

PRESENTATION BY

MR. C. J. KAMBALE M.SC. PHYSICS (ASSOCIATE PROFESSOR)

Department of physics VIVEKANAD COLLEGE, KOLHAPUR (AUTONOMUOS)

E Pa

ABSTRACT

- DISCOVERY.
- WHAT IS HALL EFFECT?
- THEORY.
- HALL COEFFICIENT.
- APPLICATIONS.
- AIM, APPARATUS, FORMULA.
- DIAGRAM, OBSERVATION TABLE.
- RESULT.

E Pa

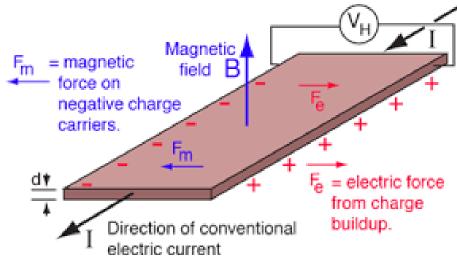
• CONCLUSION.

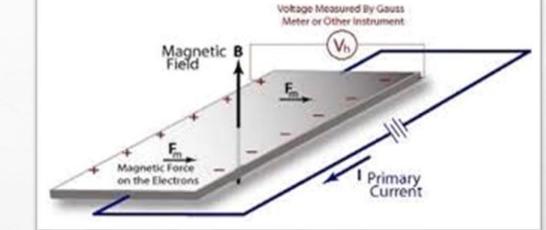
-tak

1.8

The second second second second

DISCOVER


- THE HALL EFFECT WAS DISCOVERED IN 1879 BY EDWIN HERBERT HALL WHILE WORKING ON HIS DOCTORAL DEGREE AT THE JOHNS HOPKINS UNIVERSITY IN BALTIMORE MARYLAND, USA.
- DISCOVERED 18 YEARS BEFORE THE ELECTRON.



WHAT IS HALL EFFECT?

FIELD.

• THE HALL EFFECT IS THE PRODUCTION OF A VOLTAGE DIFFERENCE (THE HALL VOLTAGE) ACROSS A CURRENT CARRYING CONDUCTOR (IN PRESENCE OF MAGNETIC FIELD), PERPENDICULAR TO BOTH CURRENT AND THE MAGNETIC

• WHEN A CURRENT-CARRYING CONDUCTOR IS PLACED INTO A MAGNETIC FIELD, A VOLTAGE WILL BE GENERATED PERPENDICULAR TO BOTH THE CURRENT AND THE FIELD.

THEORY

• WHEN A PERPENDICULAR MAGNETIC FIELD IS PRESENT. A LORENTZ FORCE IS EXERTED ON THE ELECTRON. DUE TO WHICH ELECTRON MOVES IN PERPENDICULAR DIRECTION TO BOTH CURRENT AND MAGNETIC FIELD. AND DEVELOP A POTENTIAL DIFFERENCE ACROSS THE CONDUCTOR OR SEMICONDUCTOR.

HALL VOLTAGE AND HALL COEFFICIENT

• CREATES INTERNAL ELECTRIC POTENTIAL, KNOWN AS HALL Voltage. $V_{\rm H} = \frac{B \times I}{n \times e \times d}$

WHERE 'D' IS THE THICKNESS OF THE SEMICONDUCTORALONG THEDIRECTION OF MAGNETIC FIELD.

$$R_H = \frac{V_H}{H} \times \frac{W}{I}$$

- USED AS MAGNETOMETERS, I.E. TO MEASURE MAGNETIC FIELD.
- HALL EFFECT SENSOR IS ALSO USED AS CURRENT SENSOR.
- MAGNETIC POSITION SENSING IN BRUSHLESS DC ELECTRIC MOTORS.
- AUTOMOTIVE FUEL LEVEL INDICATOR.

• TO STUDY THE HALL EFFECT AND TO FIND OUT HALL COEFFICIENT AND TO DETERMINE THE CONNECTION OF CHARGE CARRIER IN GIVEN SEMICONDUCTOR.

HALL PROBE (GE CRYSTAL), ELECTROMAGNET, DC POWER SUPPLY, GAUSS METER, MILLIAMMETER, MILLIVOLTMETER ETC.

