"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous) Department of Physics

Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: **Dr.M.M. Karanjkar**

Month J	une			Module/Unit:	Syllabus Covered / Not Covered	Remark
Course	Lect ures	Practicals	Total	Physical interpretation of wave function, Schrodinger's	Covered	
B.Sc. III	12		12	time dependent and independent equation (one and three dimensional) Requirements of wave function, Eigen value, Eigen function, Normalized orthogonal and orthonormal wave functions, Probability current density (Continuity equation). Examples on Normalization of wave function		
.Sc. I	16		16	Oscillations Simple harmonic motion (SHM), Differential equation of SHM and its solutions, Kinetic and Potential Energy, Total Energy and their time averages, Damped oscillations, Forced oscillations.	Covered	

D. PA

Tim I

B.Sc. II	-	64	64	Practicals :	Covered
				1) To record and analyze the cooling temperature of hot object as a function of time using a thermocouple.	
				2) To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge	
				3) Temperature of flame.	
				4) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow	
				method.	
Month Ju	ıly			Module/Unit:	
Course	Lect ures	Practicals	Total	Introduction to Quantum Mechanics	Covered
B.Sc. III	12	-	12	Origin of quantum mechanics, Review of black body radiation, Photoelectric effect, matter waves, De- Broiglie hypothesis , experimental evidence of de Broglie theory (Davisson and Germer experiment), wave particle duality, Heisenberg's uncertainty principle and different forms uncertainty principle	
B.Sc. I	16	-	16	Elasticity Bending of beam, Bending moment, Cantilever (without considering weight of cantilever), Beamsupported at both the ends (without considering weight of beam). Torsional oscillation, Work done in twisting a wire,	Covered
NO COL	•			Twisting couple on a	
ESTD. JUNE 1964	(FE * 800)				

0				cylinder, Torsional pendulum - Determination of Rigidity modulus and moment of inertia, Determination of Y, η and σ by Searles method		
B.Sc. II		64	64	 Practicals : To determine wavelength Sodium &2)spectrum of Mercury light usingplane diffraction grating. 2). Goniometer I-To study cardinal points of opticalsystem. 3) Goniometer II- To study the equivalent focal length of opticalsystem. 4) To study angle of specific rotation of sugar using Polarimeter. 	Covered	
Month A	ugust			Module/Unit:		
Course	Lect ures	Practicals	Total	OperatorinQuantumMechanicsDefinition of an operator in quantumquantummechanics, commutationcommutationrelationin quantummomentumandangular momentummomentumoperator,Angular	Covered	

		1	P			
B.Sc.	12	•	12	momentum operator in spherical polar coordinate system, Hamilton operator, Hamilton operator commutation relation between x' and p. Expectation value of an operator communication relation between L2 and components of L, Raising and lowering operator L+ and L Eigen values of L2 and L1. Concept of parity operator. Concept of Hermitian operator.		
B.Sc. I	16	-	16	Gravitation: Newton's Law of Gravitation,	Covered	
				Motion of a particle in a central force field (motion in a plane, angular momentum is conserved, areal velocity is constant), Kepler's Laws (statement only), Satellite in circular orbit and applications, Geosynchronous orbits, Weightlessness, Basic idea of global positioning system (GPS) and its		
B.Sc. II	-	64	64	 Practicals : 1) Characteristics of Transistor. 2) Use of sextant to measure height of object. 3) Crystal Oscillator. 4) Colpitts oscillator 	Covered	

Month S	eptemb	er		Module/Unit:		
B.Sc. III	Lect ures	Practicals	Total	Applications of Schrodinger's Steady State EquationQuantum mechanics treatment of particle in rigid box (1D and 3D). Step potential relation and transmission coefficient. 	Covered	
B.Sc. I	16	-	16	Surface Tension Surface Tension, Angle of contact and wettability, relation between surface tension, excess of pressure and radius of curvature,	Covered	
				Experimental determination of surface tension by Jaeger's method, Factors affecting surface tension, Applications of surface tension.		
B.Sc. II	-	64	64	Practicals :1) Measurement of rise, falland delay time using a CRO2) Measurementofdistortionofa RFsignalgeneratorusingdistortionfactor	Covered	
				 3) . Measurement of R, L and C using a LCR bridge/ universal bridge. 4) Measurement of time period, frequency, average period using using universal counter/frequency counter 		

Month	October/	November		Module/Unit:		
	Lect ures	Practicals	Total	Examination		
Month December				Module/Unit:		
	Lect ures	Practicals	Total	Dielectric Properties of Materials	Covered	
B.Sc. III	12		12	Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons		
B.Sc. I	16	-	16	Electricity Introduction – DC and varying currents, LR Circuit, RC circuit and LC circuit, Growth and decay of currents, Theory of B.G. and constants of B.G., time constants T	Covered	
B.Sc. II Month Ja	nuary	64	64	 Practicals : 1) Ic 555 timer. 2) Electronic switch using transistor. 3) Characteristics of FET. 4) FET as VVR. Module/Unit: 	Covered	
Course	Lect ures	Practicals	Total	Introduction of free electron theory (Classical and	Covered	

