# Ordinary Differential Equations 

BY<br>MR. S. V. MALGAONKAR m.Sc. (Assist. Prof.)

# DEPARTTMENT OF PHYSICS VIVEKANAND COLLEGE, KOLHAAPUR 

(Autonomous)

## Introduction to Ordinary Differential Equations (ODE)

- Recall basic definitions of ODE,
- order
- linearity
- initial conditions
- solution
- Classify ODE based on( order, linearity, conditions)
- Classify the solution methods


## Derivatives



## Differential Equations

## Differential <br> Equations

## Ordinary Differential Equations

$$
\frac{d^{2} y}{d x^{2}}+6 x y=1
$$

Ordinary derivatives of unknown functions

## Partial Differential Equations

$$
\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=0
$$

involve one or more partial derivatives of unknown functions

## Ordinary Differential Equations

Ordinary Differential Equations (ODE) involve one or more ordinary derivatives of unknown functions with respect to one independent variable

Examples:
$\frac{d y}{d x}-y=e^{x}$
$\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+2 y=\cos (x)$
x : independent variable

## Order of a differential equatior

The order of an ordinary differential equations is the order of the highest order derivative

$$
\begin{aligned}
& \text { Examples: } \\
& \frac{d y}{d x}-y=e^{x} \\
& \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+2 y=\cos (x) \\
& \left(\frac{d^{2} y}{d x^{2}}\right)^{3}-\frac{d y}{d x}+2 y^{4}=1
\end{aligned}
$$

First order ODE

Second order ODE

Second order ODE

## Solution of a differential equation

A solution to a differential equation is a function that satisfies the equation.
Example:
$d x(t)$
$d t$

$$
\begin{aligned}
\perp \mathcal{X}(\boldsymbol{t})= & \begin{array}{l}
\text { Solution } \quad x(t)=e^{-t} \\
\text { Proof : } \\
\frac{d x(t)}{d t}=-e^{-t} \\
\frac{d x(t)}{d t}+x(t)=-e^{-t}+e^{-t}=0
\end{array}
\end{aligned}
$$

## Linear ODE

An ODE is linear if the unknown function and its derivatives appear to power one. No product of the unknown function and/or its derivatives

$$
a_{n}(x) y^{n}(x)+a_{n-1}(x) y^{n-1}(x)+\cdots+a_{1}(x) y^{\prime}(x)+a_{0}(x) y(x)=g(x)
$$

Examples:
$\frac{d y}{d x}-y=e^{x}$
Linear ODE
$\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+2 x^{2} y=\cos (x) \quad$ Linear ODE
$\left.\left(\frac{d^{2} y}{d x^{2}}\right)\right)^{3}-\frac{d y}{d x}+\sqrt{y}=1$
Non-linear ODE

## Boundary-Value and Initial value

## Initial-Value Problems

The auxiliary conditions are at one point of the independent variable

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+y=e^{-2 x} \\
& y(0)=1, \quad y^{\prime}(0)=2.5
\end{aligned}
$$

## Boundary-Value Problems

- The auxilia゙T" at one point of the independent variable
- More difficult to solve than initial value problem


## Classification of ODE

ODE can be classified in different ways

- Order
- First order ODE
- Second order ODE
- $\mathrm{N}^{\text {th }}$ order ODE
- Linearity
- Linear ODE
- Nonlinear ODE
- Auxiliary conditions
- Initial value problems
- Boundary value problems


## Solutions

- Analytical Solutions to ODE are available for linear ODE and special classes of nonlinear differential equations.
- Numerical method are used to obtain a graph or a table of the unknown function
- We focus on solving first order linear ODE and second order linear ODE and Euler equation


## First Order Linear Differential Equations

Def: A first order differential equation is said to be linear if it can be written

$$
y^{\prime}+p(x) y=g(x)
$$

## First Order Linear Differential Equations

- How to solve first-order linear ODE ?

