

(B) Heating effect is produced

(C) Neither heating nor cooling

effect is produced

(D) Supercooling effect is produced

Example 4.15:

p2.Va

R S R A M R T R

Figure 4.9. Joule-Thomson experiment.

Themodynamics and Stat
Mech (Springer.1997)
Greiner

Joule-Thomson coefficient
While discussing the Joule-Thomson experiment we calculated the Joule-Thomson coefficient
aT
ap Iy

If § is to be expressed by the known enthalpy H (T, p), one obtains this with the help of

aT T, H) o(T, H) a(p, T) a(T, H) a(p, H)

ol 3. H) T Wp. ) 8p H) ~ 8(pT) / 3(p. 1)
or

aT aH,T) a(p, H) aH aH

o1y D) / 8p 1)~ op T/ oT |,

which, of course, agrees with the result above.



Which of the following thermo-

dynamic relations is incorrect ?

e
wee (3)
©) S = -(g—,]’;)v
s 2]

Here P, V, T are the pressure,
volume and temperature, and F, G,
S, U are the Helmholtz Free energy,
Gibbs’ free energy, entropy and

average energy respectively.




The equation of state of an ideal gas

in the

approximation is given by :

extreme

relativistic

A) PV = gU
5
(B) PV = §U
C) PV = lU
2
(D) PV = gU

Themodynamics and Statis
(Springer.1997) Walter Grei

1 3 K 2y 1N
2 v, ) = |4 (59) expipme’ sy

\
_ Vo meyt Ka(pme?)
F(T, V, N NkT[lnl-‘-l:rN ( - ) e

 NKkT
T.N 14

_n}_f_)?’ Kopmc®) |,

oF
T,V.,N) = — —
Pl ) 3V

oF
T,V,N) = —
e ( ) N

S(T,V,N) = Nk |In

= Nk|ln




Consider distributing 2 identical
particles over 3 energy levels.
Treating the particles as
indistinguishable Fermi-Dirac

particles, the number of ways of

distributing is :
Find number of possible ways of distribution
electrons in 3 states according to MB, BE and

(B) 6 SFPB}S=t]f§'No. of electrons

(A) 9

C) 3 & g; = 3 : No. of states
MB statistics: BE statistics:
3 : _
o -n] - _glg+n-1)
i N g.!n!
& _+2-1p
2 )
21%° _ 3xx3x2x
i '17 Ix2x1x2x1
:9 :6




The energy density of the photon gas

maintained at a temperature “T” is The internal energy of the p

proportional to T", where ‘n’ is :

U=|eg d
A 1 ‘c[e,n(a)) @
B) 2 %
®)  _ ONKT* ]
o 3 X
(C) 3 bp e -1
At low temperatures,
) 4 ‘- hog
T << 6, KT
U _§7Z’4Nk A




The average value ¢y (non-
relativistic) of the velocity of a gas

of molecules maintained at a

temperature “T” is given by :

1
(&) kT
] flu,v,w) = n (2:::T)3/2 e-m(u2+v2+w2)/2kT
(B) zero \
62 =
3
—k,T
©) kg -
T
(D) kl; i
m




In the canonical ensembles the

system :

(A) is not maintained at a fixed

temperature

(B) can exchange energy with the

surroundings

(C) can exchange the number of

particles with the surroundings

(D) is completely isolated from the

surroundings




The entropy of the universe in a

reversible process is :

(A) 1s constant

(B) is increasing

(C) is decreasing

(D) becomes infinite

Thermodynamics, Gibbs
Statistical Physics of Elec
Bahram M. Askerov

dS/dt > 0 — irreversible process
dS/dt =0 — reversible process.

S(1)1
S e _

Hax

=

c0S8/0t>0

rreversible
process

S = const

Reversible
Process




For a system in thermodynamic
equilibrium the following must be
necessarily constant throughout the

system :

(A) Temperature and pressure

(B) Temperature and not pressure

(C) Pressure and chemical potential

(D) Temperature, pressure,

chemical potential

Therefore condition for phase eq

Ti=T,
P1=P,
=

(Thermal Eq
(Mechanical
(Chemical Eg



) . . . . i
If the equation of state for a gas with internal cnergy U is pV =J§U, then the

equation for an adiabalic process is

4
(AY pV7? = constant

(S ;JV?’{‘ = constant

ﬂ.ﬂ

P=1sam

(koT)* ~ T*

VT3 = const

PVA3 = const.