B.Sc. III	12		12	Quantum mechanical), Kronig Penny model, Effective mass of an electron, Band Gaps. Conductors, Semiconductors and insulators. P and N type semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall voltage and Hall coefficient.	
B.Sc. I	16	-	16	A.C. Circuits Complex numbers and their application in solving a. c. series LCR circuit, complex impedance,Reactance, Admittance, and Susceptance, Resonance in LCR series circuit, Sharpness of resonance (qualitative treatment only), Q-factor (definition only) A.C. Bridge - Owen's Bridge	Covered
B.Sc. II	7	64	64	 Practicals : 1) To determine the wavelength of sodium light using Fresenel Biprism. 2) To determine the Resolving Power of a Prism. 3) To determine the Resolving Power of a Plane Diffraction Grating. 4) To determine wavelength of Laser light using diffraction of single slit. 	Covered
Month Fe	bruary			Module/Unit:	

Course	Lect ures	Practicals	Total	their Properties:	Covered	
B.Sc. III	12		12	Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Hysteresis and hysteresis curve, diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic materials.		
B.Sc. I	16	-	16	Magnetism	Covered	
D. 50. 1		~		Introduction to magnetization and intensity of Magnetization, Biot-Savart's law & its applications - straight conductor, circular coil, solenoid carrying current, Divergence and curl of magnetic field, Magnetic vector potential, Ampere's circuital lawat earth's surface		
B.Sc.	II -	64	64	Practicals :	Covered	
				 To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance. To observe the limitations of a multimeter for measuring high frequency voltage and currents. 		
				3) To measure Q of a coil and its dependence on frequency using a Q-meter.	1	

				4) Measurement of voltage, frequency, time period and phase angle using CRO		
Month M	larch			Module/Unit:		
Course	Lect ures	Practicals	Total	X-Ray Diffraction Reciprocal lattice and its	Covered	
B.Sc. III	12		12	Reciprocal lattice and the properties, concept of Brillouin zone, diffraction of X-rays by crystals, Ewald construction, Bragg's law in reciprocal lattice, X-ray diffraction methods: 1) Laue method. 2) Rotating crystal 3) Powder method - Principle, Construction, Working analysis of cubic crystal by powder crystal method		
B.Sc. I	16	-	16	Network Theorems Introduction, Node, Junction Branch, Loop, Active and passive elements, Thevenin's theorem, Nortan's theorem and equivalence between them, problems.		

B.Sc. II		64	64	Practicals :	Covered
				1)To determine the value of Stefan's Constant.	
				2) To determine the coefficient of thermal conductivity of copper by Searle's Apparatus.	3
				3) To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.	
				4) To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method	
Month A	pril		1	Module/Unit:	
Lectures		Practicals	Total	Examination	

1

Head Dof the Department of Physics Vivekanand College, Kolhapur

"Dissemination of of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics

Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: Mr. C. J. Kamble

Month Jun	e			Module/Unit:	Syllabus Covered / Not Covered	Remark
Course	Lect ures	Practicals	Total	Nuclear Radiation Detectors	Covered	
B.Sc. II	12		12	Introduction : Ionization chamber, G. M. counter, (principle, construction, working mechanism, limitations, merits) Scintillation Counter (principle, construction, working, advantages) Introduction to cosmic radiations, Wilson cloud chamber, Bubble chamber		
B.Sc. III	12	-	12	Particles Accelerators Need of accelerators, Types of accelerators (Qualitative) orbital accelerators, Cyclotron, (Principle, construction, working, theory, merits, demerits) . Limitation of cyclotron, Synchrocyclotron, (construction, working, theory) . Betatron, (principle, construction, working, mathematical theory, merits) Accelerators in India.	Covered	
B.Sc. III		80	80	Practicals : 1) Resonance pendulum.	Covered	

				2) S. T. of soap solution.	
				3) S. T. by Fergusson modified method.	
				4) Y & η using flat spiral spring.	
Month Jul	y y			Module/Unit:	
Course	Lect ures	Practicals	Total	Superposition of Harmonic Oscillations	Covered
B.Sc. II	12		12	Superposition of two perpendicular harmonic oscillations- for oscillations having	
				equal frequencies (Graphical and analytical methods) and oscillations having different	
				frequencies (Lissajous figures), Uses of Lissajous figures.	
B.Sc. III	12		12	Superposition of Harmonic Oscillations	Covered
				Linearity and superposition principle, Composition of two simple harmonic motions,	
				Superposition of two collinear harmonic oscillations- for oscillations having equal frequencies	
				(Analytical and geometrical methods) and oscillations having different frequencies	
				(Beats)	

SUNAND COLUMN ESTD. JUNE 1964

B.Sc. III	80	80	 Practicals : 1) 'Y' by Koenig's method. 2) 'Y' by cornu's method. 3) Measurement of heat capacity of solid. 4) S. T. tension by drop weight method. 5) Young's modulus by vibration using AFG. 	Covered	
Month August			Module/Unit:		
Course Lect ures B.Sc. II 12	Practicals	Total 12	Coupled Oscillations: Normal modes of vibration, normal coordinates, degrees of freedom, types of coupling, frequency of oscillatory systems, Energy transfer in coupled oscillatory system.	Covered	

B.Sc. III	12		12	Nucleus (Nuclear Structure & General Properties of nuclei) Introduction, Constituents of nuclei, Nuclear size, Nuclear magnetic moment, Electric quadrupole moment, Nuclear spin, Unit of atomic mass (amu), Mass defect, Packing fraction, Packing fraction curve, Binding energy, B.E. curve, Nuclear forces, Liquid drop model, Semiempirical B.E. formula, Magic numbers, Introduction of elementary particles.	Covered
B.Sc. III		80	80	 Practicals : 1) Cardinal points by turn table method. 2) Cardinal points by Newton's method. 3) Diffraction at single slit. 4) Diffraction at cylindrical obstacle. 5) Diffraction at straight edge 	Covered
Month Sept	ember			Module/Unit:	
B.Sc. II	Lect ures	Practicals	Total	Waves Motionand Ultrasonic waves Waves Motion: Transverse waves on a string, travelling	Covered

