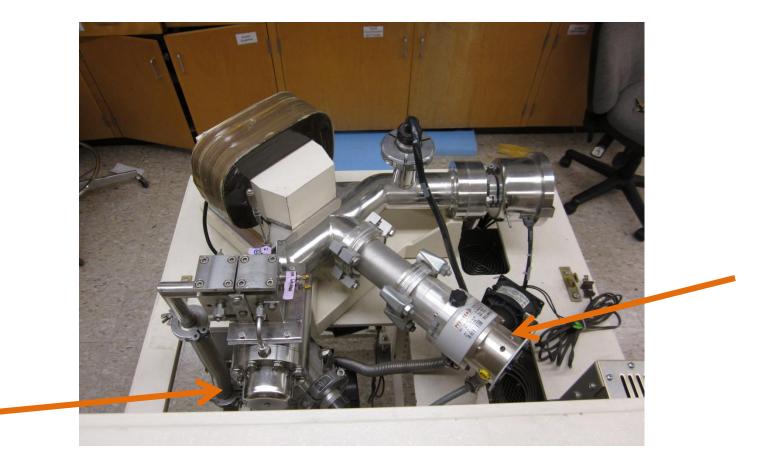
VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)


VACUUM PUMPS

By Miss. Sayali S. Gawade _{M.Sc., SET}

DEPARTMENT OF PHYSICS

Date: 29/09/2023

Vacuum Pumps

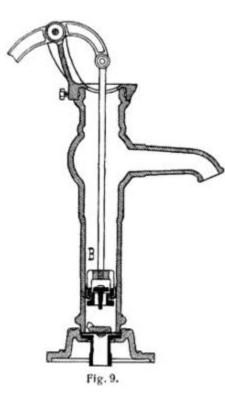
Basics

vacuum

- noun 1. a space entirely devoid of matter.
- 2. an enclosed space from which matter, especially air, has been partially removed so that the matter or gas remaining in the space exerts less pressure than the atmosphere (opposed to plenum).
- Exhaust pressure= atm generally
- Base pressure = pressure pump gets down to
- Compression ratio = exhaust/base= big number
- Boyles Law $P_1V_1=P_2V_2$

History of vacuum pumps

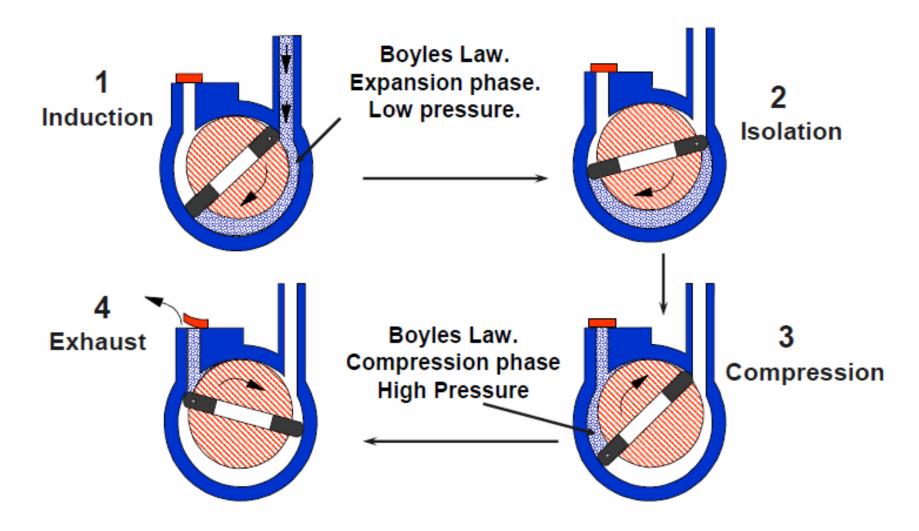
- Suction pumps go way back (Romans, Byzantine empire, etc)
- Major improvements on the idea of vacuum made by Galileo, Evangeilist Torricelli, and Blaise Pascal
- Otto von Guericke made first pump and famous for Magdeburg hemispheres experiment



Types of Vacuum pumps

- Positive displacement pumps

 Expand a cavity, seal, exhaust, repeat
- Momentum transfer pumps (molecular pumps)
 - High speed liquids or blades to knock gasses around
- Entrapment
 - Create solids or adsorbed gases (cryopumps)



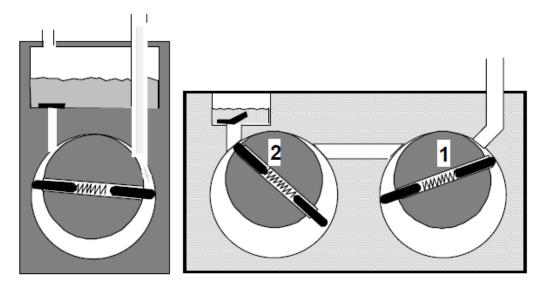
Roughing pumps

- Pumps from atm pressure down to rough vacuum (0.1 Pa, 1X10⁻³ torr)
- Necessary because turbo pumps have trouble starting from atmospheric pressure
- Usually Rotary Vane pumps
- Can have oil or not



Rotary vane pumps

Rotary vane pumps


Condensation of vapor in the gas mixture is a problem with these pumps. Solution **Ballasting**

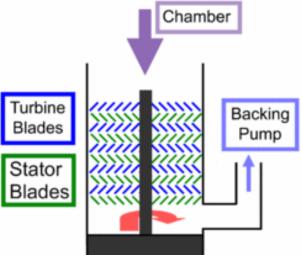
Works by increasing the gas/vapor ratio (air is mostly gas) As you might imagine this interferes with the final vacuum

Types

• One stage or two stage

• Belt Drive or direct drive

Slower 400-600 RPM Bigger, Cheaper


Faster 1500 to 1725 RPM

Smaller, lighter

Turbo (molecular) pumps

- Gas molecules interact with spinning blades and are preferentially forced downward
- High vacuum (10⁻⁶ Pa) requires rotation of 20,000 to 90,000 revolutions per minute
- Generally work between 10-3 and 10-7 Torr
- Ineffective before gas is in "molecular flow"

Turbo (molecular) pumps

- Options:
 - Bearings: Ceramic (oil lubricated) Magnetic (supported w/out physical contact), also hybrid
 - Rotor options (Blade configuration)
 - Cooling (air or water)

Units of pressure for your notes

	<u>Pascal</u> (Pa)	<u>Bar</u> (bar)	<u>Technical atmosphere</u> (at)	Atmosphere (atm)	<u>Torr</u> (Torr)	Pound-force per square inch (psi)
1 Pa	≡ 1 <u>N</u> /m²	10 ⁻⁵	1.0197×10 ⁻⁵	9.8692×10 ⁻⁶	7.5006×10 ⁻³	145.04×10 ⁻⁶
1 bar	10 ⁵	≡ 10 ⁶ <u>dyn</u> /cm²	1.0197	0.98692	750.06	14.5037744
1 at	0.980665 ×10 ⁵	0.980665	≡ 1 <u>kgf</u> /cm²	0.96784	735.56	14.223
1 atm	1.01325 ×10⁵	1.01325	1.0332	≡ 1 <u>atm</u>	760	14.696
1 Torr	133.322	1.3332×10 ⁻³	1.3595×10 ⁻³	1.3158×10 ⁻³	≡ 1 Torr; ≈ 1 <u>mmHg</u>	19.337×10 ⁻³
1 psi	6.895×10 ³	68.948×10 ⁻³	70.307×10 ⁻³	68.046×10 ⁻³	51.715	≡ 1 <u>lbf</u> /in²