Sol:

$$
y^{\prime}+p(x) y=g(x)
$$

Multiplying both sides by $\mu(x)$, called an integrating factor, givedy

$$
\begin{equation*}
\mu(x) \frac{\operatorname{esy}}{d x}+\mu(x) p(x) y=\mu(x) g(x) \tag{2}
\end{equation*}
$$

assuming $\mu(x) p(x)=\mu^{\prime}(x), \quad$ (3) we get

$$
\begin{equation*}
\mu(x) \frac{d y}{d x}+\mu^{\prime}(x) y=\mu(x) g(x) \tag{4}
\end{equation*}
$$

## First Order Linear Differential Equations

By product rule, (4) becomes

$$
\begin{align*}
& (\mu(x) y(x))^{\prime}=\mu(x) g(x) \\
& \Rightarrow \mu(x) y(x)=\int \mu(x) g(x) d x+c_{1} \\
& \Rightarrow y(x)=\frac{\int \mu(x) g(x) d x+c_{1}}{\mu(x)} \tag{6}
\end{align*}
$$

Now, we need to solve $\mu(x)$ from (3)

$$
\mu(x) p(x)=\mu^{\prime}(x) \Rightarrow \frac{\mu^{\prime}(x)}{\mu(x)}=p(x)
$$

## First Order Linear Differential Equations

$$
\begin{align*}
& \frac{\mu^{\prime}(x)}{\mu(x)}=p(x) \Rightarrow(\ln \mu(x))^{\prime}=p(x) \\
& \Rightarrow \ln \mu(x)=\int p(x) d x+c_{2} \\
& \Rightarrow \mu(x)=e^{\int p(x) d x+c_{2}}=c_{3} e^{\int p(x) d x} \tag{7}
\end{align*}
$$

to get rid of one constant, we can use

$$
\begin{equation*}
\mu(x)=e^{\int p(x) d x} \tag{8}
\end{equation*}
$$

The solution to a linear first order differential equation is then
$y(x)=\frac{\int \mu(x) g(x) d x+c}{e^{\int p(x) d x}}$

## Summary of the Solution Process

- Put the differential equation in the form (1)
- Find the integrating factor,
- Multiply both sides of (1) by
- Integrate both sides
- Solve for the solution $\mu(x) y(x))^{\prime}$
$y(x)$


## Example 1

$$
y^{\prime}-y=e^{2 x}
$$

## Sol:

$$
\begin{aligned}
y(x) & =e^{-\int p(x) d x}\left[\int e^{\int p(x) d x} g(x) d x+c\right] \\
& =e^{-\int(-1) d x}\left[\int e^{\int(-1) d x} e^{2 x} d x+c\right] \\
& =e^{x}\left[\int e^{-x} e^{2 x} d x+c\right] \\
& =e^{x}\left[e^{x}+c\right] \\
& =c e^{x}+e^{2 x}
\end{aligned}
$$

## Example $2 x y^{\prime}+2 y=x^{2}-x, y(1)=\frac{1}{2}$

Sol:

$$
\begin{aligned}
& \Rightarrow y^{\prime}+\frac{2}{x} y=x-1 \\
& \Rightarrow y(x)=e^{-\int p(x) d x}\left[\int e^{\int p(x) d x} g(x) d x+c\right] \\
& =e^{-\int \frac{2}{x} d x}\left[\int e^{\int \frac{2}{x} d x}(x-1) d x+c\right]=x^{-2}\left[\int x^{2}(x-1) d x+c\right] \\
& =x^{-2}\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}+c\right]=\frac{1}{4} x^{2}-\frac{1}{3} x+c x^{-2}
\end{aligned}
$$

Apply the initial condition to get c ,
$\Rightarrow \frac{1}{2}=\frac{1}{4}-\frac{1}{3}+c \Rightarrow c=\frac{7}{12}$.