	12		12	and standing waves on a string, Normal modes of a string, Group velocity and Phase velocity, Plane waves, Spherical waves. Ultrasonic waves: Piezo- electric effect, Production of ultrasonic waves by Piezo- electric generator, Detection of ultrasonic waves, Properties ultrasonic waves, Applications of ultrasonic waves.	
B.Sc. III	12	-	12	Radioactive Decay Natural radioactivity, Artificial radioactivity, Study of alpha decay by magnetic spectrograph, Velocity of alpha particles, Range of α - particles, α - disintegration energy, fine structure of arays. Beta decay, Study by β - ray spectrometer, continuous nature, neutrino hypothesis, Gamma Decay, origin & gamma rays, γ - ray spectrum, internal conversion, Isomerism.	Covered
B.Sc. III	-	80	80	 Practicals : 1) Lloyd's single mirror. 2) Double refracting prism 3) Diameter of lycopodium powder. 4) Spherical aberration. 5) Absorption of spectrum of KMno4 solution. 	Covered
Month Octo	ber/No	ovember		Module/Unit:	

	Lect ures	Practicals	Total	Examination	
Month Dec	ember			Module/Unit:	
B.Sc. II	Lect ures 12	Practicals	Total 12	Cardinal points Thick lens, combination of lenses (system)Cardinal points of an optical system (definitions only), graphical construction of image using cardinal points, Newton's formula, relation between f and f ' for any optical system, relation between lateral, axial and angular magnifications.	Covered
B.Sc. III	12		12	Atomic Physics Quantum numbers , spatial quantization, vector atom model, Alkali Spectra, Optical spectral series, Spectral term spectral notation, energy level diagram of sodium, spin orbit interaction Zeeman effect, Explanation of Anomalous Zeeman effect on vector atom model, Anomalous Splitting of D1 and D2 Line	Covered
B.Sc. III		80	80	 Practicals : 1) e/m of electron by Thomson's method. 2) Measurement of dielectric constant. 3) Resistivity of semiconductor crystal with 	Covered

Month Jan				temperature by four probe method. 5) Calibration of wire using Carey-foster key Module/Unit:		
Course	Lect ures	Practicals	Total	Resolving Power of optical instruments	Covered	
B.Sc. II	12	291:	12	Resolution, Resolving power of optical instruments, Rayleigh's criterion for the limit of		
				resolution, Modified Rayleigh's criterion, comparison between magnification and resolution,		
				resolving power of plane diffraction grating, resolving power of a prism.		×
B.Sc. III	12		12	Molecular Physics Molecular system, type of bonds, diatomic molecule as a rigid rotator rotational states of diatomic molecule, Raman effect, Experimental study of Raman effect, classical theory of Raman effect, Applications of Raman effect	Covered	

	80	80	Practicals :	Covered
B.Sc. III -	80		1) Self inductance by Owen's bridge.	
			 Self inductance by Rayleigh's method. 	
			3) Self inductance by Maxwell bridge.	
			4) Measurement of BV, BH and θ using earth inductor.	
			5) Hysteresis by magnetometer.	
			Module/Unit:	
Month Februar		Tetal	Polarization of light	Covered
Course	ect Practicals res	Total	Revision of plane of vibrati	011,
B.Sc. II 1	2 -	12	perpendicular vibrat ,parallel vibrations,	
			polarization by reflection refraction, Idea polarization, polarization	01
			double	
			avplanation of do	gens puble axial
			prism(construction, world	king), on of tically
			polarized	
			light, optical rotation - l rotation of plane polarization, polarimete	; 01

Month March Module/Onit. Course Lect Practicals Total Laser Physics Covered	B.Sc. III 12 -	80 80	,Cohe interfa ampli and Divis Lloy mirr wav mor sour amp par onl Ne ap fo win	 ple of Superposed prence and condition for prence, Division of division of wave front, sion of wave front - division of wave front - division of light of pochromatic rce),Division of plitude- Interference in thin rallel films (reflected light ly), Wedge shaped films, pwton's rings and its plication or determination of avelength and refractive ndex of light. Practicals : 1) Study of divergence of LASER beam. 2) Measurement of wavelength of LASER using grating. 3) Lattice constant using XRD powder. 4) To measure numerical aperture of optical fibre. 5) Obtain interference fringe using Biprism. 	vered Covered s
			Total	Module/Unit: Laser Physics	Covered

.Se, 11	12		12	Ordinary Light, Laser, Spontaneous and stimulated emission, Populations Inversion, Monochromaticity, directionality, Pumping (optical, electrical) Ruby laser He-Ne laser, Diode laser, Laser applications, (Industrial, medical, nuclear, optical), Types of lasers	
B.Sc. 111	12	*	12	Space Science Cosmology, Big-bang theory, oscillating theory, steady- state theory, Hubble's law, cosmological tests, Milky way galaxy, our solar system, features of sun, interior of sunspots, static characteristics of earth and mars.	Covered
B.Sc. III		80	80	 Practicals : 1) UJT as voltage sweep generator. 2) Astable multivibrator by using 1C 555 timer. 3) Monostable multivibrator by using IC 555 timer. 4) IV characteristics of P-N diode and LED. 5) Inverting amplifier using op - Amp 741. 	Covered
Month A	pril			Module/Unit:	
Lectures		Practicals	Total	Examination	

