VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS) Department of physics

Thermodynamics

+0

BY Dr. Sumayya I. Inamdar

Date : 05/11/2023

(CH

Outline

- Background
- Exothermic vs Endothermic Reactions
- Heat Capacity
- Specific Heat
 - Specific Heat of Selected Substances and Mixtures
 - Relevance

Background

Thermodynamics: Study of interactions among work, energy, and heat

Calorimetry: Experimental measurement of heat

How did they first measure heat?

- Antoine Lavoisier (1782)
- World's first ice-calorimeter
- Published in his book
 "Elements of Chemistry"

Exothermic vs. Endothermic Reactions

EXOTHERMIC

Reaction that gives off heat to its surroundings

- A candle flame
- Burning sugar
- Rusting iron
- Making ice cubes
- Forming bonds

R

Pop Quiz!

ENDOTHERMIC

Reaction that absorbs heat

- from its surroundings
 - Forming cation from atom in gas phase
 - Producing sugar by photosynthesis
 - Cooking an egg
 - Melting ice cubes
 - Breaking bonds

Is evaporation of water $H_2O(I) \rightarrow H_2O(g)$ an endothermic or exothermic reaction?

WATER or LAND

Heat Capacity

Objects differ in their abilities to transform heat transfer into temperature change

- Heat Capacity (denoted by letter "C")
 - Measurement of the amount of heat required to change a substance's temperature by a certain amount

An object has a heat capacity of 57.5 J/K. If its temperature changes from 150.4°C to 121.8°C, how much heat is transferred?

-1,640 J 1640 joules of heat are released by the object C= Heat Capacity (J/K) q= quantity of heat transferred ΔT = temperature change

 $C = \underline{q}$

Specific Heat

Heat capacity per unit mass

- Specific Heat (denoted by letter "C_p")
 - Measurement of the amount of heat required to change a substance's temperature by a certain amount

 $C_p = \underline{C} = \underline{q}$ m m ΔT

Calculate the heat absorbed by 50.0 g of Cu(s) as it changes its temperature from 300 K to 500K.

3,850J 3850 joules of heat are absorbed by Cu(s) C= Heat Capacity (J/ g K) q= quantity of heat transferred m= mass ΔT = temperature change

Specific Heats of Selected Substances and Mixtures

Substance	Cp (J/g K)	
Ag(s)	0.235	~
Al (s)	0.897	
Au(s)	0.129	
Ca(s)	0.647	
CaCO ₃ (s)	0.920	
Cu(s)	0.385	
Fe(s)	0.449	
H ₂ O (s)	2.06	
H ₂ O (I)	4.19	7
H ₂ O (g)	2.02	

Did you notice anything peculiar?

Cp(Ag) < Cp (H2O) Cp (metal) < Cp (nonmetal)

Small specific heat= substance translate heat transfer to relatively large temperature change

Relevance

Cat. #7181

......

References

- 1. You Tube videos
- 2. Wikipedia
- 3. www.google.com

THANK YOU