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Free Expansion of a Gas
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Free Expansion

el

of

Pressure

Volume

A p-V diagram showing the initial state / and the final state 7 of the free expansion
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Isothermal Expansion
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Isothermal Expansion

Reversible route between same states.

f dQ = dw + du
AS =J. a_[I_Q Since T is constant, dU = 0.
i Then, dQ = 4dW.
NRT
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Entropy Change

AS _nRj_ann(zv) NRIn2
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The entropy of the gas increased.

For the isothermal expansion, the entropy of the
Reservoir decreased by the same amount.

So for the system plus reservoir, AS =0

For the free expansion, there was no reservoilr.



Statistical Approach
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Statistical Approach

W, N!
AS =klInl — |=kIn
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AS = K[In N'-2In(N/2)!]
AS =K[N In N =N = 2{(N/2)In(N/2) = N/ 2}]
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AS =K[N In N = NIn(N/2)] = Nk |n(N/2j

AS=NkIh2=nRIn2



Partition Function
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Boltzmann Distribution
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Maxwell-Boltzmann Distribution

Correct classical limit of quantum
statistics Is Maxwell-Boltzmann
distribution, not Boltzmann.

What Is the difference?
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Maxwell-Boltzmann Probability

N :ﬁ(Nj+gj—1)!
=5 N(g; -D)!

Wy and w,,; yield the same distribution.
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Relation to Thermodynamics

U= N
j
dU =) &,dN;+> N.de,
j j
de;
g;=¢;(X), s0 dgjzd—de

de.
dU = z,dN, +Z{Nj ﬁ}dx
,. ~| X
de.
Call N —L | =-Y
D
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Relation to Thermodynamics

dU => &,dN;+> | N
J J

dgj_

bax

du = Zgdej —~YdX This is like
j

dU =TdS -YdX (or dU =TdS —PdV)
If dX =0

dX and » | N
j

dgj_

X

(dU), => &dN; =TdS and » N,de; =-YdX
J J
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Chemical Potential

dU = TdS — PdV + udN

In this equation, « Is the chemical energy

per

molecule, and dN is the change in the

number of molecules.
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Chemical Potential

dU =TdS — PdV + wdN

F=U-TS

dF =TdS —PdV + pwdN —TdS — ST
dF =-SdT — PdV + wdN
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Helmholtz Function

U

S :?+ Nk(InZ —In N +1)
F=-U-TS=U _T¥—NkT(InZ—In N +1)

F=-NkT(InZ -In N +1)

19



Chemical Potential

F=-NKT(InNZ —In N +1)
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Chemical Potential
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Boltzmann Distribution
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Distributions
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Distributions
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|deal Gas
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|deal Gas

F = —NKT| InV +§|n[2”r$kT]—|n N +1

P:—(G—Fj _ NKT =
NV )i V

PV = NKT =nRT




|deal Gas
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Entropy
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Math Tricks

For a system with levels that have a constant
spacing (e.g. harmonic oscillator) the partition
function can be evaluated easily. In that case, &,

= Ng, SO,

n=0 n=0 n=0
ZZX”=L: 1_ fore ™ <1.
e 1-x 1-e”
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Heat Capacity of Solids

Each atom has 6 degrees of freedom, so based
on equipartition, each atom should have an
average energy of 3kT. The energy per mole
would be 3RT. The heat capacity at constant
volume would be the derivative of this with
respect to T, or 3R. That works at high enough
temperatures, but approaches zero at low
temperature.
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Heat Capacity

Einstein found a solution by treating the solid
as a collection of harmonic oscillators all of the
same frequency. The number of oscillators was
equal to three times the number of atoms, and
the frequency was chosen to fit experimental
data for each solid. Your class assignment is to
treat the problem as Einstein did.
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