(Kample

Teacher Incharge

Head of the Department of Physics Vivekanand College, Kolhapur

	ures		Total	Examination	Covered
Month De	cember			Module/Unit:	
	Lect ures	Practicals	Total	Thermodynamic Potentials	Covered
B.Sc. II	12	-	12	Enthalpy, Gibbs, Helmholtz, Internal Energy functions, Maxwell's thermodynamical	
				relations, Joule-Thomson effect, Clausius- Clapeyron equation, Expression for (CP - CV),	
				CP/CV, TdS equations.	
B.Sc. III	12	-	12	Instrumentations :Introduction to CRO	Covered
				Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference.	
B.Sc. III	-	80	80	Practicals :	Covered
				1) Self inductance by Owen's bridge.	
				2) Self inductance by Rayleigh's method.	
				3) Self inductance by Maxwell bridge.	
				4) Measurement of BV, BH and θ using earth inductor.	
				5) Hysteresis by magnetometer.	
Month Janu	iary			Module/Unit:	
Course	Lect ures	Practicals	Total	Theory of Radiation	Covered
TD. Fr					
LHAR RATE					

			T	Thermal radiations,		
B.Sc. 11	12		12	Thermal radiations. Blackbody radiation and its importance. Black body in practice. its temperature dependence emissive power, absorptive power, pressure of radiation .Experimental study of black body radiation spectrum, Concept of energy density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.		
B.Sc. III	12	-	12	Special functions of ICs	5	
D.SC. 111	. 2			IC 555. Block diagram and special functions if ICs. Astable Operation: Circuit diagram, frequency of oscillation and duty cycle. Applications as tone brust oscillator, voltage controlled frequency shifters. Monostable operation: circuit diagram. Applications as touch switch and frequency divider. Bistable Operation: Circuit diagram and circuit action.		
B.Sc. III	-	80	80	Practicals :	Covered	
				 e/m of electron by Thomson's method. Measurement of dielectric constant. Resistivity of semiconductor crystal with temperature by four probe method. Calibration of wire using Carey-foster key 		

Month Feb	oruary			Module/Unit:	
Course	Lect ures	Practicals	Total	Quantum statistics	Covered
B.Sc. II	12	-	12	Need of quantum statics ,Bose-Einstein distribution law, photon gas, Planck, s radiation law Fermi-Dirac distribution law, free electron in metal ,electron gas, comparison of M.B., B.E., and F.D. statistics.	
B.Sc. III	12	-	12	Digital Electronics Introduction to logic gates, De-Morgan's theorem, NAND and NOR gates as universal gates, R-S and J-K flip flops, half and full adder, parallel binary adder.	Covered
3.Sc. III	-	80	80	 Practicals : 1) UJT as voltage sweep generator. 2) Astable multivibrator by using IC 555 timer. 3) Monostable multivibrator by using IC 555 timer. 4) IV characteristics of P-N diode and LED. 5) Inverting amplifier using op - Amp 741. 	Covered

Course B.Sc. II	Lect ures 12	Practicals	Total	Degrees of freedom momentum space, position space Phase space, Microstate and Macrostate, Accessible microstates, priory probability thermodynamic probability, probability distribution, Maxwell- Boltzmann distribution law, energy or speed, evaluation of constants α and β , Entropy and Thermodynamic probability, Distribution of molecular speeds.	Covered
B.Sc. III	12	-	12	BipolarJunctiontransistors:n-p-n and p-n-pTransistors:Characteristics of CB, CE andCCCOnfigurations.Currentgains α and β .Relationsbetween α and β .Load Lineanalysis of Transistors.DCLoad line and Q point.Active,Cut-off, and SaturationRegions.Voltage Divider BiasCircuit for CE Amplifier.hparameter Equivalent Circuit.Analysis of a single-stage CEamplifier using Hybrid Model.Input and Output Impedance,Current, Voltage and PowerGains.	Covered
B.Sc. III	-	80	80	 Practicals : Study of divergence of LASER beam. Measurement of wavelength of LASER using grating. Lattice constant using XRD powder. 	Covered

			4) To measure numerical aperture of optical fibre.	
Month April			5) Obtain interference fringes using Biprism.Module/Unit:	
Lectures	Practicals	Total	Examination	

oukaz Law

Teacher Incharge

Hearing the Department of Physics Vivekanand College, Kolhapun

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics

Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: **Dr. G. J. Navathe**

Month Ju	ine			Module/Unit:	Syllabus Covered / Not Covered	Remark
Course	Lect ures	Practicals	Total	Operator in Quantum Mechanics	Covered	
B.Sc. III	12		12	Definition of an operator in quantum mechanics, commutation relation in quantum mechanics, position, momentum and angular momentum operator, Angular momentum operator, Angular momentum operator in spherical polar coordinate system, Hamilton operator, Hamilton operator commutation relation between x' and p. Expectation value of an operator communication relation between L2 and components of L, Raising and lowering operator L+ and L Eigen values of L2 and L1. Concept of parity operator. Concept of Hermitian operator.		

