#### Accelerators

#### BY MR. S. V. MALGAONKAR M.Sc. (Assist. Prof.)

#### DEPARTMENT OF PHYSICS VIVEKANAND COLLEGE, KOLHAPUR (Autonomous)

17/05/2021

# Particle Physics

4<sup>th</sup> Handout

ALBERT ENSTEIN, IN HIS LATER YEARS, WAS UNABLE TO FIGURE OUT WHY, IF HE WAS SO SMART AND SO FUMOUS, HE WASN'T RICH



#### **Accelerators & Detectors**

- Luminosity and cross-sections
- •Fixed target vs collider
- linac vs circular
- •Detectors: fixed target, collider
- •Detector elements

## **High Energies in Accelerators**

**Produce new** particles -e.g. W, Z, ... Higgs ? Probe small scale structure  $-p=h/\lambda$ , e.g. proton structure



#### Accelerators

- Electric Fields to accelerate stable charged particles to high energy
- Simplest Machine d.c. high V source
   20MeV beam
- High frequency a.c. voltage
  - Time to give particles successive kicks





#### Synchrotron



pp,ep collider – need different magnets

- p anti-p, or e<sup>-</sup>e<sup>+</sup>
  - One set of magnets, one vacuum tube
  - LEP (e+e-), Tevatron(p anti-p)
- Need to produce anti-particles
  - Positron OK, anti-protons difficult
  - from proton nucleus collisons

B field (bending) and E-field (accelerating cavity) Synchronised with particle velocity



 $p(GeV/c) = 0.3B\rho_{s}$ 

radius

# Accelerating Cavities International Linear Collider plan for 35 MV/m Length for 500 GeV beams ?

A voltage generator induces an electric field inside the rf cavity. Its voltage oscillates with a radio frequency of 1.3 Gigahertz or 1.3 billion times per second.

0

The electrons always feel a force in the forward direction.

An electron source injects particles into the cavity in phase with the variable voltage. The electrons never feel a force in the backward direction.



Niobium, superconducting

Magnets

1200 dipole superconducting (1.9K) magnets, 14.3m long, 8.35 T



Proton energy 7 TeV, minimum ring circumference ?

#### Energy considerations: 1)Fixed Target vs Collider

#### Energy

- Achieve higher sqrt(s) at collider
  - Direct new particle searches
- Stable particles
  - Colliding beam expts use p,e<sup>-</sup> (muons?)
- Rate
  - Higher luminosity at fixed target

#### 2) Linac vs synchrotron

Linac Energy

 length & voltage per cavity

 Synchrotron Energy

 Radius, max B-field

Synchrotron radiation

Higher E = bigger machine

#### **Energy: Fixed Target Experiment**

b at rest:E<sub>b</sub>=m<sub>b</sub>

 $s = (E_a + m_b)^2 - p_a^2 \approx 2E_a m_b$  for  $E_a >> m_a, m_b$ 

 $\sqrt{s} \propto E_a^{\frac{1}{2}}$ 

## **Energy: Colliding Beam**

Symmetric beams – lab frame =CM frame Particle & anti-particle collision

 $E_a = E_b \quad \mathbf{p_a} = -\mathbf{p_b}$  $s = (E_a + E_b)^2 + 0 = 4E_a^2$ 

 $\sqrt{s} \propto E_a$ 

#### Synchrotron Radiation

Energy lost as particles bent to travel in circle

$$E = \frac{q^2 \beta^3 \gamma^4}{3\varepsilon_0 \rho}$$

ρ is radius of curvature of orbit So for relativistic particles  $\beta \approx 1$   $\Delta E \propto \gamma^4$ 

Limits energy for a electron/positron machine < ~ 100GeV/beam

Hence, LHC proton collider



Also a useful source of high energy photons for material studies

Diamond Synchrotron started operation recently in Oxfordshire

## Synchrotron: Beam Stability

- Particles accelerated in bunches LHC N=10<sup>10</sup>
- Particle accelerated just enough to keep radius constant – in reality…
- Synchrotron Oscillations
  - Movement of particles wrt bunch
  - out of phase with ideal, stability ensured



Early

Synchronous

Particle B arriving early receives a larger RF pulse moves to a larger orbit and arrives later next time Particle C arriving late received smaller acceleration, smaller orbit, earlier next time

 $\mathbf{V}$ 

#### Focussing

- Particles also move in transverse plane
  - Betatron oscillations
  - Origin natural divergence of the originally injected beam and small asymmetries in magnetic fields.
- Beams focussed using quadropole magnets.

Focussing in vertical/horizontal planes Force towards centre of magnet. Alternate vertical / horizontal net focussing effect in both planes.



N.B. Dipoles=bending, Quadropoles=focussing

## Cooling



- Initially particles have a wide spread of momentum and angle of emission at production
  Need to "cool" to bunch
  One methods stochastic cooling used at CERN for anti-protons
- Sense average deviation of particles from ideal orbit
- Provide corrective kick
- Note particles travelling at c and so does does electrical signal ! 12

#### **Cross-Sections**

We perform an experiment:  $p + p \rightarrow p + p + \pi^0$  Smashing beam into a target

How many pions do we expect to see ?

