Date: 18/06/2020

Lecture no.2

Micrometer screw gauge BY DR. M. M. KARANJKAR

Least count of an instrument is the smallest quantity that can be accurately measured with it.

Least count of micrometer screw gauze is mathematically defined as, Pitch of the screw

Total number of divisions on rotating/circular/vernier scale

Pitch of the screw = 0.1

Total number of divisions on rotating/circular/vernier scale = 100

Least count
$$= \frac{0.1}{100}$$
$$= 0.001 \text{ cm}$$

Zero error

When anvil and spindle touch each other, the zero of the sleeve or main scale/datum line should coincide with the zero of rotating/circular/vernier scale. If it is not so, the instrument is said to possess zero error

Zero error may be positive or negative, depending upon whether the zero of rotating/circular/vernier scale lies to the above or below the zero of the sleeve or main scale. This is shown by the Fig. (b) and (c). In this situation, a correction is required to the observed readings.

No zero error

No zero error

Fig (i) shows an example of no zero error. From the figure, one can see that when anvil and spindle touch each other, zero of the rotating/circular/vernier scale reading is exactly coincide with of zero of the main scale/datum line. Hence, there is no zero error in this case.

Positive zero error

Positive zero error

Fig (b) shows an example of positive zero error. From the figure, one can see that when anvil and spindle touch each other, zero of the rotating/circular/vernier scale is shifted to the below of zero of the main scale/datum line. In Fig. (b), 2nd rotating/circular/vernier division is coinciding with zero of a main scale/datum line reading.

 \therefore Zero Error = +2 × Least Count = +0.002 cm Hence, the zero error is positive in this case.

- For any measurements done, the zero error should be 'subtracted' from the observed reading.
- : True Reading = Observed reading (+ Zero error)

Negative zero error

Negative zero error

Fig (c) shows an example of negative zero error. From the figure, one can see that when anvil and spindle touch each other, zero of the rotating/circular/vernier scale reading scale is shifted to the above of zero of the main scale/datum line. In Fig. (c), 4th rotating/circular/vernier scale reading division is coinciding with zero of a main scale/datum line reading.

- \therefore Zero Error = -4 × Least Count = -0.004 cm
- Hence, the zero error is negative in this case.
- For any measurements done, the zero error should be 'subtracted' from the observed reading.

Main scale reading =0.7cm

rotating/circular/vernier scale reading = 38

Rotating/circular/Vernier scale reading \times Least count = $38 \times 0.001 = 0.038$

Obtained reading = Main scale reading + Rotating/circular/Vernier scale reading × Least count

$$= 0.7 + 38 \times 0.001$$

= 0.738cm

Main scale reading=0.75cm

Rotating/circular/Vernier scale reading =22

Rotating/circular/Vernier scale reading \times Least count = $22 \times 0.001 = 0.022$

Obtained reading = Main scale reading + Rotating/circular/Vernier scale reading × Least count

$$= 0.75 + 22 \times 0.001$$

= 0.772cm