YIVEKANAD COLLEGE KOLHAPUR (AUTONOMO

SOLID STATE PHYSICS

BY: Dr. G. J. Navathe ${ }_{\text {M.Sc., Ph.D.(Assist. Prof.) }}$

Date:21/12/2018

outlines

Introduction
Crystalline materials
Symmetry
Structure of solids

States of Matter

Rogerley Mine, Weardale, England

Mina Navidad, Rodeo, Durango, Mexico

Mont Blanc Massif, Haute-Savoie, France

A crystal is a repeating array of smallest block (unit cell) having a definitely arranged elements.

Lattice
 $+$
 Basis （motif）

Crystal structure

（Real chemical entity）

Unit cell

Unit cell is the smallest repeating part of lattice Have full symmetry of lattice

Primitive or Non-primitive

Two-dimensional lattice

4 crystal systems

- oblique
- rectangular
- square
- hexagonal

$\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0\end{array}$

Crystal system

$$
\begin{aligned}
& a=b \\
& \gamma=90^{\circ}
\end{aligned}
$$

$a \neq b$
$\gamma=90^{\circ}$

Bravais lattice

$$
a \neq b
$$

$\gamma \neq 90^{\circ}$
$a=b$
$\gamma=120^{\circ}$

Convention of unit cell parameters

3-D crystal System

Cubic
Tetragonal

Orthorhombic

Trigonal
Hexagonal

Monoclinic
Triclinic

$$
a=b=c, \alpha=\beta=\gamma=90^{\circ}
$$

$$
a=b \neq c, \alpha=\beta=\gamma=90^{\circ}
$$

$$
a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}
$$

$$
a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}
$$

$$
a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

$$
a \neq b \neq c, \alpha=\beta=90^{\circ}, \gamma \neq 90^{\circ}
$$

$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$

7 Crystal systems and 14 Bravais lattices

Non-primitive cell

Number of lattice can be more than one in non-primitive unit cell.

e.g. F, I, C centered lattices

Primitive cell

For any lattice it is possible to find a unit cell where the no lattice points is one.

Primitive cell can also fill the lattice.
Primitive do not have the fill symmetry of lattice.

$(a+b) / 2$
 $(b+c) / 2$
 (c+a)/2

$(a+b-c) / 2$
 $(b+c-a) / 2$
 R
 (c+a-b)/2

(a-b)/2
$(a+b) / 2$
C

Haxagonal and rhombohedral system

$$
a_{r}=\frac{2}{3} a_{h}+\frac{1}{3} b_{h}+\frac{1}{3} c_{h}
$$

$$
b_{r}=-\frac{1}{3} a_{h}+\frac{1}{3} b_{h}+\frac{1}{3} c_{h}
$$

$$
c_{r}=-\frac{1}{3} a_{h}-\frac{2}{3} b_{h}+\frac{1}{3} c_{h}
$$

$$
\begin{gathered}
a_{r}^{2}=a_{r} \cdot a_{r}=\frac{1}{3} \sqrt{3 a_{h}^{2}+c_{h}^{2}} \\
a_{r} \cdot b_{r}=a_{r}^{2} \cos \alpha \\
\cos \alpha=\frac{\frac{1}{3} R^{2}-\frac{1}{2}}{\frac{1}{3} R^{2}+1} \quad R=\frac{c_{h}}{a_{h}}
\end{gathered}
$$

Symmetry

Number of indistinguishable configurations a system poses.

symmetry operation - an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on the original configuration.
symmetry elements - the points, lines, or planes to which a symmetry operation is carried out.

Element	Operation	Symbol
Identity	Identity	E
Symmetry plane	Reflection in the plane	σ
Inversion center	Inversion of a point x, y, z to $-x,-y,-z$	i
Proper axis	Rotation by $(360 / n)^{\circ}$	C_{n}
Improper axis	1. Rotation by $(360 / n)^{\circ}$ 2. Reflection in plane perpendicular to rotation axis	$\mathrm{S}_{\mathrm{n}}^{7}$

SYMMETRY OPERATIONS

Rotation

(as)

(H)

Rotation

Proper rotation (C_{n} or n)

$$
\begin{array}{lll}
& 1 & \varphi=360^{\circ} \\
\varphi=\frac{360}{n} & \mathbf{2} & \varphi=180^{\circ} \\
\mathrm{n} \text { = fold of axis } & \mathbf{3} & \varphi=120^{\circ} \\
& \mathbf{4} & \varphi=90^{\circ} \\
& \boldsymbol{6} & \varphi=60^{\circ}
\end{array}
$$

Why only 5 rotoaxis?