(B) pv% = constant

ars
(D) pV 7’5 =constant

Thermodynamics, Gibbs Metho
Statistical Physics of Electron Gas
Bahram M. Askerov
Pg 298

Eq 7.300



The prossre for a noninteracting Fermi g with internal energy U at temperature 118

3 ';‘Jlr 2. LI
(A) p =" By p=




& system of nominteracting Fermi particles with Tormi energy Ex has the density of
states proportional toy I2 | where E is the energy of a particle: The average encray pet
particle at iemperature 1= {19

] :
Ay —E, RIS
( : (T § &




It the partition function ol a harmenic oscillator with frequency @ at 4 temperatuie 1

'
o w1 . . . . . :
8 , thent the free encrgy of N such independent osciilators is
hic
(A) — Nl (By LT In—— (L]
Z kT
QN=[k—T} F=U-TS=A
ho
_ KT o
A(N,V,T)=-KkT InQ, A(N,V,T)=—NKT In{—}:NkT In[—}
ho kT
OA 0 KT
P=-— S . - =
(aVJN,T i (aV{ NKT In|:ha):|}JN’T 0

ool

U = NKT

_ _(%]
T )y

U=A+TS

D in—
il

. o 1280
(D} NI In——
2Er




L 1
The free energy of a photon gas enclosed in a volume V is given by F =-—§aVT“,

where a 1s a constant and 7 is the temperature of the gas. The chemical potential of
the photon gas is

(A) 0 (B) g—aVT?’ © é—aT“ D) avr




The wavetunctions of two identical particles in states n and s are given by ¢, (r) and

#.(r,), respectively. The particles obey Maxwell-Boltzmann statistics. The state of
the combined two-particle system is expressed as

(A 6,1)+6.(5) ®) ‘j_a[‘?}n(’i)ﬂ(rz)+¢n(f’z)ﬁe(ﬁ)]

1
(C) -‘/_E[gbfs(ﬁ)gv(rz)—éﬂ(FE)QS(H)} (D) @1(}])@5(?‘2)

When the particles are distinguishable there are two possibilities for
occupancy of the states, as described by the wave functions

v =,y (2)
v =y, (2w, (D)

If the particles are Bosons, the system is described by symmetric wave functi

Veoen = %[wa Oy (D) + 1. Qs O]

And if they are Fermions, the system is described by the antisymmetri
fu nCt.ionl//Fermion = % [l//a (1)l//b (2) —Va (Z)l/jb (1)]



The mean internal energy of a one-dimensional classical harmonic oscillator in

equilibrium with a heat bath of temperature 7 1s

1 3
(A) Ekyr B) kT (©) EkBT
QN=[;—HN F=U-TS=A

A(N,V,T)=—-NKT In{k—T} = NKT In{h—w}
ho kT

S G A T
Al ]

U=A+TS U = NkT

A(N,V,T)=—KT InQ,

D)  3kyT




ion function of a single gas molecuie is Z_ . The partition function of N

The partiti
then given by

such nnn-mteractmg gas molecules is

(A) =2 (Za) “) (B) (Z,)' ©) N(Z.)




] yT*, where a is a constant.

The free energy for a photon gas Is given by F =-—[

The entropy S and the pressure £ of the photon gas are

(A)S=iaf-"?"._. p=2r
3 3
(C) S:ia”"i P___ETJ
3 3
oF
S = 1
oT |y n..
F=—2yT!
3
- * =ﬂaVT3
oTlyn 3
:—E :ET4
Vi 3




\!

Statement for Linked Answer Questions 82 & §3: GATE 2007
An ensemble of quantum harmonic oscillators is Kept at a finite temperature T =1/k,23.

The partition function of a single oscillator with energy levels (n+ l} A s given by
2 e .

Ay z="" g /hur
I—El-'ghm ('BJ Z= i+€-ﬂhm

(C) Z =- ]
1._6—15”“1? (D) Z = ]-I-E_‘!”'w

The average number of energy guanta of the oscillators is given by

—ﬁ'ﬁ Y
A = ——— &
( }'-1’.?1":-* E,@rm_i (B)qn;w_-m
| =fhew
C) <nod=—pv— e
NI (D)<n>_—eﬂ”‘”+]
expl— ! fiw) 1 Thermodynamics and Statistical Mechanics
2V, Ny = |i1—exp{2—ﬁhw}:| ") = xpliw} —1 2nd Ed Greiner-Neise-Stocker (pp 211)