B.Sc.	1 16	-	16	Oscillations Simple harmonic motion (SHM), Differential equation of SHM and its solutions, Kinetic and Potential Energy, Total Energy and their time averages, Damped oscillations, Forced oscillations.	Covered	
B.Sc. II Month Ju		64	64	 Practicals : 1) Characteristics of Transistor. 2) Use of sextant to measure height of object. 3) Crystal Oscillator. 4) Colpitts oscillator Module/Unit: 	Covered	
Course B.Sc. III	Lect ures	Practicals -	Total	Introduction to Quantum Mechanics Origin of quantum mechanics, Review of black body radiation, Photoelectric effect, matter waves, De- Broiglie hypothesis experimental evidence of de Broglie theory (Davisson and Germer experiment), wave particle duality, Heisenberg's uncertainty principle and different forms uncertainty principle	Covered	

B.Sc I	. 16	-	16	Gravitation: Newton's Law of Gravitation, Motion of a particle in a central force field (motion in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only), Satellite in circular orbit and applications, Geosynchronous orbits, Weightlessness, Basic idea of global positioning system (GPS) and its	
B.Sc. II		64	64	 Practicals : Measurement of rise, fall and delay time using a CRO Measurement of distortion of a RF signal generator using distortion factor meter. Measurement of R, L and C using a LCR bridge/ universal bridge. Measurement of time period, frequency, average period using using universal counter/frequency 	Covered
Month A	ugust			Module/Unit:	
Course	Lect ures	Practicals	Total	Physical interpretation of wave function, Schrodinger's	Covered

B.Sc. III	12	-	12	time dependent and independent equation (one and three dimensional) Requirements of wave function, Eigen value, Eigen function, Normalized orthogonal and orthonormal wave functions, Probability current density (Continuity equation). Examples on Normalization of wave function	
B.Sc. I	16		16	Elasticity Bending of beam, Bending moment, Cantilever (without considering weight of cantilever), Beamsupported at both the ends (without considering weight of beam). Torsional oscillation, Work done in twisting a wire, Twisting couple on a cylinder, Torsional pendulum - Determination of Rigidity modulus and moment of inertia, Determination of Y, η and σ by Searles method.	Covered
B.Sc. II	-	64	64	 Practicals : 1) To determine wavelength of 1) Sodium &2)spectrum of Mercury light usingplane diffraction grating. 2). Goniometer I-To study cardinal points of opticalsystem. 3) Goniometer II- To study the equivalent focal length of opticalsystem. 	Covered

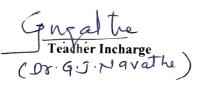
				4) To study angle of specific rotation of sugar using Polarimeter.		
Month S	eptembo	er		Module/Unit:		
B.Sc. Lect III ures	Practicals	Schrodinger's Steady State Equation Quantum mechanics treatment of particle in rigid	Covered			
	12	-	12	box (1D and 3D). Step potential relation and transmission coefficient. Barrier potential- Tunnelling effect, α-decay, simple harmonic oscillator.		
B.Sc. 1	16	-	16	Surface Tension Surface Tension, Angle of contact and wettability, relation between surface tension, excess of pressure and radius of curvature, Experimental determination of surface tension by Jaeger's method, Factors affecting surface tension, Applications of surface tension.	Covered	

B.Sc. II	-	64	64	Practicals :	Covered	
				1) To record and analyze the cooling temperature of hot object as a function of time using a thermocouple.		
				2) To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge		
				3) Temperature of flame.		
				4) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow		
				method.		
Month O	ctober/1	November		Module/Unit:		
	Lect ures	Practicals	Total	Examination		
Month D	ecembe	r		Module/Unit:		
	Lect ures	Practicals	Total	Elementary band theory Introduction of free electron	Covered	
B.Sc. III	12	-	12	theory (Classical and Quantum mechanical), Kronig Penny model, Effective mass of an electron, Band Gaps. Conductors, Semiconductors and insulators. P and N type semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall voltage and Hall coefficient.		

B.Sc. I	16	-	16	Electricity Introduction – DC and varying currents, LR Circuit, RC circuit and LC circuit, Growth and decay of currents, Theory of B.G. and constants of B.G., time constants T	Covered
B.Sc. 11	-	64	64	 Practicals : 1) Ic 555 timer. 2) Electronic switch using transistor. 3) Characteristics of FET. 4) FET as VVR. 	Covered
Month Ja	inuary			Module/Unit:	
Course	Lect ures	Practicals	Total	Dielectric Properties of Materials	Covered
B.Sc. III	12	-	12	Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons.	

B.Sc. 1	16	-	16	A.C. Circuits Complex numbers and their application in solving a. c. series LCR circuit, complex impedance, Reactance, Admittance, and Susceptance, Resonance in LCR series circuit, Sharpness of resonance (qualitative treatment only), Q-factor (definition only) A.C. Bridge - Owen's Bridge	Covered
B.Sc. II	_	64	64	 Practicals : 1) To determine the value of Stefan's Constant. 2) To determine the coefficient of thermal conductivity of copper by Searle's Apparatus. 3) To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method. 4) To determine the coefficient of thermal 	Covered
Month Fe	ebruary			Module/Unit:	
Course	Lect ures	Practicals	Total	X-Ray Diffraction	Covered

(31 . B. E)


B.Sc. III	12	-	12	Reciprocal lattice and its properties, concept o Brillouin zone, diffraction of X-rays by crystals, Ewald construction, Bragg's law in reciprocal lattice, X-ray diffraction methods: 1) Laue method. 2) Rotating crystal 3) Powder method - Principle, Construction, Working , analysis of cubic crystal by powder crystal method		
B.Sc. 1	16	-	16	Magnetism Introduction to magnetization and intensity of Magnetization, Biot-Savart's law & its applications - straight conductor, circular coil, solenoid carrying current, Divergence and curl of magnetic field, Magnetic vector potential, Ampere's circuital lawat earth's surface		
B.Sc. II	-	64	64	 Practicals : 1) To determine the wavelength of sodium light using Fresenel Biprism. 2) To determine the Resolving Power of a Prism. 3) To determine the Resolving Power of a Plane Diffraction Grating. 4) To determine wavelength of Laser light using diffraction of single slit. 	Covered	
Month M	larch			Module/Unit:		