Minimum symmetry criteria

Cubic

Four 3 or fold rotation axes
Tetragonal
Orthorhombic
Rhombohedral
Hexagonal
Monoclinic
Triclinic
One 4-fold rotation axis
Three 2-fold rotation axes
One 3-fold rotation axis
One 6-fold rotation axis
One 2-fold rotation axis
None

Rotation and Rotation

Two rotation operation a point generates a third rotation axis

Orientations of rotation axes: Euler Construction

$$
\cos A=\frac{\cos \beta / 2 \cdot \cos ^{\gamma} / 2+\cos \alpha / 2}{\sin ^{\beta} \beta / 2 \cdot \sin ^{\gamma} / 2}
$$

Where A is angle between first rotation axes with throw β and γ
e.g. two 2-fold rotation normal to each other gives another 2 -fold normal to them

Rotation and reflection

Proper rotation

 Improper rotation$a \rightarrow \omega N-$

-1

Notations

Rotation		X
Inversion		$\overline{\mathrm{X}}$
Rotation	Diad normal to R	
Rotation		Planes parallel to R
Inversion	Diad normal to R	
Inversion		Planes parallel to R
Rotation		$\overline{\mathrm{X}} \mathrm{m}$
		Planes parallel to R and planes normal to R

Point Groups

System			Centric				Centric
Triclinic	1		$\overline{1}$				
Monoclinic	2	m	$\frac{2}{m}$				
orthorhombic	222	mm2	$\begin{aligned} & \mathrm{mmm} \\ & \left(\frac{2}{m} \frac{2}{m} \frac{2}{m}\right) \end{aligned}$				
Tetragonal	4	$\overline{4}$	$\frac{4}{m}$	422	4mm	$\overline{4} 2 \mathrm{~m}$	4/mmm 422 $m m m$
Rhombohedral	3		$\overline{3}$	32	3 m		$\overline{3} m$
Hexagonal	6	$\overline{6}$	$\frac{6}{m}$	622	6 mm	$\bar{\sigma} m 2$	6/mmm 622 $m m m$
Cubic	23		$\begin{aligned} & \mathrm{m} 3 \\ & \frac{2}{m} \overline{3} \end{aligned}$		432	$\overline{4} 3 \mathrm{~m}$	$\begin{aligned} & \mathrm{m} 3 \mathrm{~m} \\ & \frac{4}{m} \frac{2}{m} \end{aligned}$

Point Group

distinguishable symmetries operations around a point
2D Lattices - 10 distinct Point Groups
3D Lattices - 32 distinct Point Groups

Space Group

distinguishable symmetries operations of a crystal lattice (translational symmetry in addition to all points groups)

2D Lattices - 17 distinct Space Groups
3D Lattices - 230 distinct Space Groups

Rotation and translation

Translation: Primitive

Proper rotation

 Non primitive
Screw

1 $2 \quad \frac{1}{2} t$
21
$\mathbf{3}_{1}, \mathbf{3}_{2}$
$4_{1}, 4_{2}, 4_{3}$
6
$\frac{1}{6} t, \frac{2}{6} t, \frac{3}{6} t, \frac{4}{6} t, \frac{5}{6} t$
$\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \boldsymbol{\sigma}_{3}, \boldsymbol{\sigma}_{4}, \boldsymbol{\sigma}_{5}$

Reflection and translation

Symbol	Symmetry plane	translation
a	axial glide	$a / 2$ along [100]
b	axial glide	$\mathrm{b} / 2$ along [010]
c	axial glide	$\mathrm{c} / 2$ along [001] along [111] in rhombohedral
n	diagonal	$(a+b) / 2$, or $(b+c) / 2$ or $(c+a) / 2$ $(a+b+c) / 2$ (in tetra and cube)
d	diamond	$(a \pm b) / 4$, or $(b \pm c) / 4$ or $(\mathrm{c} \pm \mathrm{a}) / 4$ $(a \pm b \pm c) / 4$ (in tetra and cube)

32 Point Groups + 14 Bravais Lattices

230 Space Groups

ALL CRYSTALLINE MATTER BELONGS TO ONE OF THE 230 SPACE GROUPS

Space group notations

System	Space group as in Int. Tab.		
	1	2	3
Triclinic	No special		
Monoclinic	2 or -2 along b (unique b -axis)		
Orthorhombic	2 or -2 along a	2 or -2 along b	2 or -2 along c
Tetragonal	4 or -4 along c	2 or -2 along a and b	2 or -2 along [110]
Trigonal	3 or -3 along c	2 or -2 along a, b and [110]	2 or -2 normalto a, b and [110]
Hexagonal	6 or -6 along c	2 or -2 along a, b and [110]	2 or -2 normal to a, b and [110]
Cubic	4 or -4 along a, b and c	3 or -3 along <111>	2 or -2 along <110>