Thermodynamic variables of a system can be volume V, pressure P, temperature 7, number of
particles N, internal energy E and chemical potential s etc. For a system to be specified by
Microcanonical (MC), Canonical (CE) and Grand Canonical (GC) ensembles, the parameters
required for the respective ensembles are:

(A) MC: (M,V,T); CE: (E,V,N); GC: (V, T. ,yj (B) MC: (E,V,N); CE: (N,V.,T); GC: (V,T,u)
(C) MC: (V,T,); CE: (N,V,T); GC: (E,V,N) (D) MC: (E,V,N); CE: (V,T,); GC: (N,V,T)




Two identical particles have to be distributed among three energy levels. Let rg, ¢ and r¢ represent
the ratios of probability of finding two particles to that of finding one particle in a given energy
state. The subscripts B, F and C correspond to whether the particles are bosons, fermions and

classical particles, respectively. Then, 1g : I : Tc is equal to

1 |
A)—:0:1 B)1:—:1
( )2 (B) 5

B T -

o
242

1

D) 1:0:—
(D) 5




A photon gas is at thermal equilibrium at temperature 7. The mean number of photons in an energy
state € = hw is

ho ho ho e
A 1 B -1
W exp[ksTJ+ i cxp(ksT) (C)(exp(kaJ+l)




Consider a system of N atoms of an ideal gas of type 4 at temperature 7 and volume V. It is kept in
diffusive contact with another system of N atoms of another ideal gas of type B at the same
temperature 7 and volume V. Once the combined system reaches equilibrium,

(A) the total entropy of the final system is the same as the sum of the entropy of the individual

system always.

(B) the entropy of mixing is 2Nk, In2.

(C) the entropy of the final system is less than that of sum of the initial entrepies of the two gases.

(D) the entropy of mixing is non-zero when the atoms A4 and B are of the same type.

3/2 3/2 3/2 3/2
S = NkLn|V E) (47"“) }+¥=NKL{V(§M) (4’”“) }%

N 3 2 N 3n? 2
[ 3/2
S = NkLn| V 2”";”) ML
h 2
3/2
S'=2NKLn| 2V 2”";”) G
h 2
3/2
= 2NkLn2+2{NkLn{V (2”:;”] }%}: 2NKLN2+ 28



Consider a system of two non-interacting classical particles which can occupy any of the three
energy levels with energy values E =0,& and 2& having degeneracies g(E )=l,2 and 4
respectively. The mean energy of the system is

(A) (B)

( \ 4 \
P (—%BT J’Lge"p(_ 2%,,1) ZCXP(_%BT ) +88""(-28 k,,T)
= =3 = _2
\l+2exp( %BT)+4exp( %BT)} \l+2exp( %BT)+4exp( %BT))
(©) (D)
\ (
( ZCXP('%BT)+4exp(‘2%BT) g exp( k T)+2exp( )
- & —-2¢ l+exp(‘ )+e p( )
\l+2exp( ABT)+4exp( ABT)) ! ABT
Z.I: g e—E/kT

< f>=-1

Z g e—E/kT
n

B (1)(O)e—O/kT +(2)(8)e—glkT +(4)(28)e—25/kT _, Ze—g/kT +8 -
- (1)e—O/kT 4 (Z)e—g/kT L ( 4)e—25/kT 14 ze—elkT




The lattice specific heat C of a crystalline solid can be obtained using the Dulong Petit model.
Einstein model and Debye model. At low temperature hiw >> k,T , which one of the following

statements is true ( a and A are constants)
3
; )

(A)Dulong Petit : C o« exp(-a/T) ; Einstein : C =. constant ; Debye : C o ( y

3
; /i
(B) Dulong Petit : C =. constant ; Einstein : C o (;) ; Debye : C o exp(-a/T)

...a'IT 3
{ §
(C) Dulong Petit : C =. constant : Einstein : C o e? ; Debye: C « (AJ

-alT

3
(D) Dulong Petit : C oc (%) : Einstein : C oc . :

]
1.0 e
=T
c, L i e
C’WR L l: /./',
4 - )
or-( ) 2N 12y T s 1/
= - 3 B ! Debye th
éyT- v Es 69D ES 69D B i / —————— Eswi;n ﬁﬁ;iy
a /’ /.’ ______ Ta-law
0— ‘l.l N S I T TR SN N NN SN U N |
0.5 10 kT _1 15




Statement for Linked Answer Questions 78 and 79:

Consider a two dimensional electron gas of N electrons of mass m each in a system of size LxlL,
The density of states between energy & and € +dgis J
47l’m 4nl’m 1 47’ m 47l m
A) ——de B de | (C Jede| (D) ——als
( h_ ( ) h2 .J; ( ) hz ( ) h"

The ground state energy E,of the system in terms of the Fermi energy Er and the number of

electrons N is given by

(D) -35—NEF

1 1 2
(&) 3 NE . (B) - NE; © 3 NE,

g(e)d e= 27;93\/ (Zm)% E% d e




Identify which one is a first order phase transition ?