Course	Lect ures	Practicals	Total	Magnetic Materials and their Properties:	Covered	
B.Sc. III	12	-	12	Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Hysteresis and hysteresis curve, diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic materials.		
B.Sc. I	16	-	16	Network Theorems Introduction, Node, Junction, Branch, Loop, Active and passive elements, Thevenin's theorem, Nortan's theorem and equivalence between them, problems.	Covered	
B.Sc. II	-	64	64	Practicals : 1) To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.	Covered	
				 2) To observe the limitations of a multimeter for measuring high frequency voltage and currents. 3) To measure Q of a coil and its dependence on frequency using a Q-meter. 		

			4) Measurement of voltage, frequency, time period and phase angle using CRO	
Month April			Module/Unit:	
Lectures	Practicals	Total	Examination	

Hand of the Department of Physics Vivekanand College, Kolhapur

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanond College, Kall

Vivekanand College, Kolhapur (Autonomous) Department of Physics Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: **Dr. S. I. Inamdar**

Month Ju	ne			Module/Unit:	Syllabus Covered / Not Covered	Remark
Course	Lect ures	Practicals	Total	Quantum statistics	Covered	
B.Sc. 11	12	-	12	Need of quantum statics ,Bose-Einstein distribution law, photon gas, Planck, s radiation law Fermi-Dirac distribution law, free electron in metal ,electron gas, comparison of M.B., B:E., and F.D. statistics.		
B.Sc. 111	12	-	12	 Practicals : 1) Cardinal points by turn table method. 2) Cardinal points by Newton's method. 3) Diffraction at single slit. 4) Diffraction at cylindrical obstacle. 5) Diffraction at straight edge 	Covered	
3.Sc. 111	-	80	80	MagneticPropertiesofMaterialsMagneticmaterials,permeability,susceptibility,	Covered	

				magnetization, magnetic moment, electron spin, Diamagnetic materials, Paramagnetic materials, ferromagnetic, ferromagnetic, classical theory of diamagnetism and paramagnetism, Curie law, Curie constant, Weiss theory of ferromagnetism, and ferromagnetic domain, Hysteresis loop for ferromagnetic materials.	
Month July	У			Module/Unit:	
Course B.Sc. II	Lect ures 12	Practicals -	Total	Kinetic Theory of Gases and thermometryMean free path, expression, approximate method derivation of Maxwell's law of distribution of velocities and its experimental verification, Transport Phenomena: transport of momentum(viscosity), transport of thermal energy (conduction), Transport of mass (diffusion),	Covered
B.Sc. III	12	-	12	Crystal Structure Types of the solids, Amorphous, crystalline, lattice, lattice translation vectors, lattice with basis (Central , non central elements) Unit cell , Examples of crystal structure NaCl, KCl,	Covered

B.Sc. III	-	80	80	Practicals :	Covered
				1) Self inductance by Owen's bridge.	
				2) Self inductance by Rayleigh's method.	
				3) Self inductance by Maxwell bridge.	
				4) Measurement of BV, BH and θ using earth inductor.	
				5) Hysteresis by magnetometer.	
Month Aug	gust			Module/Unit:	
Course	Lect ures	Practicals	Total	Laws of Thermodynamics Thermodynamic system,	Covered
B.Sc. II	12	-	12	Thermodynamicsystem,thermodynamicvariables,thermodynamicstate,equation of state,	
				thermodynamic equilibrium, Zeroth Law of thermodynamics, Internal energy, First law of	
				thermodynamics, conversion of heat into work, specific heats CP& CV, Applications of First Law	
				(Isothermal process, Adiabatic process, Isochoric, Isobaric), relation between CP & CV	
B.Sc. III	12	-	12		Covered
<u>CO//</u>					

ZH

B.Sc. III	-	80	80	Practicals :	Covered
				 Cardinal points by turn table method. 	
				2) Cardinal points by Newton's method.	
				3) Diffraction at single slit.	
				4) Diffraction at cylindrical obstacle.	
				5) Diffraction at straight edge	
Month Sept	ember			Module/Unit:	
B.Sc. II		Due et in 1			
D.3C. II	Lect ures	Practicals	Total	Laws of Thermodynamics	Covered
				Work done during isothermal and adiabatic processes, reversible & irreversible processes, Second law	
	12	-	12	of thermodynamics, Carnot's ideal heat engine, Carnot's cycle (Working, efficiency), Carnot's	
				theorem, Entropy (concept & significance), change in entropy, Entropy changes in reversible &	
				irreversible processes, Third law of thermodynamics, Entropy change in conduction of heat,	
				diffusion of gases ,physical significance of entropy, Un-	
				attainability of absolute zero. Zero	

B.Sc. III	12	-	12	Superconductivity	Covered
				Idea of superconductivity, Critical temperature, Critical magnetic field. Meissner effect. Type I and type II Superconductors. London's Equation and Penetration Depth, Isotope effect	
B.Sc. III	-	80	80	1) 'Y' by Koenig's method.	Covered
				2) 'Y' by cornu's method.	
				3) Measurement of heat capacity of solid.	
				4) S. T. tension by drop weight method.	
				5) Young's modulus by vibration using AFG.	
Month Octo	ober/No	ovember		Module/Unit:	
	Lect ures	Practicals	Total	Examination	Covered
Month Dec	ember			Module/Unit:	
	Lect ures	Practicals	Total	Thermodynamic PotentialsEnthalpy, Gibbs, Helmholtz, Internal Energy functions, Maxwell's thermodynamical relations, Joule-Thomson effect, Clausius- Clapeyron equation, Expression for (CP – CV), CP/CV, TdS equations.	Covered
B.Sc. II	12	-	12		
ND CO					

