<u>magnetic properties of</u> <u>Ferrites..</u>

By :- Gouri govind jadhav M.Sc., SET

VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)

Date: 25/09/2023

INDEX

Ferrites

Types of magnetic materials

- Diamagnetic
- Paramagnetic
- > Ferromagnetic
- > antiferromagnetic
- > Ferrimagnetic
- Classification of ferrites
- Microwave Synthesis process
- * Characterization
 - > XRD

> What is ferrite?

- A **ferrite** is a ceramic material made by mixing and firing large proportions of iron oxide with small proportions of one or more additional metallic element .
- It's composition is MFe_xO_{y.}

> Types of magnetic materials

Diamagnetic material :-

- When placed in strong external magnetic field, acquire weak magnetism opposite to the direction of applied magnetic field.
- Weakly repelled by magnet .
- E.g. Copper, Zinc

Paramagnetic material:-

- H=0 H=0 G = G = G G = G = G G = G = G G = G = G G = G = G G = G = G G = G = G G = G = G
- When placed in strong external magnetic field ,acquire weak magnetism in same direction of applied magnetic field .
- Weakly attracted by magnet .
- E.g. aluminium, oxygen etc.

Ferromagnetic material:-

- Acquire strong magnetism in the direction of applied magnetic field .
- Ferromagnetic substances are strongly attracted by the external magnetic field.
- E.g. iron, nickel etc.

antiferromagnetic material:-

- An antiferromagntic material that has antiparallel magnetic moment .
- magnetic moment is zero.

Antiferromagnet

□ <u>Ferrimagnetic material :-</u>

• A ferrimagnetic material is a material that has populations of atoms with opposing magnetic moments.

For ferrimagnetic materials, these

moments are unequal.

Classification of ferrites

Soft ferrite	Hard ferrite
Not permanent magnets .	 Permanent magnets .
Low coercivity.	High coercivity.
• Easy to demagnetize.	 Difficult to demagnetize.

DMicrowave synthesis process

Principle:-

A microwave oven heats the material by passing microwave radiation .

Synthesis:-

- This method is used to here to ceramic powder.
- Set temperature \rightarrow auto-combustion starts \rightarrow temperature reaches high

release gas \leftarrow rapid formation and crystallization

ARD characterization

- X-ray diffraction analysis is technique is used to determine the crystallographic structure of a material.
- Incident X-ray beam → interacts with atoms electron → interfere constructively & destructively.

 $2dsin\theta = n\lambda$

SEM characterization

- A scanning electron beam microscope (SEM) scans a focused electron beam over a surface to create an image .
- It gives us Morphology of sample.

Thank you