(A) A liquid to gas transition at its critical temperature.
(B) A liquid to gas transition close to its triple point.

(C) A paramagnetic to ferromagnetic transition in the absence of a magnetic field.
(D) A metal to superconductor transition in the absence of a magnetic field.




crEm0el

The probability that an energy level gat a temperature 7" is unoccupied by a fermion of chemical
potential x4 is given by

1 1 1 1
(A) =Bkl o (B) A=A kT _q © e kT ®) AHe) kT _y

+]

POCC: 1
exp(g_”)ﬂ
kB
exp(g_ﬂjﬂ—l exp(g_“j
. 1 T kT i KT
&




G
For a Fermi gas of N particles in thrce dimensions at T = 0 K, the Fermi energy, Ey is proportional to

(A) N3 (B) N*"* (©) N D) N?

3N V2 h?
EF: _ -
AmgV 2m




The de Brogliec wavelength of particles of mass m with average momentum p at a temperature T in
three dimensions is given by

h h h

A«= C A= = h
it | O T Eer O mr O g

(A) A=

. J h2  h
272mkT  (22mkT)Y?




GA
Consider a two level quantum system with energies £ = 0 andg, =€.

(.5t The Helmholtz free energy of the system is given by
(A) ~kT In{1+¢7/%" ®B) kﬁrln(ne

_E.’kar)

©) 7?;' kT (D) e ~k,T

Q.52 The specific heat of the system is given by

—&lkgT -
€ B 32 e £lkgl
B)

kpT? (1+e"‘-‘”*ﬂ?”)

£
kgT (1+e—ﬂkﬂ?‘)2

(A)

g2ec kel . o-clkgT

(©) -
) (1+e“”kﬂT)2 ) kyT? (1+ enmgr)z




— e—E/kT
Qu=2

_ AO/kT —elkT —&lkT
Q,=¢" +e =1+e
A=-kT InQ,

A=—KT In(1+e*'T)

S= —(a—Aj = —i[—kT In(L+e ") |
0T Jyy 0T

1 . g .
S :—(—k){T dre™) e ¢/ (Fj+ln(1+e "‘T}

e e—g/kT
S = (—j ———+kIn(l+e "
T)@Q+e")




U=A+TS

(1+ e—a/kT )

&

U=-KTIn@+e ") +T H_j

+kIn(L+e T }
-

g ¢kt —elKT

U =—KTIn+e*" ")+ kT In(l+e™"") +¢ _, ®
( ) ( ) (1+e—£/kT) (1+e_8/k-|-)

e—glkT

&
(1+ e—g/kT)

oy | @re e (e/KT?)—e"" (0+e“glkT (8/kT2))

Cv=—=¢
oT 1+ aelkT )2
c e (1+ ae/kT ) a /KT _ g-2¢/kT
V= kT 2 ] (1+e—e/kT)2
C 82 _e—g/kT + e—ZglkT _ e—Zg/kT
V= kT ? ] 1+ a—¢/kT )2
g2 [ ek
CV - 2 —&lKT \2
KT | @+e )




A system of N non-interacting classical point particles is constrained to move on the
two-dimensional surface of a sphere. The internal energy of the system is |

(A) %.Nk,?’ (B) %-Nh‘f (C) NigT (D) _—i-Nk,_r




Which of the following atoms cannot exhibit Bose-Einstein condensation, even 1n
principle?
(A) IHI (B] ‘Hﬁ (C} nHﬂu fD} ‘DK“"

The composite objects that have even number of Fermions are Bosons
containing an odd number of Fermions are themselves Fermions.

(an atom of 3He = 2 electrons + 2 protons + 1 neutron = hence °He at
Fermion)

(an atom of “He = 2 electrons + 2 protons + 2 neutron = hence “He atom is a Bo

In general, if a neutral atom contains an odd number of neutrons then it is a Fer
and if it contains en even number of neutrons then it is a Boson.

