Vivekanand College, Kolhapur

Department Of Physics

Magnetic Susceptibility

Presented By : Dr. N. A. Narewadikar (Assistant Professor)

Date: 10/10/2023

Index

Introduction Theory of Magnetic Susceptibility Experiment Aim, Apparatus Diagram Procedure Working **Observation Table** Graph Calculation Result Application

Introduction

Magnetic Susceptibility is a measure of the how magnetized material becomes when it is exposed to an external magnetic filed. A liquid sample in a narrow tube placed between the poles of a magnet experiences a force and hence when the field is turned on , the meniscus in the narrow tube rises by an amount h, relative to its zero field position. Measuring this rise enables to determine the susceptibility of the solution .

Theory

Magnetic Susceptibility (X):

It is ratio of the intensity of magnetism induced (M) in a substance to the magnetizing force or intensity of field (B).

X = <u>M</u> B X :is dimensionless

Types of Magnetic Materials :

Diamagnetic materials (X < 0)
Paramagnetic materials (X > 0)
Ferromagnetic materials (X >> 0)
Anti-Ferromagnetic materials

) Diamagnetic Material :

* Curie Low :

The temperature dependence of the magnetic susceptibility of paramagnetic material is given by Curie Law;

Xm = C(T-Tc)

Where , T = Absolute temperature in K

- Tc= paramagnetic curie temperature in K at Which the susceptibility its maximum value.
- C= Paramagnetic curie constant

3) Ferromagnetic Material :

Curie Temperature :

The Curie temperature is the temperature above it the ferromagnetic materials become paramagnetic.

4) Antiferromagnetic Material :

Aim: To determine the magnetic susceptibility of given solution for different case.

Apparatus : Constant current supply, Digital glass meter, Electromagnetics, Microscope, Qunicke's tube .

Quincke Method:

Experimental Set Up

Procedure:

1)Prepare the Fecl3 solution.

2)Adjust the pole of pieces (Quinke's Tube)

3)Connect the Electromagnet coli.

4)Switch on the Gauss meter.

5) Taking the reading.

6) Draw the graph.

Observation Table :

Sr.No.	Current (I)	Magnetic Field (H)	Η	Height of liquid (h)	Height
1.	0	0	0	0	3.402
2.	1	3.920	15.3664	0.002	3.404
3.	2	7.890	62.2521	0.047	3.451
4.	3	11.440	130.8736	0.053	3.501
5.	4	14.190	201.3561	0.054	3.56

Mean=3.653

Calculation :

By Calculation:

X = 2pg x slope
= 2 x 2.9 x 2.2x10₃ x 9.8
X = 0.1250

Result :

1) Magnetic susceptibility of given solution using Quincke's tube method by calculation = 3.653

2) Magnetic susceptibility of given solution by graph , X = 0.1250

Conclusion :

* Magnetic susceptibility is a dimensionless proportionality constant that indicates the degree of magnetization of a material in response to an applied magnetic field.*

Application :

<u>1)</u>It is provide insights into the structure of materials, providing insight into bonding and energy levels.

2) It is a powerful tool, which is being increasingly on sedimentary rocks to constrain stratigraphic correlation.

3) Characterization of magnetic material.

THANK YOU