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❑ Let’s number a system of N particles as a = 1, …, N. The positions of these N
particles are ra.  We say that the parameters q1, …, qn are a set of n
generalized coordinates for the system if each position ra can be 
expressed as a function of q1, …, qn and possibly time t,

and conversely each qi can be expressed in terms of ra and possibly t,

❑ In addition, we require that the number n of the generalized coordinates is 

the smallest number that allows the system to be parametrized in this way.  
In three dimensions, the number of generalized coordinates for N particles is 
certainly no more than 3N, and for constrained systems is usually less.  For a 
rigid body of, say 1023 particles, for example, the number of generalized 
coordinates is n = 6, three for the position of the center of mass, and three 

for the orientation. 

❑ For the case of the pendulum we discussed last time, there is one body (the 
pendulum bob), and two coordinates (x and y), but there is only one 
generalized coordinate, f, since r = (x, y) = (l sin f, l cos f).

7.3 Constrained Systems in General
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❑ Consider the double pendulum, with two bobs confined to motion in a plane.

❑ Now we have two particles, four coordinates (x1, y1, x2, y2), but 

only two generalized coordinates f1 and f2.

❑ In these two examples, the transformation between Cartesian

coordinates and generalized coordinates did not depend on

time, but here is an example that does.

❑ Consider a pendulum hanging from a car that is undergoing a constant

acceleration a to the right.

❑ Because Lagrange’s equation was derived assuming that the coordinates are 
defined in an inertial frame, we are not allowed to use coordinates defined in 
the frame of the accelerating car!

❑ However, we can express them relative to the ground.

❑ In this case, the conversion from Cartesian to

generalized coordinates is

❑ Generalized coordinates that do not depend on t are called natural.

Generalized Coordinates-2
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Degrees of Freedom
❑ The number of degrees of freedom of a system is the number of coordinates 

that can be independently varied, i.e. the number of “directions” a system can 
move in small displacements from any initial configuration.

❑ A simple pendulum has one degree of freedom, while the double pendulum has 
two.  A free particle has three, while a system of N free particles has 3N

degrees of freedom, i.e. each particle has complete freedom.

❑ When the number of degrees of freedom of a system of N particles is less than 
3N, we say that the system is constrained.  A system of free particles 
constrained to move in two dimensions has 2N degrees of freedom. Some 

further examples: a rigid body has 6 degrees of freedom, a bead on a wire has 
1 degree of freedom, and a particle on a surface has 2 degrees of freedom.

❑ In each of these examples, the number of degrees of freedom equals the 
number of generalized coordinates (and so the number of Lagrange equations 
that apply).

❑ A system with this natural-seeming property is said to be holonomic.  This 
course will only treat holonomic systems, which are easier to solve.



October 26, 2010

A Non-Holonomic System
❑ You might think that a system that does not have this natural property must be 

rare and bizarrely complicated.  However, there are some simple examples of a 
nonholonomic system.  Here is one.
◼ Imaging a rubber ball free to roll (but not slide or spin) on a 2-d surface.

◼ Starting at position (x, y) on the 2-d surface, it can only move in two independent 
directions and you might think that only two coordinates are necessary to completely 
describe its configuration, the coordinates x and y of its center.  

◼ But consider the following—place the ball at the origin O, and paint a dot on its top.  
Then roll it a distance equal to its circumference c along the x axis, so that the dot is 
again on top.  

◼ Now roll it a distance c in the y direction to a point P where its dot returns to the top.

◼ Finally, roll it along the hypotenuse back to the origin.  Now the dot is not on top, 
even though its position is again at O.

❑ Evidentally, the two coordinates x and y are not enough to uniquely specify the 
configuration.  In fact, we need three more, the orientation of the ball.

❑ So 5 coordinates are needed, even though the ball has only two degrees of 
freedom.  Such a system is nonholonomic.
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❑ We are now ready to prove Lagrange’s equations for any holonomic system.  
We will prove it for one particle, but it can easily be extended to an arbitrary 
number (see Prob. 7.13).

❑ Let’s take a particle constrained to move on a surface, so that it has two 
degrees of freedom and hence two independent generalized coordinates q1

and q2.

❑ There are two types of forces on the particle—forces of constraint (whatever 
forces are keeping the particle constrained), which we’ll denote Fcstr, and all 
other forces F.  The key is that the forces Fcstr can do no work on the 
particle.  Note that the Fcstr forces may not be conservative, but this does not 
matter, since the Lagrange equations are not going to include them.

❑ We shall assume that the non-constraint forces do satisfy the second 
condition, at least, of conservative forces, i.e. that they can be derived from 
the gradient of a potential energy, U(r, t):

❑ If all forces F are really conservative, then they do not depend on t, but we 
do not need to assume this.  The total force on the particle is Ftot = Fcstr + F.

7.4 Proof of Lagrange’s Equations 
with Constraints
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❑ Consider a constrained particle that moves through two points r1 and r2 at 
times t1 and t2.  We will denote r(t) as the position when the particle is on the 
“right” path and R(t) as the position along any neighboring “wrong” path.

❑ For a small displacement e(t) between the right and wrong path, we have

❑ Note that e(t) = 0 at the end points r1 and r2, since both paths go through 
these points.  Note also that r(t) and R(t) are in the surface, so e(t) is also.  
We denote the action integral by

taken along any path R(t) lying in the surface, and by So the corresponding 
integral taken along the right path r(t).

❑ We wish to prove that the integral S is stationary when R(t) = r(t), i.e. when 
e(t) = 0.  Another way to say this is that the difference in the integrals

is zero to first order in e.

❑ Now                     where

❑ We can substitute                        and 

Action Integral Stationary on 
Right Path
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❑ This gives

❑ Putting this back into the integral, and integrating the first term by parts, we 
get

where the end-point term is zero, as usual.

❑ By Newton’s second law                             and               so 

❑ But recall that e is in the surface, while Fcstr is perpendicular to the surface.  
Therefore                and we have proved that  S = 0.  We have thus proved 
Hamilton’s Principle, that the action integral is stationary at the path that the 
particle actually follows.

❑ Notice that this is only true for paths in the surface, i.e. consistent with the 
constraints. Thus, it is not true for any coordinates x, y, z, say, but only for 
our generalized coordinates q1 and q2.

Action Integral Stationary on 
Right Path-2
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❑ For any holonomic system, with n degrees of freedom and n generalized 
coordinates, and with the nonconstraint forces derivable from a potential 
energy U(q1, …, qn, t), the path followed by the system is determined by the 
n Lagrange equations

where L is the Lagrangian L = T – U and U(q1, …, qn, t) is the total potential 
energy corresponding to all of the forces excluding the forces of constraint.

❑ You might ask what you should do in the case that some force on the 
particle is not conservative, i.e. friction.  In that case you must modify the 
Lagrange equations (see Prob. 7.12), but the result is not elegant and we 
will not consider such cases.

❑ We are now going to take a look at a number of examples where the above 
Lagrange equations hold.  You should try as many examples as you can, to 
get a feel for how to do these problems.  You WILL see these sorts of 
problems on the exam.

The General Result
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