## Second Order Linear Differential Equat

- Homogeneous Second Order Linear Differential Equations
- real roots, complex roots and repeated roots
- Non-homogeneous Second Order Linear Differential Equations
- Undetermined Coefficients Method
- Euler Equations


## Second Order Linear Differential Equations

The general equation can be expressed in the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(x)
$$

where $a, b$ and $c$ are constant coefficients
Let the dependent variable $y$ be replaced by the sum of the two new variables: $\mathrm{y}=\mathrm{u}+\mathrm{v}$
Therefore

$$
\left[a u^{\prime}+b u^{\prime}+c u\right]+\left[a v^{\prime \prime}+b v^{\prime}+c v\right]=g(x)
$$

If $v$ is a particular solution of the original differential equation

$$
\left[a u^{\prime \prime}+b u^{\prime}+c u\right]=0
$$

purpose
The general solution of the linear differential equation will be the sum of a "complementary function" and a "particular solution".

## The Complementary Function (solution of the

 homogeneous equation)$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Let the solution assumed to be:

$$
y=e^{r x}
$$

$$
\frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

$$
e^{r x}\left(a r^{2}+b r+c\right)=0
$$

characteristic equation


Real, Distinct Roots to Characteristic Equation

- Let the roots of the characteristic equation be real, distinct and of values $r_{1}$ and $r_{2}$. Therefore, the solutions of the characteristic equation are:

$$
y=e^{r_{1} x} \quad y=e^{r_{2} x}
$$

- The general solution will be

$$
y=c_{1} e^{\eta_{1} x}+c_{2} e^{r_{2} x}
$$

- Example

$$
\begin{gathered}
y^{\prime \prime}-5 y^{\prime}+6 y=0 \quad \longrightarrow \quad r^{2}-5 r+6=0 \\
r_{1}=2 \\
r_{2}=3
\end{gathered} \quad \Longrightarrow y=c_{1} e^{2 x}+c_{2} e^{3 x}
$$

## Equal Roots to Characteristic Equation

- Let the roots of the characteristic equation equal and of value $r_{1}=r_{2}=r$. Therefore, the solution of the characteristic equation is: $\quad y=e^{r x}$

$$
\text { Let } y=V e^{r x} \quad \Rightarrow y^{\prime}=e^{r x} V^{\prime}+r V e^{r x} \quad \text { and } y^{\prime \prime}=e^{r x} V^{\prime \prime}+2 r e^{r x} V^{\prime}+r^{2} V e^{r x}
$$

where $V$ is a function of $x$

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
a r^{2}+\mathrm{br}+\mathrm{c}=0 \quad 2 \mathrm{ar}+\mathrm{b}=0 \\
V^{\prime \prime}(x)=0 \rightarrow V=c x+d
\end{gathered}
$$

$$
y=b e^{r x}+(c x+d) e^{r x}=c_{1} e^{r x}+c_{2} x e^{r x}
$$

## Complex Roots to Characteristic Equation

Let the roots of the characteristic equation be complex in the form $\mathrm{r}_{1,2}=\lambda \pm \mu \mathrm{i}$. Therefore, the solution of the characteristic equation is:

$$
\begin{aligned}
& y_{1}=e^{(\lambda+\mu i) x}=e^{\lambda x}(\cos (\mu x)+i \sin (\mu x)), \\
& y_{2}=e^{(\lambda-\mu i) x}=e^{\lambda x}(\cos (\mu x)-i \sin (\mu x)) .
\end{aligned}
$$

$u(x)=\frac{1}{2}\left(y_{1}+y_{2}\right)=e^{\lambda x} \cos (\mu x), v(x)=\frac{1}{2 i}\left(y_{1}-y_{2}\right)=e^{\lambda x} \sin (\mu x)$
It is easy to see that $u$ and $v$ are two solutions to the differential equation. Therefore, the geneal solution to the d.e. is :

$$
y(x)=c_{1} e^{\lambda x} \cos (\mu x)+c_{2} e^{2 x} \sin (\mu x) .
$$

## Examples

(I) Solve $y^{\prime \prime}+6 y^{\prime}+9 y=0$
(II) Solve $y^{\prime}-4 y^{\prime}+5 y=0$
characteristic equation
$r^{2}+6 r+9=0$

