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Introduction to Ordinary 

Differential Equations (ODE)

 Recall basic definitions of ODE,

 order

 linearity

 initial conditions

 solution

 Classify ODE based on( order, linearity, conditions)

 Classify the solution methods
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Derivatives

Derivatives
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Partial Derivatives

u is a function of 

more than one 

independent variable

Ordinary Derivatives

y is a function of one 

independent variable
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Differential Equations

Differential

Equations
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involve one or more 
partial derivatives of 
unknown functions

Ordinary Differential Equations

involve one or more
Ordinary derivatives of 

unknown functions
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Ordinary Differential Equations
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Ordinary Differential Equations (ODE) involve one or 

more ordinary derivatives of unknown functions with 

respect to one independent variable

y(x): unknown function

x: independent variable



Order of a differential equation
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The order of an ordinary differential equations is the order 

of the highest order derivative

Second order ODE

First order ODE

Second order ODE



Solution of a differential equation
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A solution to a differential equation is a function that 

satisfies the equation.
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Linear  ODE
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An ODE is linear if the unknown function and its derivatives 

appear to power one. No product of the unknown function 

and/or its derivatives

Linear ODE

Linear ODE

Non-linear ODE
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Boundary-Value and Initial value Problems

Boundary-Value Problems

 The auxiliary conditions are not 

at one point of the independent 

variable

 More difficult to solve than 

initial value problem
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Initial-Value Problems

 The auxiliary conditions are 
at one point of the 
independent variable
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Classification of ODE

ODE can be classified in different ways

 Order

 First order ODE

 Second order ODE

 Nth order ODE

 Linearity

 Linear ODE

 Nonlinear ODE

 Auxiliary conditions

 Initial value problems

 Boundary value problems
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Solutions

 Analytical Solutions to ODE are available for linear ODE 

and special classes of nonlinear differential equations.

 Numerical method are used to obtain a graph or a table 

of the unknown function

 We focus on solving first order linear ODE and second 

order linear ODE and Euler equation
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First Order Linear Differential 

Equations

Def: A first order differential equation 

is said to be linear if it can be written
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First Order Linear Differential 

Equations

 How to solve first-order linear ODE ?

Sol:
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First Order Linear Differential 

Equations
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By product rule, (4) becomes

Now, we need to solve             from (3)                                                                                                 
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First Order Linear Differential 

Equations
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Summary  of the Solution Process

 Put the differential equation in the form (1)

 Find the integrating factor,           using (8) 

 Multiply both sides of (1) by           and write the left side of (1) as

 Integrate both sides

 Solve for the solution  
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Example 1

Sol:
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Example 2

Sol:
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Second Order Linear Differential Equations

 Homogeneous Second Order Linear Differential Equations

o real roots, complex roots and repeated roots

 Non-homogeneous Second Order Linear Differential Equations

o Undetermined Coefficients Method

 Euler Equations
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)(''' xgcybyay =++

where a, b and c are constant coefficients

Let the dependent variable y be replaced by the sum of 

the two new variables: y = u + v
Therefore

    )('''''' xgcvbvavcubuau =+++++

If v is a particular solution of the original differential 

equation

The general solution of the linear differential equation will be the 
sum of a “complementary function” and a “particular solution”.

purpose

Second Order Linear Differential Equations

The general equation can be expressed in the form

  0''' =++ cubuau

20



0''' =++ cybyay

Let the solution assumed to be: rxey =

rxre
dx

dy
= rxer

dx

yd 2

2

2

=

0)( 2 =++ cbrarerx

characteristic equation

Real, distinct roots

Double roots

Complex roots

The Complementary Function  (solution of  the 
homogeneous  equation)
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Real, Distinct Roots to Characteristic Equation

• Let the roots of the characteristic equation be real, 

distinct and of values r1 and r2. Therefore, the solutions 

of the characteristic equation are:

• The general solution will be
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rxey =

rxrx rVeVey += ''
rxVey =Let rxrxrx VerVreVey 2'2''''  and ++=

where V is a 

function of x

0''' =++ cybyay

0)('' =xV dcxV +=

rxrxrxrx xececedcxbey 21)( +=++=

Equal Roots to Characteristic Equation

• Let the roots of the characteristic equation equal and of 

value r1 = r2 = r. Therefore, the solution of the characteristic 

equation is:

0cbrar2 =++ 0bar2 =+
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Complex Roots to Characteristic Equation

Let the roots of the characteristic equation be complex in the 
form r1,2 =λ±µi. Therefore, the solution of the characteristic 
equation is:
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(I) Solve 09'6'' =++ yyy

characteristic equation
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When g(x) is a polynomial of the form                                               

where all the coefficients are constants. The form of a particular 

solution is
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Non-homogeneous Differential Equations (Method of 
Undetermined Coefficients)

When g(x) is constant, say k, a particular solution of equation is
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Example

Solve 3844'4'' xxyyy +=+−
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Non-homogeneous Differential Equations 
(Method of Undetermined Coefficients)

rxAey =

• When g(x) is of the form Terx, where T and r are constants. The

form of a particular solution is
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Example
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Example
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Example

Solve xyyy 2cos526''' =−+
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Euler Equations

Def: Euler equations

Assuming x>0 and all solutions are of the 

form y(x) = xr

Plug into the differential equation to get 

the characteristic equation
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Solving Euler Equations: (Case I)
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• The characteristic equation has two different real 
solutions  r1 and  r2. 

• In this case the functions y = xr1 and y = xr2 are both 
solutions to the original equation. The general solution 
is: 21
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Solving Euler Equations: (Case II)
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• The characteristic equation has two equal roots r1 = 
r2=r. 

• In this case the functions y = xr and y = xr lnx are both 
solutions to the original equation. The general solution 
is: )ln()( 21 xccxxy r +=

x.xcxcy(x)

.rr)r(r-

yxyyx

ln

401671

:isequation  sticcharacteri the,016'7''

4

2

4

1

2

+=

==+−

=+−

Example:



Solving Euler Equations: (Case III)
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• The characteristic equation has two complex roots r1,2 =
λ±µi. 
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THANK YOU
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