 $\infty$ Duration of expt(t)  $\infty$ Volume of target seen by beam (V)  $\infty$ Density of p in target (ρ)  $\infty$ Beam incident /sec/Unit area (I)  $\infty$ Solid angle of detector (ΔΩ)  $\infty$ Efficiency of experiment (trigger/analysis) (ε)  $\infty$  (I t) (Vρ) ΔΩ ε  $\Delta N \propto (1/Area)(N_0) \Delta \Omega ε$ 

The constant of proportionality – the bit with the real physics in ! – is the differential cross-section  $d\sigma$ 

 $d\Omega$ Integration over  $4\pi$  gives total cross-section  $\Omega = \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin \theta d\theta$ Can divide total xsec into different reactions e.g.  $\sigma_T = \sigma_{EL} + \sigma_{INEL}$ 

xsec measured in barn, pb etc...

#### Luminosity

For colliding beams no V (target volume) term. Require two narrow beams with complete overlap at collision point Typical beam sizes  $10-100\mu m$  in xy and cm in z

Interaction rate is

 $N = (n_1 n_2 f / a) \sigma \text{ jn s-1}$ 

 $n_1, n_2$  are number of particles in a bunch f is the frequency of collisions



 $(n_1n_2f/a)$  is known as the luminosity LHC plans up to  $10^{34}$  cm<sup>-2</sup> s<sup>-1</sup> Linac – one shot machine Synchrotron – particles circulate for many hours

Fixed target luminosity can be higher e.g. 10<sup>12</sup> p on 1m long liquid-H target gives~10<sup>37</sup>cm<sup>-2</sup> s<sup>-1</sup>

Number of events = lumi x xsec x time Typically good machine running time is  $\sim 1/3$  yr (1x10<sup>7</sup>s)



## **Electrons vs Protons ?**

- Useful centre-of-mass energy electron vs proton
- Proton is composite, ~10% root(s) useful energy
- 100 GeV LEP, 1TeV Tevatron had similar reach
- Electron-positron much cleaner environment
  - No extra particles
  - Can detect missing energy e.g. neutrinos, new neutral particles
  - Proton
    - Higher energies, less synchrotron radiation
    - Electron-positron "high precision machine"
    - Proton-proton "discovery machine"







Tevatron Event

# A typical modern particle physics experiment



🔘 Magnet

Tracking
 E-M Calorimeter
 Hadron Calorimeter
 Muon Chambers

DELPHI experiment @ LEP collider



#### **Example Particle Detector-ATLAS**





Detector Components: Tracking systems, ECAL/HCAL, muon system + magnet – several Tesla - momentum measurement

Tracking: Spatial Resolution 5-200µmECAL:<br/>HCAL: $\Delta E / E \approx 0.05 / \sqrt{E}$  $\Delta E / E \approx 0.5 / \sqrt{E}$ 

Time Resolution: LHC 40Mz=25ns

## **Elements of Detector System**

#### •Sensitive Detector Elements: e.g.

- Tracking silicon sensors, gaseous ionisation detectors
- Calorimeters lead, scintillators
- •Electronic readout:e.g.
  - •Custom designed integrated circuits, custom pcbs,
  - •Cables, power supplies.
- •Support Services: e.g.
  - Mechanical supports
  - •Cooling
- •Trigger System
  - •LHC 40 MHz, write to disk 2kHZ
  - •Which events to take ?
  - •Parallel processing, pipelines
  - •Trigger levels
  - •Add more detector components at higher levels



Computing in HEP Each event 100kB-1MB 1000MB/s, 1PB/year Cannot analyse on single cluster Worldwide computing Grid

#### **Example Neutrino Detector**

But not all detectors look like previous examples Example – neutrino detector

- •Very large volume
- •Low data rate



Super-Kamiokande half-fill with water 50,00 tonnes of water 11000 photomultiplier tubes Neutrinos interact

 $v + e^- \rightarrow v + e^-$ 

19

Chereknov light cone given off and detected by photomultipliers



#### **Accelerator Summary**

Considerations for an accelerator. •Reaction to be produced •Energy required •Luminosity required

Events expected



Particles are accelerated by electric field cavities. Achievable Electric fields few MV/m Higher energy = longer machine

Fixed target expt. – not energy efficient but sometimes unavoidable (e.g. neutrino expts)

Particles are bent into circles by magnetic fields. Synchrotron radiation – photons radiated as particle travels in circle E lost increases with  $\gamma^4$ , so heavy particles or bigger ring Or straight line...

Synchrotron oscillations controlled by rf acceleration Quadropole magnets used to focus beams in transverse plane

Linac – repetition rate slower as beams are not circulating Synchrotron – beams can circulate for several hours