1H, 1 1 0 2

“He, 2 2 2 6
2Na,, 11 11 12 34
40K 19 19 21 59



For a two-dimensional free electron gas, the electronic density n, and the Fermi energy

E, , are related by
i n= eV ® =
{C) n=2%i§ ) ﬂ=2%($?)5

(3,) ZOR2Y R (3N )
e_—=| —— =
"\ 4ng 2m Zm(Ssz

3D




Which among the following sets of Maxwell relations is cnrrect'? (U - intemnal energy,
H - enthalpy, A - Helmholtz free energy and G - Gibbs free energy)

U _(av _ aH) dT:(BH)
(A) T:(Wland P—[-EE‘}P (B) V [3P &an. 33 P
(C) P:—{-a—‘;l-and V—[E};l D) P (as T&t’[ 3P .,

aUu oU aUu

r= — P = o , k= o
IS |y n oV ... ON |sy..

g OF —po OF _ 9F
oT |y n P vV T,N...., o IN r.v....’

G aG oG

-S= — V= — y B= o
oT P.N... op Iz w... ON |7p...



we have the following thermodynamic potentials:

(i) The Helmholtz free energy,

U[T)=F(T,V,N)=U — TS, (3.51)

where the variable S has been replaced by the temperature 7.
(ii) The enthalpy,
Ulpl|=H(S,p,N)=U +pV, (3.52)
where the volume V' has been replaced by the pressure p.
(iii) The function
Ulpl = f1(S,V,pu) =U - pN,
where N has been replaced by the chemical potential p.
(iv) The Gibbs free energy,
UlT,p)=G(T,p,N)=U-TS +pV,



T'he partition function for a gas of photons is given by

2 i )
nz=% Vik,T) _
45 ﬁlcE

The specific heat of the photon gas varies with temperature as
(A) ; (B) j
©) ®)

f L &

e cy

~ 4




The partition function for a gas of photons is given by

nz < T Vi T
The pressure of the photon gas is
z (k' ,T)’ 7 (k,T)’
& 35557 ® 3 w)y
k,TY?
© “'in’% ®) 25 we
002 N7 = 72V (KT )3
" v S 45 p°C*
i | olnz
p——| - kTInE)} P—kT( Y j
_8V S,u a , V (kT )3
oln= KT T
" kT( ) i oV 45 #°CP
S.u 7[2 (kT )4

" 45 7°C3
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on concentration n as
b

(A) v, cn’”
(B) v, xn
(C) VF CCHHZ
(D) VF ctnlﬂ
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The total energy, E of an ideal non-relativistic Fermi gas in three dimensions is given by
7

Eoc 37 where N is the number of particles and V' is the volume of the gas.
V 3

Identify the CORRECT equation of state (P being the pressure),

(A) PV=%E (B) PV=§E (C) PV =E (D) PV=§E




- The Gibbs’ free energy ‘G’ of a system
Matitemed at a tempei'atl}.re g i
satisfies the following relation with
th'e pressure ‘P’, the volume V’, the
- internal energy ‘U’ and the entropy
‘S’ of the system : | '
- (A) G=PV-TS

(B) G=U+PV-TS
IorG=U-PV+ TS
D) S =,-kgln G

we have the following thermodynamic potentials:
(i) The Helmholtz free energy,
UlT)=F(T,V,N)=U-TS, (3.51)
where the variable S has been replaced by the temperature 7T'.
(ii) The enthalpy,
Ulpl=H(S,p,N)=U +pV, (3.52)
where the volume V' has been replaced by the pressure p.
(iii) The function
Ulpl = f1(S,V,p) =U — N, (3.53)

where N has been replaced by the chemical potential p.

