Newton's Laws of Motion

By
Dr. N. A. Narewadikar DEPARTMENT OF PHYSICS

While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

Newton's Laws of Motion

- $1^{\text {st }}$ Law - An object at rest will stay at rest, and an object in motion will stay in motion at constant velocity, unless acted upon by an unbalanced force.
- $2^{\text {nd }}$ Law - Force equals mass times acceleration.
- $3^{\text {rd }}$ Law - For every action there is an equal and opposite reaction.

$1^{\text {st }}$ Law of Motion (Law of Inertia)

An object at rest will stay at rest, and an object in motion will stay in motion at constant velocity, unless acted upon by an unbalanced force.

1st Law

- Inertia is the tendency of an object to resist changes in its velocity: whether in motion or motionless.

These pumpkins will not move unless acted on by an unbalanced force.

1st Law

- Once airborne, unless acted on by an
unbalanced force (gravity and air - fluid friction), it would never stop!

1st Law

- Unless acted upon by an unbalanced force, this golf ball would sit on the tee forever.

Why then, do we observe every day objects in motion slowing down and becoming motionless seemingly without an outside force?

It's a force we sometimes cannot see -
friction.

Objects on earth, unlike the
frictionless space the moon travels through, are under the influence of friction.

- There are four main types of friction:
- Sliding friction:
- Rolling friction:
- Fluid friction (air or liquid):
- Static friction:

Slide a book across a table and watch it slide to a rest position. The book comes to a rest
because of the presence of a force that force being the force of friction which brings the book to a rest position.

- In the absence of a force of friction, the book would continue in motion with the same speed and direction - forever! (Or at least to the end of the table top.)

Newtons's $1^{\text {st }}$ Law and You

Don't let this be you. Wear seat belts.
Because of inertia, objects (including you) resist changes in their motion. When the car going $80 \mathrm{~km} /$ hour is stopped by the brick wall, your body keeps moving at $80 \mathrm{~m} / \mathrm{hour}$.

2nd Law

$+\quad+$

$2^{\text {nd }}$ Law

The net force of an object is

 equal to the product of its mass and acceleration, or $F=m a$.
2nd Law

- When mass is in kilograms and acceleration is in $\mathrm{m} / \mathrm{s} / \mathrm{s}$, the unit of force is in newtons (N).
- One newton is equal to the force required to accelerate one kilogram of mass at one meter/second/second.

$2^{\text {nd }} \operatorname{Law}(F=m \times a)$

- How much force is needed to
- Write the formula
- $\mathrm{F}=\mathrm{m} \times \mathrm{a}$
- Fill in given numbers and units
- Solve for the unknown

Newton's $2^{\text {nd }}$ Law proves that different masses accelerate to the earth at the same rate, but with different forces.

- We know that objects with different masses accelerate to the ground at the same rate.
- However, because of the $2^{\text {nd }}$ Law we know that they don't hit the ground with the same
$\mathrm{m}=10 \mathrm{~kg}$

$$
\mathrm{m}=1 \mathrm{~kg}
$$

$$
a=\frac{F}{m}
$$

$$
\begin{aligned}
& 98 \\
& 9.8
\end{aligned}
$$

$$
a=\frac{F}{m}
$$

$$
a=\frac{98 \mathrm{~N}}{10 \mathrm{~kg}}
$$

$$
a=\frac{9.8 \mathrm{~N}}{1 \mathrm{~kg}}
$$

$a=9.8 \mathrm{~m} / \mathrm{s}^{2}$ $a=9.8 \mathrm{~m} / \mathrm{s}^{2}$ force.

$$
\mathbf{F}=\mathrm{ma}
$$

$$
\mathrm{F}=\mathrm{ma}
$$

$98 \mathrm{~N}=10 \mathrm{~kg} \mathrm{x} 9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
$9.8 \mathrm{~N}=1 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Check Your Understanding

- 1. What acceleration will result when a 12 N net force applied to a 3 kg object? A 6 kg object?
- 2. A net force of 16 N causes a mass to accelerate at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$. Determine the mass.
- 3. How much force is needed to accelerate a 66 kg skier $1 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$?
- 4. What is the force on a 1000 kg elevator that is falling freely at 9.8 $\mathrm{m} / \mathrm{sec} / \mathrm{sec}$?

Check Your Understanding

- 1. What acceleration will result when a 12 N net force applied to a 3 kg object?

$$
12 \mathrm{~N}=3 \mathrm{~kg} \times 4 \mathrm{~m} / \mathrm{s} / \mathrm{s}
$$

- 2. A net force of 16 N causes a mass to accelerate at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$. Determine the mass.

$$
16 \mathrm{~N}=3.2 \mathrm{~kg} \times 5 \mathrm{~m} / \mathrm{s} / \mathrm{s}
$$

」 3. How much force is needed to accelerate a 66 kg skier $1 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$?

$$
66 \mathrm{~kg}-\mathrm{m} / \mathrm{sec} / \mathrm{sec} \text { or } 66 \mathrm{~N}
$$

- 4. What is the force on a 1000 kg elevator that is falling freely at $9.8 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$?
- $9800 \mathrm{~kg}-\mathrm{m} / \mathrm{sec} / \mathrm{sec}$ or 9800 N

3 rd Law

-For every action, there is an equal and opposite reaction.

3 rd Law

According to Newton, whenever objects A and
B interact with each other, they exert forces upon each other. When you sit in your chair, your body exerts a downward force on the chair and the chair
exerts an upward force on your body.

3rd Law

There are two forces resulting from this interaction - a force on the chair and a force on your body. These two forces are called action and reaction forces.

Neuton's Bpal Law in Natupe

- Consider the propulsion of a fish through the water. A fish uses its fins to push water backwards. In turn, the water reacts by pushing the filsh forwards, propelling the fish through the water.
The size of the force on the water equals the size of the force on the fish; the direction of the force on the water (backwards) is opposite the direction of the
 force on the fish (forwards).

3rd Law

Flying gracefully

 through the air, birds depend on Newton's third law of motion. As the birds push down on the air with their wings, the air pushes their wings up and gives them lift.- Consider the flying motion of birds. A bird flies by use of its wings. The wings of a bird push air downwards. In turn, the air reacts by pushing the bird upwards.
- The size of the force on the air equals the size of the force on the bird; the direction of the force on the air (downwards) is opposite the direction of the force on the bird (upwards).
- Action-reaction force pairs make it possible for birds to fly.

Other examples of Neuton's Thiord Lano

- The baseball forces the bat to the left (an action); the bat forces the ball to the right (the reaction).

$3^{\text {rad }}$ Lawo

- Consider the motion of a car on the way to school. A car is equipped with wheels which spin backwards. As the wheels spin backwards, they grip the road and push the road backwards.

$3^{\text {ral }}$ Lavo

The reaction of a rocket is an application of the thinal law of motion. Various fuels are burned in the engine, producing hot gases.

The hot gases push against the inside tube of the rocket and escape out the bottom of the tube. As the gases move downuard, the rocket moves in the opposite divection.

