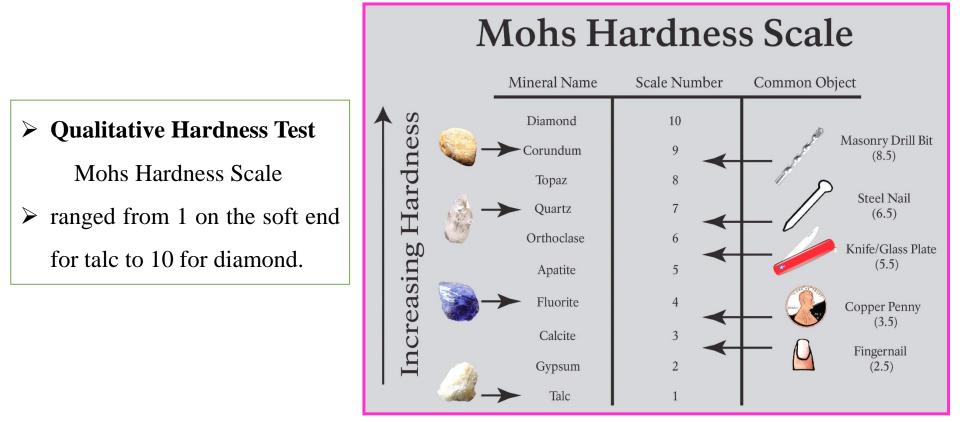
Hardness Testing of Materials

Dr. Sanjay S. Latthe

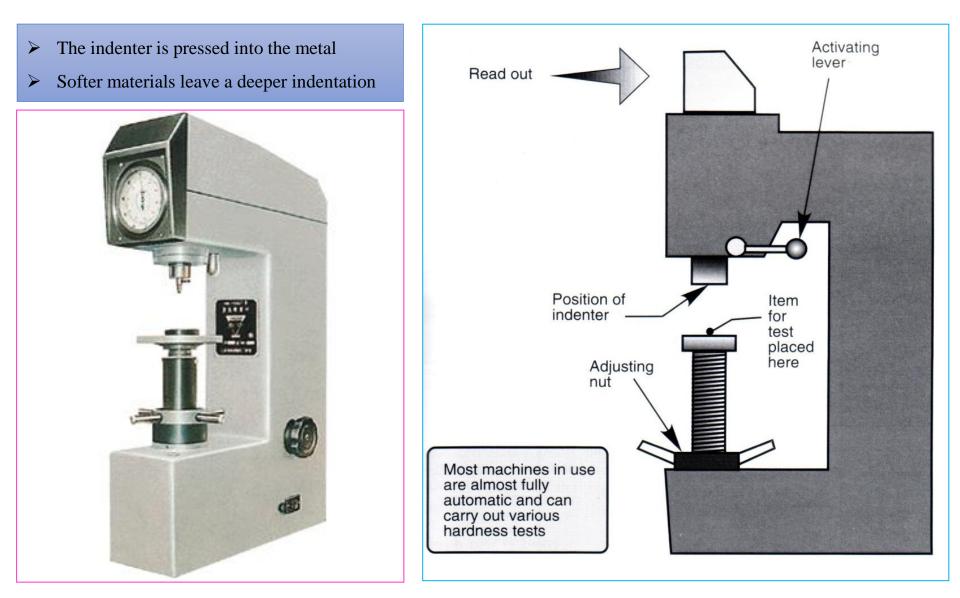

Self-cleaning Research Laboratory, Department of Physics, Vivekanand College, Kolhapur (Autonomous) (Affiliated to Shivaji University, Kolhapur) Maharashtra, India.

Hardness Testing

Hardness Testing

> Hardness is the ability to withstand indentation or scratches.

Hardness, which is a measure of a material's resistance to localized plastic deformation (e.g., a small dent or a scratch).


Quantitative Hardness Test

- □ A small indenter is forced into the surface of a material to be tested, under controlled conditions of load and rate of application.
- □ The depth or size of the resulting indentation is measured, which in turn is related to a hardness number.
- □ The softer the material, the larger and deeper the indentation, and the lower the hardness index number.

Benefits of Hardness Tests than any other Mechanical Test

- They are simple and inexpensive ordinarily no special specimen need be prepared, and the testing apparatus is relatively inexpensive.
- The test is nondestructive the specimen is neither fractured nor excessively deformed; a small indentation is the only deformation.
- Other mechanical properties often may be estimated from hardness data, such as tensile strength.

Hardness Testing Machine

Hardness Testing Machine

Rockwell and Superficial Rockwell Hardness Tests

Indenters

(1) Spherical and hardened steel balls having different diameters and

(2) Conical diamond (Brale) indenter.

- A hardness number is determined by the difference in depth of penetration resulting from the application of an initial minor load followed by a larger major load.
- Utilization of a minor load enhances test accuracy.

On the basis of the magnitude of both major and minor loads, there are two types of tests

Rockwell and Superficial Rockwell

For Rockwell Tests,

- \blacktriangleright the minor load is 10 kg, whereas
- \blacktriangleright the major loads are 60, 100, and 150 kg.