(iv) The Gibbs free energy,




Two iden'ti.cal indistinguishable
particles are to be distributed over
three energy stétes. The number Bf
w‘ays of distribution for.Fer_r,r;i gas

and Bose gas, respectively, will

be :
' , ~ Find number of possible ways of distribution
A) 1,3 - electrons in 3 states according to MB, BE and
BY6. 3 i SF@}',}SQfS.-NO. of electrons
’ & g; = 3 : No. of states
MB statistics: BE statistics:
ol 2 gini _ gi(gi+ni _1)!
-l g/
3 33+2-1)
B 32!
3x3 _ Ix4x3x2x1
=2'1T  3x2xIx2x1
:9 :6




The critical temperature T for the
Bose-Einstein condensation depends

on the density ‘n’ of the gas as :

(A)"n,‘i/3
ol Rl |
z " : ‘ T —
-(C‘) s s ¢ {5(3/2)V} (27ka)




The St‘efan-Boltzmann law for the
radiation of energy from a blaci_{
body is given .by TR e where .g
is the ene‘rgy density and T is the
temperature of the black body. Here
x is given by : |

(A) x=3/2

(B) =38
(C) &=

n

4

From thermodynamic arguments, of a phenomenological character, it is
possible to show that

u(v) =3 f (%) , (10.44)

but it is not possible to establish the form of the function f(v/T). Using
the equations of state,

pV = %U and U = Vu (T), (10.45)

where U is the total internal energy of the system, it is also possible to
derive the Stefan—Boltzmann law,

o0

w(T)= [ u(v)dv =oT?, (10.46)
/

where o is a constant. Besides these thermodynamic results, by the end of



A perfect gas ‘initially.. occupies a
volume V' with the number of
particles ‘N’ and energy ‘E’. The
volume is now doubled, keeping ‘N’
aﬁd “E’ constant. The change in

entropy will be :

(A) Nkg In 2

(B) Nkg In V
(C) 2Nkg In V

(D) 5 Nkg In 2V

%
[ (£)
N

S'= NkLn[ZV (E

S'= NkLn2+ NkLn

%(4nm)%]
+
N 3h®

(4ﬂm)%]
+
3h?

S'=NKkLn2+S

Bic
N 3h?




For a photon ga§, the chemical

potential 1s :

(A) Large and negative
(B) Zero
(C) Equal to Fermi energy

(D) Large and positive




5 boys and 3 girls are to stand in
a straight line such that no two girls
are adjacent. The number of ways

in which this can be done is :
(A) 5!

(B) 3!

C) 5! x 3!

M) 5! x5!




Consider a system of 4 spins with

1

spin S = 5 and magnetic moment p

each. It is placed in an external
magnetic field H. The magnetic
moments can either be parallel or
antiparallel to the magnetic field.
Consider a macrostate of the system
with energy —2pH. Using the
postulate of equal a priori

probability, the probability of finding




the system with the magnetic

moment —2pu is given by :

(A) 1/16

(B) 1/4

(C) 1/8

D) 1/2




Consider N particles with spin
angular momentum S each. Each
spin has 2S + 1 projections along the
axis of quantization. The total

number of microstates of the system
will be :

(A) N(@2S + 1)
B) 2S + DN
(C) NZS + 1

M) N@2S + 1) !




The wial ramber of accessible states of N noninteracting particles of spin 1/2 is

I (B) A° N/2 Dy N

(& 2;




The partition funciion of two Binse particles sach of which can oceiey any of the two
engigy levels O and € is

(ay ld+e T4 2e 7Y (B} 1+e " +e '
g d —z/ -/ -/
(C} 2+4e “THe M D) e e

Ze—E/kT — e0/kT + e—g/kT

n




A one dimensiondd random walker takes steps to left or right with equal probabtlity.
The probability that the random walker starting from origin is back to origin after N
even number of steps (s




The number of states for a system of N identical free particles in a three dimensional
space having total energy beiween £ and E + o ( OF << £) | is proportional to

e
.‘..‘I= v 2 |-1 i
(A} E f’l T

|

() NELSE (L) E N -ﬁf"ﬁ




Density of states of free clectrons in a solid moving with an encrgy 0.1 ¢V is given
by 2.15x10° ¢V 'em™ . The density of states (in ¢V'em™) for ¢lectrons moving with
an cnergy of 0.4 eV will be

(A) LOT7x107 (B) 1.52x10" (C) 3.04x10% D)y 4.30%18*




The effective density of states at the conduction band edge of Ge 15 1.04%10"” cm™at
room temperaturc (300K). Ge has an optical bandgap of 0.66eV. The intrinsic carricr
concenlration (In cm’ Y in Ge at room temperature (300 K) 18 approximately

(A) 3x10" (B) 3x10" (C) 3x10" (D) 6x10¢




Each of the two isolated vessels, A and B of fixed volumes, contains N molecules of a
perfect monatomic gas at a pressure P. The tempcratures of A and B are T, and 7>,

respectively. The two vessels are brought into thermal contact. At equilibrium, the
change 1n entropy is