Law of crystallography

Law of constant interfacial angle

* Angle between two planes of a not change with species and size
* Habit of crystal remains same in natural crystal growth

Law of rational indices

$$
h u+k v+l w=\text { constant }
$$

Orientation of a plane in a given direction and direction of a plane defined by $\boldsymbol{h}: \mathbf{k}: I$ and u:v:w ratios

* The ratios $\boldsymbol{h}: \mathbf{k}: I$ of all planes and ratios $u: v: w$ of all directions are rational number

Crystallographic Planes and directions

Find intercept of plane in term of cell lengths Take reciprocals
Clear fractions
Miller indices of plane (hkI) and directions [$\mathrm{u} v \mathrm{w}$]
(h, k, I) defines sets of equally spaced parallel planes

Lattice Planes

Miller indices of a family of planes and directions
\{hkl\}
-Planes with equal interplanar spacing (d)
-The miller indices can be interchanged
-All possible combinations of positive and negative values

In a cube
Family
No. of planes
\{100\}
6
\{110\}
12
\{111\}
8
<u v w> Set of directions with symmetrically equal orientation, e.g. cube edges

(Zone axis)

Common direction of planes

[uvw]

$$
\begin{aligned}
& h_{1} u+k_{1} v+l_{1} w=\text { const. } \\
& h_{2} u+k_{2} v+l_{2} w=\text { const. } \\
& u=k_{1} l_{2}-k_{2} l_{1} \\
& v=h_{2} l_{1}-h_{1} l_{2} \\
& w=k_{1} k_{2}-h_{2} k_{1}
\end{aligned}
$$

Unit cell parameters and interplanar spacing

Orthorhombic system

a
triangle SOC and SDO

$$
\frac{O S}{O D}=\frac{S C}{O C}
$$

Unit cell parameters and interplanar spacing

Triclinic system

$$
\frac{1}{d^{2}}=\frac{\frac{h^{2}}{a^{2}} \operatorname{Sin}^{2} \alpha+\frac{k^{2}}{b^{2}} \operatorname{Sin}^{2} \beta+\frac{l^{2}}{c^{2}} \operatorname{Sin}^{2} \gamma+\frac{2 h k}{a b}(\operatorname{Cos} \alpha \cdot \operatorname{Cos} \beta-\operatorname{Cos} \gamma)+\frac{2 k l}{b c}(\operatorname{Cos} \beta \cdot \operatorname{Cos} \gamma-\operatorname{Cos} \alpha)+\frac{2 l h}{c a}(\operatorname{Cos} \gamma \cdot \operatorname{Cos} \alpha-\operatorname{Cos} \beta)}{1-\operatorname{Cos}^{2} \alpha-\operatorname{Cos}^{2} \beta-\operatorname{Cos}^{2} \gamma+2 \operatorname{Cos} \alpha \cdot \operatorname{Cos} \beta \cdot \operatorname{Cos} \gamma}
$$

$$
V^{2}=a^{2} b^{2} c^{2}\left(1-\operatorname{Cos}^{2} \alpha-\operatorname{Cos}^{2} \beta-\operatorname{Cos}^{2} \gamma+2 \operatorname{Cos} \alpha \cdot \operatorname{Cos} \beta \cdot \operatorname{Cos} \gamma\right)
$$

$$
\frac{1}{d^{2}}=h^{2}\left(a^{*}\right)^{2}+k^{2}\left(b^{*}\right)^{2}+l^{2}\left(c^{*}\right)^{2}+2 h k a^{*} b^{*} \operatorname{Cos} \gamma^{*}+2 k l b^{*} c^{*} \operatorname{Cos} \alpha^{*}+2 l h c^{*} a^{*} \operatorname{Cos} \beta^{*}
$$

Reciprocal lattice

Imaginary (hypothetical) lattice but bears direct correspondence with diffraction data

Lattice points indicates the planes of direct lattice

Unit cell parameters have \AA^{-1} units

Reciprocal to direct lattice relation

$$
\begin{array}{ll}
a^{*}=\frac{b \times c}{V}=\frac{b \times c}{a \cdot b \times c} & \cos \alpha^{*}=\frac{\cos \beta \cdot \cos \gamma-\cos \alpha}{\sin \beta \cdot \sin \gamma} \\
b^{*}=\frac{c \times a}{V}=\frac{c \times a}{a \cdot b \times c} & \cos \beta^{*}=\frac{\cos \gamma \cdot \cos \alpha-\cos \beta}{\sin \lambda \cdot \sin \alpha} \\
c^{*}=\frac{a \times b}{V}=\frac{a \times b}{a \cdot b \times c} & \cos \gamma^{*}=\frac{\cos \alpha \cdot \cos \beta-\cos \gamma}{\sin \alpha \cdot \sin \beta}
\end{array}
$$