$r_{1}=r_{2}=-3$


$$
y=\left(c_{1}+c_{2} x\right) e^{-3 x}
$$

$$
r^{2}-4 r+5=0
$$

$$
\downarrow
$$

$$
r_{1,2}=2 \pm i
$$


$y=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)$

Non-homogeneous Differential Equations (Method of Undetermined Coefficients)

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(x)
$$

When $g(x)$ is constant, say $k$, a particular solution of equation is

$$
y=k / c
$$

When $g(x)$ is a polynomial of the forma $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ where all the coefficients are constants. The form of a particular solution is

$$
y=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\ldots+\alpha_{n} x^{n}
$$

## Example

## Solve

$$
y^{\prime \prime}-4 y^{\prime}+4 y=4 x+8 x^{3}
$$

$\qquad$

$$
y=p+q x+r x^{2}+s x^{3} \left\lvert\, \begin{aligned}
& y^{\prime}=q+2 r x+3 s x^{2} \\
& y^{\prime \prime}=2 r+6 s x
\end{aligned}\right.
$$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

$$
(2 r+6 s x)-4\left(q+2 r x+3 s x^{2}\right)+4\left(p+q x+r x^{2}+s x^{3}\right)=4 x+8 x^{3}
$$

equating coefficients of equal powers of $x$

$$
\left\{\begin{array}{ll}
\begin{array}{l}
2 r-4 q+4 p=0 \\
6 s-8 r+4 q=4 \\
4 r-12 s=0
\end{array} \\
4 s=8
\end{array} \quad y_{c}=\left(c_{1}+c_{2} x\right) e^{2 x}\right\} \begin{array}{ll}
y=y_{c}+y_{p} \\
y_{p}=7+10 x+6 x^{2}+2 x^{3} \longrightarrow & =\left(c_{1}+c_{2} x\right) e^{2 x}+7+10 x+6 x^{2}+2 x^{3}
\end{array}
$$

## Non-homogeneous Differential Equations (Method of Undetermined Coefficients)

- When $g(x)$ is of the form $T e^{r x}$, where $T$ and $r$ are constants. The form of a particular solution is

$$
\begin{gathered}
y=A e^{r x} \\
A=\frac{T}{a r^{2}+b r+c}
\end{gathered}
$$

- When $g(x)$ is of the form $C \sin n x+D \cos n x$, where $C$ and $D$ are constants, the form of a particular solution is

$$
\begin{aligned}
& y=E \sin n x+F \cos n x \\
& E=\frac{\left(c-n^{2} a\right) C+n b D}{\left(c-n^{2} a\right)^{2}+n^{2} b^{2}} \\
& F=\frac{\left(c-n^{2} a\right) C-n b D}{\left(c-n^{2} a\right)^{2}+n^{2} b^{2}}
\end{aligned}
$$

## Example

Solve

$$
\begin{gathered}
3 y^{\prime \prime}-6 y^{\prime}=18 \\
y=C x \left\lvert\, \begin{array}{r}
y^{\prime}=C \\
y^{\prime \prime}=0
\end{array}\right. \\
3(0)-6(\mathrm{C})=18 \\
\mathrm{C}=-3
\end{gathered}
$$

## Example

Solve

$$
\begin{gathered}
3 y^{\prime \prime}+10 y^{\prime}-8 y=7 e^{-4 x} \\
y=C x e^{-4 x} \left\lvert\, \begin{array}{c}
y^{\prime}=(1-4 x) C e^{-4 x} \\
y^{\prime \prime}=(16 x-8) C e^{-4 x} \\
-24 C+10 C=7
\end{array}\right. \\
C=-\frac{1}{2} \\
y_{p}=-\frac{1}{2} x e^{-4 x}
\end{gathered}
$$