For Superficial Rockwell Tests,

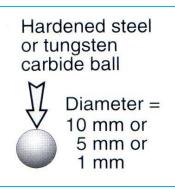
- \blacktriangleright the minor load is 3 kg, whereas
- \blacktriangleright the major loads are 15, 30, and 45 kg.

Test	Indenter	Shape of Indentation		_	Formula for
		Side View	Top View	Load	Hardness Number ^a
Rockwell and Superficial Rockwell	$\left\{ \begin{array}{l} Diamond\\ cone\\ \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2} \text{ in.}\\ diameter\\ steel spheres \end{array} \right.$			60 kg 100 kg 150 kg 15 kg 30 kg 45 kg	

Rockwell Hardness Scales					
Scale Symbol	Indenter	Major Load (kg)			
Α	Diamond	60			
В	$\frac{1}{16}$ in. ball	100			
С	Diamond	150			
D	Diamond	100			
E	<u></u> in. ball	100			
F	$\frac{1}{16}$ in. ball	60			
G	$\frac{1}{16}$ in. ball	150			
Н	<u></u> in. ball	60			
К	$\frac{1}{8}$ in. ball	150			

Scale Symbol	Indenter	Major Load (kg		
15N	Diamond	15		
30N	Diamond	30		
45N	Diamond	45		
15T	16 in. ball	15		
30T	$\frac{1}{16}$ in. ball	30		
45T	$\frac{1}{16}$ in. ball	45		
15W	🛓 in. ball	15		
30W	🛔 in. ball	30		
45W	🛔 in. ball	45		

➢ 80 HRB represents a Rockwell hardness of 80 on the B scale, and


> 30 HR30W indicates a superficial hardness of 30 on the 30W scale.

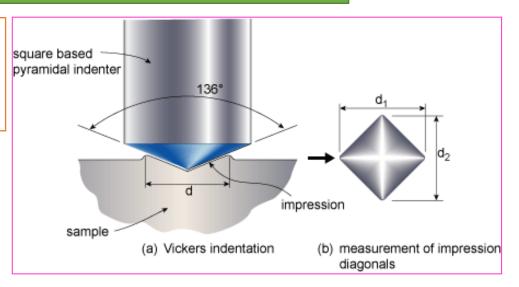
Inaccuracies in the result

- \succ If the test specimen is too thin,
- \succ If an indentation is made too near a specimen edge, or
- \succ If two indentations are made too close to one another.
- Specimen thickness should be at least ten times the indentation depth,
- The allowance should be made for at least three indentation diameters between the center of one indentation and the specimen edge, or to the center of a second indentation.
- > Furthermore, testing of specimens stacked one on top of another is not recommended.
- > Also, accuracy is dependent on the indentation being made into a smooth flat surface.

Brinell Hardness Test

- ➤ Uses ball shaped indenter.
- Cannot be used for thin materials.
- > Ball may deform on very hard materials.
- Surface area of indentation is measured.

Hardness Testing Techniques					
	_	Shape of Indentation			Formula for
Test	Indenter	Side View	Top View	Load	Hardness Number ^a
Brinell	10-mm sphere of steel or tungsten carbide	$\rightarrow D \leftarrow$		Р	$HB = \frac{2P}{\pi D[D - \sqrt{D^2 - d^2}]}$


Brinell Hardness Test

- Standard loads range between 500 and 3000 kg in 500-kg increments; during a test,
- \succ The load is maintained constant for a specified time (between 10 and 30 s).
- Harder materials require greater applied loads.
- The Brinell hardness number, HB, is a function of both the magnitude of the load and the diameter of the resulting indentation
- This diameter is measured with a special low-power microscope, utilizing a scale that is etched on the eyepiece.
- The measured diameter is then converted to the appropriate HB number using a chart; only one scale is employed with this technique.
- Maximum specimen thickness as well as indentation position (relative to specimen edges) and minimum indentation spacing requirements are the same as for Rockwell tests.
- In addition, a well-defined indentation is required; this necessitates a smooth flat surface in which the indentation is made.

Knoop and Vicker's Hardness Test

- Uses square shaped pyramid indenter.
- > Accurate results.
- Measures length of diagonal on indentation.
- Usually used on very hard materials

Hardness Testing Techniques

Test	Indenter	Shape of Indentation		_	Formula for
		Side View	Top View	Load	Hardness Number ^a
Vickers microhardness	Diamond pyramid			Р	$HV = 1.854 P/d_1^2$
Knoop microhardness	Diamond pyramid	<i>llb</i> = 7.11 <i>blt</i> = 4.00		Р	$\mathrm{HK} = 14.2 P/l^2$

Knoop and Vicker's Hardness Test

- Applied loads are much smaller than for Rockwell and Brinell, ranging between 1 and 1000 g.
- The resulting impression is observed under a microscope and measured; this measurement is then converted into a hardness number
- Careful specimen surface preparation (grinding and polishing) may be necessary to ensure a well-defined indentation that may be accurately measured.
- > The Knoop and Vickers hardness numbers are designated by HK and HV, respectively.
- Knoop and Vickers are referred to as micro-hardness testing methods on the basis of load and indenter size.
- Both are well suited for measuring the hardness of small, selected specimen regions furthermore, Knoop is used for testing brittle materials such as ceramics.