B.Sc. III	12	-	12	Instrumentations :Introduction to CRO Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference.	
B.Sc. 111	-	80	80	Lattice Vibration and Thermal Properties of Solid Lattice vibrations. Phonons, normal modes of one dimensional and diatomic chain, Acoustical and optical phonons, Phonons spectrum	Covered
Month Janu	lary			Module/Unit:	
Course	Lect ures	Practicals	Total	Theory of RadiationThermalradiations,	Covered
B.Sc. II	12		12	Blackbody radiation and its importance, Black body in practice, its temperature dependence, emissive power, absorptive power, pressure of radiation, Experimental study of black body radiation spectrum, Concept of energy density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.	

B.Sc. III	12	-	12	Practicals :	Covered
				1) e/m of electron by Thomson's method.	
				2) Measurement of dielectric constant.	
				3) Resistivity of semiconductor crystal with temperature by four probe method.	
				5) Calibration of wire using Carey-foster key	
B.Sc. III	-	80	80	Special functions of ICs	Covered
				IC 555, Block diagram and special functions if ICs, Astable Operation: Circuit diagram, frequency of oscillation and duty cycle, Applications as tone brust oscillator, voltage controlled frequency shifters. Monostable operation: circuit diagram, Applications as touch switch and frequency divider. Bistable Operation: Circuit diagram and circuit action.	
Month Feb	ruary			Module/Unit:	
Course	Lect ures	Practicals	Total	Classical statistics	Covered

Course	Lect ures	Practicals	Total	Kinetic Theory of Gases and thermometry	Covered
Month Mar	T			Module/Unit:	
B.Sc. III	-	80	80	 Practicals : 1) UJT as voltage sweep generator. 2) Astable multivibrator by using IC 555 timer. 3) Monostable multivibrator by using IC 555 timer. 4) IV characteristics of P-N diode and LED. 5) Inverting amplifier using op - Amp 741. 	Covered
D.SC. 111	12	-	12	Digital Electronics Introduction to logic gates, De-Morgan's theorem, NAND and NOR gates as universal gates, R-S and J-K flip flops, half and full adder, parallel binary adder.	Covered
B.Sc. 11	12	-	12	Degrees of freedom momentum space, position space ,Phase space, Microstate and Macrostate, Accessible microstates, priory probability thermodynamic probability, probability distribution, Maxwell- Boltzmann distribution law, energy or speed, evaluation of constants α and β , Entropy and Thermodynamic probability, Distribution of molecular speeds.	

B.Sc. II	12	-	12	Law of equipartition of energy (qualitative) and its applications to specific heat of monoatomic and diatomic gases. Thermometry:		
				Concept of heat and temperature, temperature scales, principle of		
				thermometry mercury thermometer, platinum resistance thermometer, thermocouple. (Principle,		
				construction and theory)		
B.Sc. III	12	-	12	Practicals :	Covered	
				1) Study of divergence of LASER beam.		
				2) Measurement of wavelength of LASER using grating.		
				3) Lattice constant using XRD powder.		
				4) To measure numerical aperture of optical fibre.		
				5) Obtain interference fringes using Biprism.		
B.Sc. III	-	80	80	Bipolar Junction transistors:	Covered	
				n-p-n and p-n-p Transistors. Characteristics of CB, CE and		
				CC Configurations. Current		
				gains α and β . Relations		
				between α and β . Load Line		
				analysis of Transistors. DC Load line and Q point. Active,		
				Cut-off, and Saturation		
				Regions. Voltage Divider Bias		
				Circuit for CE Amplifier. h-		
				parameter Equivalent Circuit.		
				Analysis of a single-stage CE amplifier using Hybrid Model.		
				Input and Output Impedance,		
0.00						

			Current, Voltage and Power Gains.	
Month April			Module/Unit:	
Lectures	Practicals	Total	Examination	

11 Teacher Incharge

Head of the Department of Physics Vivekanand College, Kolhapur

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur (Autonomous) Department of Physics Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: Mr. I. M. Mulla

Month J	une			Syllabus Assigned	Syllabus Covered / Not Covered	Remark
	Practicals	lecture s	Total	Practicals: 1)Measurements of length (or	Covered	
B.Sc. I	36		36	 diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 		
Month Ju				Module/Unit:		
Ι	36		36	 Practicals: 1) Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 	Covered	
Month A				Module/Unit:		
B.Sc. I	36		36	 Practicals: 1) Modulus of rigidity of material of wire by torsional oscillations. 2) Y/η of Wire by Searle's method. 3) To determine g by Bar Pendulum. 4) To determine g by Kater's Pendulum. 	Covered	
/chan	ATO					

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics

Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: Mr. S. V. Malgaonkar

Month June				Module/Unit:	Syllabus Covered / Not Covered	Remark
Course	Lect ures	Practicals	Total	Laws of Thermodynamics Thermodynamic system,	Covered	
B.Sc. II	12	-	12	thermodynamic variables, thermodynamic state, equation of state,		
				thermodynamic equilibrium, Zeroth Law of thermodynamics, Internal energy, First law of		
				thermodynamics, conversion of heat into work, specific heats CP& CV, Applications of First Law		
				(Isothermal process, Adiabatic process, Isochoric, Isobaric), relation between CP & CV		
B.Sc. III	12	-	12	Crystal Structure Types of the solids, Amorphous, crystalline, lattice, lattice translation vectors, lattice with basis (Central , non central elements) Unit cell , Examples of crystal structure NaCl, KCl	Covered	
B.Sc. III	Ē	80	80	Practicals : 1) Resonance pendulum.	Covered	