- Structure of solids
- HCP and CCP
- Holes and space filling

Close Packing

B C

AC

AB

AB

ABAB (hcp)

ABC (ccp)

ABAB (hcp)

$\mathrm{Pb}_{3} / \mathrm{mmc}$
$\mathbf{a}=2(\mathrm{r})$
$\mathbf{c} / \mathbf{a}=\sqrt{ }(8 / 3)=1.633$
M 2c: 1/3 2/3 1/4
$r=$ sphere radius
$\mathrm{CN}=12$
Packing fraction $=74 \%$

ABC (ccp)

Fm3m
$a=4 r / \sqrt{ } 2$
M 4a 000
$r=$ Sphere radius
$\mathrm{CN}=12$
Packing fraction $=74 \%$

Im3m
$a=4 r / \sqrt{3}$
M 2a:000
$r=$ Sphere radius
$\mathrm{CN}=8$
Packing fraction $=68 \%$

Pm3m
$\mathbf{a}=2 \mathrm{r}$
M 2a:000
$r=$ Sphere radius
$\mathrm{CN}=8$
Packing fraction $=52 \%$

Pauling's rule

1. Coordination polyhedron

Anions surround the cations in a definte coordination polyhedron depending radius sum and radius ratio
2. Charge balance (bond balance sum rule)

Valence reaches to anion is equal to charge of anion
3. Sharing of polyhedra

Highly charged cations do not prefer share face and edges
4. More symmetric arrangements

Less number of distingushable atoms are preferred

In hcp or ccp: The octahedral and tetrahedral holes are empty octhedral hole : tetrahedral hole : Sphere $=1: 2: 1$

Size of oh hole:
0.424 r

Size of td hole:
0.225 r

Space fillings

radius ratio rule

$\mathbf{r}_{\mathrm{c}} / \mathbf{r}_{\mathrm{a}}$

0.0-0.155
0.155-0.225 3
0.225-0.414 4
0.414-0.732
6
8
0.732-1.0
1.0
12

Linear
triangular
tetrahedral
octehedral

cube

ccp/hcp

Description of Crystal Structure

- Specification of Crystal Lattice : sizes, type, crystal system
- Specification of Basis :
fractional co-ordinates of atoms

$\mathrm{AB}_{2} \mathrm{X}_{4}$ (Spinel)

Anions stacked as fcc sequence $1 / 2$ of the octahedral holes occupied by B $1 / 8^{\text {th }}$ of terahedral holes are occupied by A

A $(0,0,0)=$ Tetrahedral cation
B $(5 / 8,5 / 8,5 / 8)=$ Octahedral cation
$X(x, x, x)=$ anion $(x \sim 0.375)$

$$
\begin{aligned}
& \mathrm{a} \sim 8-10 \AA \\
& \text { SG: Fd3m }
\end{aligned}
$$

ABX_{3} (perovskites)

$A(1 / 2,1 / 2,1 / 2)=$ large cation $(C N=12)$ (alkali, alkali-earth, rare-earth)

$B(0,0,0)=$ small cation $(C N=6)$
$X(0,0,1 / 2)=\operatorname{anion}\left(\mathrm{O}^{2-}, \mathrm{F}^{-}\right)$
$a \sim 3.8-4.2 \AA$
SG: Pm3m

Goldsmith's tolerance rule

$$
t=\left(r_{A}+r_{o}\right) / \sqrt{2}\left(r_{B}+r_{o}\right)
$$

$t=1$ - undistorted cubic perovskite
$\mathrm{t}<1$ - distorted perovskite with tilted BO_{6} octahedra
t > 1 - hexagonally distorted perovskites

Martin, J. Buerger, "Crystal Structure analysis", John Wiley and Sons, New York
Leonid V. Azaroff, "Elements of X-ray crystallography",
McGraw Hill book company, New York
Leonid V. Azaroff, "Introduction to solids",
Tata McGraw Hill company, New Delhi
H. Lipson and W. Cochran "Determination of Crystal structure" G. Bell and Sons. Ltd. London
B. D. Cullity, "Elements of X-ray diffraction", Addison-Wilson Publishing Company, Inc., USA
H. P. Klug and L. E. Alexander, "X-ray diffraction procedures", A Wiley-Interscience Publication, New York
L. V. Azaroff, M. J. Buerger, "The powder method in X-ray crystallography" McGraw-Hill Book Company, NY
A. R. West, "Solid state Chemistry and its Applications", John Wiley and Sons, Chichester

Thank you

