Welcome ...

Vivekanand college, Kolhapur

universal B-H curve

By –Mr. C. J. Kambale _{M.Sc., Physics}

(Asso. Prof.)

Date: 04/11/2020

□ <u>Content</u> :-

* Theoretical outline:-

- B-H curve
- Types of material
- Domain theory
- What is hysteresis?
- B-H curve for different material
- Hysteresis loop
- Hysteresis loss
- Speciality of B-H curve
- Applications of B-H curve

* Experimental outline:-

- Aim
- Instruments
- Apparatus
- Formula
- Observations
- Observations table
- Calculations
- Result

B-H curve:-

B-H curve means magnetic hysteresis curves by plotting values of **flux density** (B) against the **field strength** (H) .we can produce a set of curves called magnetization curve .

ΒαΗ

$B=\mu H$

Where , μ = Permeability of free space

• Flux density (B) :-

The magnetic flux density or magnetic induction is the no. of lines of force passing through a unit area of the material.

• Field strength (H) :-

A vector quantity indicating ability of magnetic field to exert a force on magnetic

moving charges.

Magnetic Domains :-

Types of Materials and its Domain:-

Fig Arrangement Magnetic Domains in materials

- > Diamagnetic Material:-
- These are the substances which in strong external magnetic field, acquire a feeble magnetism opposite to the direction of applied magnetic field.
- Repelled feebly by a magnet.
- No unpaired electrons in them.
- They do not obey Curie's Law.
- M has slightly negative value.
- $\chi_{\rm m}$ has small negative value.
- Relative permeability (μ_r) is less than 1.
- E.g. copper, silver

Fig Alignment of domains in Diamagnetic on applying B

> Paramagnetic Material:-

- These are the substances which when placed in a strong magnetic field acquire a feeble magnetism in the same direction as the applied magnetic field.
- Attracted feebly by the magnet.
- Unpaired electrons are present in them .
- They follow Curie's Law- $\chi_m = C/T$
- M has slightly positive value.
- $\chi_{\rm m}$ is slightly positive.
- Relative permeability (μ_r) is slightly positive.
- E.g. aluminium, sodium

Fig Alignment of Domains in Paramagnetic on Applying B

> Ferromagnetic Material: -

- These substances are those which acquire strong magnetism in the direction of applied magnetic field.
 In Presence of Magnetic Field In Absence of Magnetic Field
- Attracted strongly by the magnet.
- These have randomly oriented domains.
- They do not obey Curie's law.
- M has large positive value.
- $\chi_{\rm m}$ has large positive value.
- Relative permeability (μ_r) has large positive value.
- E.g. Iron ,cobalt

What is Hysteresis:-

The lag or delay of a magnetism due to the magnetization properties of a material by which it firstly becomes magnetized and then de-magnetized is known as magnetic hysteresis.

A hysteresis loop shows the relationship between the induced magnetic flux density (B) and the magnetizing force (H). It is often referred to as the B-H loop.

□ Hysteresis Loop:-

If an alternating magnetic field is applied to the material, its magnetization will trace out a loop called 'Hysteresis loop'.

How Hysteresis Loop Works?

Speciality of B-H curve :-

Magnetic Saturation :-

The unit beyond which magnetic flux density in magnetic area does not increase sharply further with increase of mmf.

> Retentivity :-

The ability of the magnetic field remaining in the material even after removing the external source is known as 'Retentivity'.

Coersive Force :-

The minimum value of magnetising intensity that is required to bring the material to it's original state.

- **B-H curves for different material:-**
- For soft material :-
- For hard material :-

Applications of B-H curve :-

As magnetic substances have an extended range of hysteresis loop, these are implemented in the devices such as

- Hard disk
- Audio recording devices
- Magnetic tapes
- Credit cards

Experimental outline :

- > Aim : To study the hysteresis property of the given magnetic material and hence determine the energy /cycle/unit volume, remain magnetism & core curve field.
- Instruments : AC supply, I. C. probe, samples (5 nail, ferrite rod hexa blade), transformation, sampling, CRO etc.
- > Experimental setup :

Formula : Energy loss= $\underline{0.5 \times N}$ ×S_V × S_H × area of loop. R×L

Where,

3.

- N = No. of turns in coil.
- R = Resistance of series switch coil.

L = Coil length.

- S_v = Vertical sensitivity of CRO.
- S_H = Horizontal sensitivity of CRO.

Observations :

- 1. No. of turns (N) = 300m.
- 2. Length of coil (L) = 0.323m.

Resistance is series with coil $R = 55\Omega$.

Observations Table :-

I) For sample -1

Ob s No	AC voltage	S _V V/cm	S _H V/cm	Area of loop (cm ²)	Loss of energy/ cycle/ unit volume
1	6V	2.8	4	2.75	133.7461
2	9V	3.6	5.2	3	202.6454
3	12V	4.8	6	3.75	411.6285

II) For sample -2

Obs No.	AC voltage	S _V V/cm	S _H V/cm	Area of loop (cm ²)	Loss of energy/ cycle/ unit volume
1	6V	2.8	1.2	2.5	147.762 3
2	9V	4	1.6	3.25	268.439 0
3	12V	4.4	2	4.25	426.152

III) For sample - 3

Obs No.	AC voltage	S _V V/cm	S _H V/cm	Area of loop (cm ²)	Loss of energy/ cycle/ unit volume
1	6V	1.6	2.2	1.75	28.3703
2	9V	1.8	2.8	2.25	53.1944
3	12V	2	3.2	3.25	122.938

Calculations:-

□ Graph :-

- **Result :-**
- ▹ For sample 1st :-
- i. $\mathbf{E_1} = 133.7461 \text{ J/cycle/unit volume}$
- ii. $\mathbf{E}_2 = 202.6545 \text{ J/cycle/unit volume}$
- iii. $\mathbf{E}_3 = 411.6285 \text{ J/cycle/unit volume}$
- ► For sample 2nd :-
- i. $\mathbf{E_1} = 147.7623 \text{ J/cycle/unit volume}$
- ii. $\mathbf{E}_2 = 263.4390 \text{ J/cycle/unit volume}$
- iii. $\mathbf{E}_3 = 452.152$ J/cycle/unit volume
- ► For sample 3rd :-
- i. $\mathbf{E}_1 = 28.3703 \text{ J/cycle/unit volume}$
- ii. $\mathbf{E}_2 = 53.1937 \text{ J/cycle/unit volume}$
 - $E_3 = 122.936$ J/cycle/unit volume

Conclusion

 Hysteresis loop provides information about the magnetic properties of the material. It is important that the B-H hysteresis loop is as small as possible so loss will be less because shape of B-H curve decides the loss. Bigger the area more is the loss vice-versa. The shape of the hysteresis loop depends upon the nature of the material used.