•
$$\mathbf{R}_{\mathbf{H}} = \frac{V_H}{H} \times \frac{W}{I}$$

• $\eta = \frac{1}{R_{H}.e.c}$

L. R.

• $\mathbf{R}_{\mathrm{H}} = \mathbf{SLOPE} \times \frac{W}{I}$

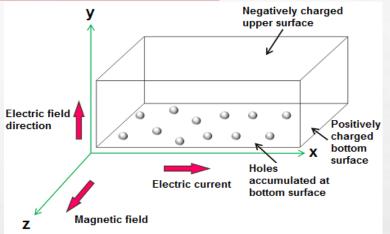
WHERE, $R_{\rm H}$ = HALL COEFFICIENT

 $V_H = Hall voltage$

W = THICKNESS OF CRYSTAL = 0.05 M

Assessed and And

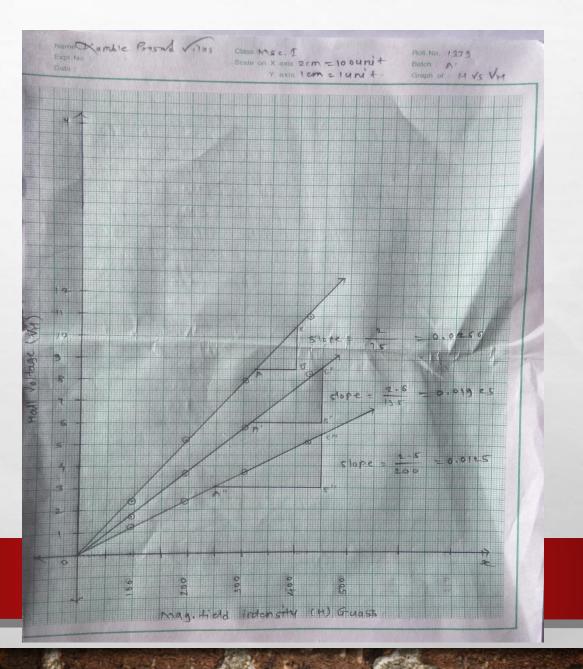
I = CURRENT THROUGH HALL PROBE


H = INTENSITY OF MAGNETIC FIELD

E = ELECTRONIC CHARGE = 1.6 × 10⁻¹⁹ C

 $C = VELOCITY OF LIGHT = 3 \times 10^8 M/S$

EXPERIMENTAL SETUP


Hall Effect in P-type semiconductor

OBSERVATION TABLE

OB NO.	CURRENT THRO'HALL PROBE (mA)	CURRENT THRO' MAGNETIC COIL (Ampere)	HALL VOLTAGE , av_{ii} (Mv)	MAGNETIC FIELD INTENSITY 'H' GAUSS	HALL COEFFICIENT V.Cm/amp R _n GAUSS	AVERAGE MEAN 'R _u '
01		0.50	1.2	96	1.25× 10 ⁻³	
02	0.50	1.00	2.4	197	1.21× 10 ⁻³	1.2175×10 ⁻³
03		1.5	3.7	305	1.21× 10 ⁻³	
04		2.00	5.1	426	1.20× 10 ⁻³	
01		0.5	1.7	96	1.180×10 ⁻³	
02	0.75	1.00	3.7	197	1.252× 10 -3	1.2490×10 ⁻³
03		1.5	5.8	305	1.262×10⁻³	
04		2.00	8.3	425	1.301×10 ⁻³	
01		0.5	2.4	96	1.250×10 ⁻³	
02	1.00	1.00	5.2	197	1.309× 10 -3	1.291×10 ⁻³
03		1.5	8.0	305	1.311× 10 -3	
04		2.00	11.0 13	425	1.294×10 ⁻³	

٠.

٠.

L. R.

HALL COEFFFICIENT (R,): BY CALCULATION = 11 1275×10³ CM³ 21 12490×10³ CM³ BY GRAPH 11 1275×10³ CM³ 11 12710³ CM³ CARRIER CONC⁶ (г,): BY CALCULATION = 11 17111×10³ CM³ BY CALCULATION = 11 17111×10³ CM³ 21 15600×10³ CM³ EXERPIER CONC⁶ (г,): BY CALCULATION = 11 17111×10³ CM³ BY CALCULATION = 11 17111×10³ CM³ 21 15600×10³ CM³ BY GRAPH 11 17111×10³ CM³ 21 15600×10³ CM³

3) 1.6013×10⁻³ CM⁻³

15

• HALL VOLTAGE IS POSITIVE THEN HALL COEFFICIENT WILL BE NEGATIVE AND VICE VERSA.

• WHEN WE INCREASE MAGNETIC FIELD INTENSITY 'H' THEN THE HALL VOLTAGE (V_H) ALSO INCREASES.

The second second

L. A.

et a