2 2 4
A) 2Nk, In|Lth B) Nk, In| 2
> 41T, L
- 2
(©) iNkﬂln((T‘_l-Tg)-’ (D) 2NK,
§ 2 417,

S = Nk Ln(lj+§LnT +§Ln(2m2nkj+§
N 2 2 h 2




. | o 3 :
The internal energy of n moles of a gas is given by E =—nRT —E, where V 1s the

volume of the gas at temperature T and « is a positive constant. One mole of the gas

in state (77, Vi) is allowed to expand adiabatically into vacuum to a final state
(13, V5). The temperature 75 is

(A) T +Ra| —+-~ B) T -2Ra| -
. V2 1/3 3 VZ

2 1 1 1
) TT+—Ral ——— D T ——Ra|l ——
R [Vz VJ oo [ %




A monatomic crystalline solid comprises of N atoms, out of which n atoms are in
interstitial positions. If the available interstitial sites are N’, the number of possible
microstates 18

(N +1)! | N! N’

(A) TIN ®B) n!(N+n)!'n! (N +n)!
' !
o N _ . N1 N1

n! (N —n)! (N —n)! nl (N —n)!




A system of N localized, non-interacting spin ¥z ions of magnetic moment u each is
kept in an external magnetic field H. If the system is in equilibrium at temperature T,
the Helmholtz free energy of the system is

( / |

- H
(A)  NkpT'ln| cosh el (B) —NkzT'ln Zcosh-‘u——
L kT kT

/ LH /
(C)  NEkgT'In| 2cosh—— (D)  —=NkyT'In| 2sinh
\ ky kT




The phase diagram of a free particle of mass m and kinetic energy £, moving in a
one-dimensional box with perfectly elastic walls at x = 0 and x = L, is given by

(A) (B)
A
Y ] Fy
r > ; N 2mlE D
O EL - X ——t ! >
E 0 P X
1 I
—~ 2mE
(C) " (D)
p X + p x
2mE 2mE
st >
i » I ] P
0 T x oL 0 L x
-
—2mFE




Statement for Linked Answer Questions

Consider a radiation cavity of volume V at temperature 7. \

The density of states at energy E of the quantized radiation (photons) is

YA 3 3V
A E* 7V = C E RV
(&) hic? B) 3,3 E? ©) hie? (D) 13,2

L
EZ2

The average number of photons in equilibrium inside the cavity 1s proportional to

A) T (B) T? © 1 o 71°




g on the Carnot cycle maintains the inside temperature ol a !ouse

A heat pump workin

at 22° C by supplying 450 kJ s’ If the outside temperature is 0° C, the heat taken, in

kI s, from the Gutside air is approximately ’
(B) 470 (C) 467 (D) 417

(A) 487




The vapour pressure p(in
point (in Kelvin) of the material is

(A) 185 (B) 190

mm of Hg) of a solid, at temperature T, is expressed b
In p=23-3863/T and that of its liquid phase by In p=19-3063/T . The triple

(C) 195 (D) 200




A system has energy levels Eo 2Eo 3Ep..., where the excited states are triply
degenerate. Four non-interacting bosons are placed in this system. If the total energy

of these bosons is 5&5 , the number of microstates is

w2z - (B3 (©) 4 (D) 5




i ith inter-atomic
The solid phase of an element follows van der Waals bonding with inter-ato b
h can be

potential V(r) = —-}i + % , where P and ( are constants. The bond length ca

r®
expressed as

(A) (‘E—E'T (B) [%T ©) ( };2]




The pressure versus temperature diagram of a given system at certain low temperature range is
found to be parallel to the temperature axis in the liquid-to-solid transition region. The change in
the specific volume remains constant in this region. The conclusion one can get from the above is

(A) the entropy of solid is zero in this temperature region.

(B) the entropy increases when the system goes from liquid to solid phase in this temperature
region.

(C) the entropy decreases when the system transforms from liquid to solid phase in this region of
temperature.

(D) the change in entropy is zero in the liquid-to-solid transition region.