complementary

$$
3 y^{\prime \prime}+10 y^{\prime}-8 y=0
$$

$$
3 r^{2}+10 r-8=(3 r-2)(r+4)=0
$$

characteristic equ

$$
r_{1}=2 / 3, r_{2}=-4
$$

$$
y_{c}=A e^{2 x / 3}+B e^{-4 x}
$$

$$
y=y_{c}+y_{p}
$$

$$
=-\frac{1}{2} x e^{-4 x}+A e^{2 x / 3}+B e^{-4 x}
$$

## Example

Solve

$$
y^{\prime \prime}+y^{\prime}-6 y=52 \cos 2 x
$$

complementary

$$
y=C \cos 2 x+D \sin 2 x \left\lvert\, \begin{array}{ll}
y^{\prime}=-2(C \sin 2 x-D \cos 2 x) & \\
y^{\prime \prime}+y^{\prime}-6 y=0 \\
y^{\prime \prime}=-4(C \cos 2 x+D \sin 2 x) & r^{2}+r-6=\left(r^{\prime}-2\right)(r+3)=0
\end{array}\right.
$$

characteristic equá

$$
-10 C+2 D=52
$$

$$
-2 C-10 D=0
$$

$$
r_{1}=2, r_{2}=-3
$$

$$
y_{c}=A e^{2 x}+B e^{-3 x}
$$

$$
D=1
$$

$$
y=y_{c}+y_{p}
$$

$$
y_{p}=-5 \cos 2 x+\sin 2 x
$$

$$
=A e^{2 x}+B e^{-3 x}-5 \cos 2 x+\sin 2 x
$$

## Euler Equations

Def: Euler equations

$$
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0
$$

- Assuming $x>0$ and all solutions are of the form $y(x)=x^{r}$
- Plug into the differential equation to get the characteristic equation

$$
\operatorname{ar}(r-1)+b(r)+c=0
$$

## Solving Euler Equations: (Case

- The characteristic equation has two different real solutions $r_{1}$ and $r_{2}$.
- In this case the functions $y=x^{r_{1}}$ and $y=x^{r_{2}}$ are both solutions to the original equation. The general solution is:

$$
y(x)=c_{1} x^{1}+c_{2} x^{r_{1}^{2}}
$$

## Example:

$$
2 x^{2} y^{\prime}+3 x y^{\prime}-15 y=0 \text {, the characteristic equation is : }
$$

$2 r(r-1)+3 r-15=0 \Rightarrow r_{1}=\frac{5}{2}, r_{2}=-3$.
$\Rightarrow y(x)=c_{1} x^{\frac{5}{2}}+c_{2} x^{-3}$.

## Solving Euler Equations: (Cas

- The characteristic equation has two equal roots $r_{1}=$ $r_{2}=r$.
- In this case the functions $y=x^{r}$ and $y=x^{r} \ln x$ are both solutions to the original equation. The general solution is:

$$
y(x)=x^{r}\left(c_{1}+c_{2} \ln x\right)
$$

## Example:

$$
\begin{aligned}
& x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0, \text { the characteristic equation is : } \\
& r(r-1)-7 r+16=0 \Rightarrow r=4 . \\
& \Rightarrow y(x)=c_{1} x^{4}+c_{2} x^{4} \ln x .
\end{aligned}
$$

## Solving Euler Equations: (Cas

- The characteristic equation has two complex roots $r_{1,2}=$ $\lambda \pm \mu \mathrm{i}$.

$$
x^{\lambda+\mu i}=e^{(\lambda+\mu i) \ln x}=x^{\lambda} \cos (\mu \ln x)+i x^{\lambda} \sin (\mu \ln x)
$$

So, in the case of complex roots, the general solution will be :

$$
y(x)=x^{\lambda}\left(c_{1} \cos (\mu \ln x)+c_{2} \sin (\mu \ln x)\right)
$$

## Example:

$$
x^{2} y^{\prime}+3 x y^{\prime}+4 y=0 \text {, the characteristic equation is : }
$$

$$
\begin{aligned}
& r(r-1)+3 r+4=0 \Rightarrow r_{1,2}=-1 \pm \sqrt{3} i \\
& \Rightarrow y(x)=c_{1} x^{-1} \cos (\sqrt{3} \ln x)+c_{2} x^{-1} \sin (\sqrt{3} \ln x)
\end{aligned}
$$

## THANK YOU