GATE 2012

In a first order phase transition, at the transition temperature, specific heat of the system

(A) diverges and its entropy remains the same

(B) diverges and its entropy has finite discontinuity

(C) remains unchanged and its entropy has finite discontinuity
(D) has finite discontinuity and its entropy diverges




GA

A system of N non-interacting and distinguishable particles of spin 1 is in thermodynamic
equilibrium. The entropy of the system is

(A) 2k, In N (B) 3k, In N (C) Nk,In2 (D) Nk,In3




A gas chamber has a volume of
0.1 m3 and is ﬁlled with hel1um gas
at a pressure of 5 x 10° Pa. Another
chamber has a volume of 0.15 m®
and is filled with helium gas at a
pressure of 6 x 10 Pa. A tap
connecting ‘t.he two chambers is then
opened. Assuining'that helium is a
" monatomic ideal gas and the walls
of the chambers to be adiabatic and
rigid, the final pressure of the system
~will be : '

(A) 5.5 x 10° Pa

(B) 5.6 x 10° Pa|

(C)5.4 x 106 Pa
D) 5 x 10° Pa




Consider a system of N non-
intefacting atoms, each having an
orbltal angular momentum J =2
A constant magnetlc field H 18
apphed along the z-axis. The total
number of mi\c:roStg'tes of the system
is , N.s? o

= B

A) 5N

(B) N°

LN

(D) 5N




The Fermi ‘wave-vector Kg of an
ideal gas of N molecules enclosed in
a vblume V at T = 0°K, obeys the

relation :

1/3
(MF = (const) ( ]

(B) KF = (const) (N/V)

N2
(©) KF— (const) (V) ,

(D) F = (const) (V)




The Fermi function of a gas of free

'electrons has the form :_'

(A) ¢‘a = const., € = energy
. .
(B) & gt a = const., € = energy

a ‘
(C) R const., € = energy

(D) H(e < ep

where




If the temperature of a black body
enclosure 1s doubled, the total
number of photons in the enclosure
increases by a factor of :

(A) 2

(B) 4
(C) 6
D) 8




7RI

Consider a system of spin i

2
particles with magnetic moment [
each. In an applied magnetlc field,

the spin can cither be parallel or

antiparallel to ‘H’ with equal
probability. If there are 10 such
particles, the total number of
microstates will be

R

(B) 107

(C) 20

(D) 10




Three dlstmgulshable particles have

a total energy of 9€. These particles

are distributed over the energy !
 states with energy 0, €, 2¢, 3¢ and

4¢. The total number of microstates

will be :
(A 3
B).1
(C) 10
(D) 6 .
4e
Jc 000 000000
2¢ 000000
€ o




The probability of occupation of an
energy level E, when E — Eg = AT,
is :

(A) 0.73

(B) 0.63

(C) 0.27

(D) 0.50

1 1 1

P: = =
olEE)KT L1 eyl 2.718282+1

=0.268941~ 0.27




Three identical spin-—é— fermions are to be

distributed in two non-degenerate distinct
energy levels. The number of ways this
can be done is

1.8

2.4
3.3
4.2




Consider the melting transition of ice into
water at constant pressure. Which of the
following thermodynamic quantities does
not exhibit a discontinuous change across
the phase transition?

1. internal energy

2. Helmholtz free energy
3. Gibbs free energy -
4. entropy




Two different thermodynamic systems
are described by the following equations
of state:

1 3RNO 1 SRNY
= and = .

7™ 207 7 o1 IAR,
where T2 N and U  are
respectively, the temperatures, the mole
numbers and the internal energies of the
two systems, and R is the gas constant.
Let U, denote the total energy when

these two systems are put in contact and

attain thermal equilibrium. The ratio

U(‘)
— i8S




The speed v of the molecules of mass m
of an ideal gas obeys Maxwell’s velocity
distribution law at an equilibrium

temperature 7" . Let (vx,vy,vz) denote the

components of the velocity and & the
Boltzmann constant. The average value

of (avx—ﬂvy)z, where « and f are

constants, is

8 (a.'2 —,Bz)kBT/m
2. (@’ + B )k,T [m
3. (a+B) k,T/m
4. (a-p) k,T/m




The entropy S of a thermodynamic
system as a function of energy E is given
by the following graph

S

R

E iy

The temperatures of the phases A, B and
C, denoted by 7,, T; and T,
respectively, satisfy the following
inequalities:

L. ol »1,
T A %
3. LoT.>T,
4. T,>T, >T;




A system of N classical non-interacting
particles, each of mass m, is at a
temperature 7 and is confined by the

external potential V' (r)= ~12—A r’ (where

A is a constant) in three dimensions. The
internal energy of the system is

1. 3Nk, T

2. %NkBT

3. N(2mA) " k,T

4. N\/Z ln(ﬂ)
m m
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