				 2) S. T. of soap solution. 3) S. T. by Fergusson modified method. 4) Y & η using flat spiral spring. 	
Month Jul	y			Module/Unit:	
Course	Lect ures	Practicals	Total	Kinetic Theory of Gases and thermometry	Covered
B.Sc. II	12	275	12	Mean free path, expression, approximate method derivation of Maxwell's law of distribution of velocities and its experimental verification, Transport Phenomena: transport of momentum (viscosity), transport of thermal energy (conduction), Transport of mass (diffusion),	
B.Sc. III	12		12	Lattice Vibration and Thermal Properties of Solid Lattice vibrations, Phonons, normal modes of one dimensional and diatomic chain, Acoustical and optical phonons, Phonons spectrum in solids, Dulong Petit's law (Classical Theory), Einstein	Covered

B.Sc. III -	80	80	 'Y' by Koenig's method. 'Y' by cornu's method. Measurement of heat capacity of solid. S. T. tension by drop weight method. Young's modulus by vibration using AFG. 	Covered
Month August			Module/Unit:	
Course Lect ures B.Sc. II 12	Practicals	Total 12	Kinetic Theory of Gases and thermometry Law of equipartition of energy (qualitative) and its applications to specific heat of monoatomic and diatomic gases. Thermometry: Concept of heat and temperature, temperature scales, principle of thermometer, platinum resistance thermometer, thermocouple. (Principle,	Covered

B.Sc. III B.Sc. III	12	80	80	MagneticPropertiesofMaterialsMagneticmaterials,permeability,susceptibility,magnetization,magneticmoment,electronpiamagneticmaterials,Paramagneticmaterials,ferromagnetic,ferromagnetic,classicaltheoryofdiamagnetismandparamagnetism,Curieconstant,Weisstheoryofferromagnetism,andparamagnetism,Curieconstant,Weisstheoryofferromagnetism,andferromagneticdomain,Hysteresisloopforferromagneticmaterials.Practicals :1)Cardinal points by turntablemethod.2)Cardinal points by turntablemethod.3)Diffraction at single slit.4)Diffraction at cylindricalobstacle.5)5)Diffraction at straight edge	Covered
Month Sept	ember			Module/Unit:	
B.Sc. II	Lect ures	Practicals	Total	Laws of Thermodynamics Work done during isothermal and adiabatic processes, reversible & irreversible processes, Second law	Covered

	12		12	of thermodynamics, Carnot's ideal heat engine, Carnot's cycle (Working, efficiency), Carnot's theorem, Entropy (concept & significance),change in entropy, Entropy changes in reversible & irreversible processes, Third law of thermodynamics, Entropy change in conduction of heat, diffusion of gases ,physical significance of entropy, Un- attainability of absolute zero. Zero point energy.	
B.Sc. III	12		12	Superconductivity Idea of superconductivity, Critical temperature, Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth, Isotope effect	Covered
B.Sc. III	-	80	80	 Practicals : Self inductance by Owen's bridge. Self inductance by Rayleigh's method. Self inductance by Maxwell bridge. Measurement of BV, BH and θ using earth inductor. Hysteresis by magnetometer. 	Covered
Month Octo	ber/No	vember		Module/Unit:	

	Lect ures	Practicals	Total	Examination	Covered
Month Dec	cember			Module/Unit:	
	Lect ures	Practicals	Total	Thermodynamic Potentials Enthalpy, Gibbs, Helmholtz,	Covered
B.Sc. II	12		12	Internal Energy functions, Maxwell's thermodynamical relations, Joule-Thomson effect, Clausius- Clapeyron equation, Expression for (CP – CV), CP/CV, TdS equations.	
B.Sc. III	12	-	12	Instrumentations :Introduction to CRO Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference.	Covered
B.Sc. III		80	80	 Practicals : Self inductance by Owen's bridge. Self inductance by Rayleigh's method. Self inductance by Maxwell bridge. Measurement of BV, BH and θ using earth inductor. Hysteresis by magnetometer. 	Covered
Month Jan	uary			Module/Unit:	
Course	Lect ures	Practicals	Total	Theory of Radiation	Covered
INTE JUNE 1964)				

Month Se	eptember			Module/Unit:	
B.Sc. I	36	6-1	36	 Practicals: 1) Modulus of rigidity of material of wire by torsional oscillations. 2) Y/η of Wire by Searle's method. 3) To determine g by Bar Pendulum. 4) To determine g by Kater's Pendulum. 	Covered
Month O	ctober/Nove	mber		Module/Unit:	
B.Sc. I	36		36	Examination	
Month D	December			Module/Unit:	
B.Sc. I	36 B.Sc. I	-	36	 Practicals : 1) Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity. 2) To determine constants of B. G. 3) To compare capacitances using De'Sauty's bridge. 4) To determine impedance of 	Covered
N. 6 . 1 Y				series LCR circuit.	
Month Ja B.Sc. I	36		36	Module/Unit:Practicals :1) Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.2) To determine constants of B. G.3) To compare capacitances using De'Sauty's bridge.4) To determine impedance of series LCR circuit.	Covered
Month F	February			Module/Unit:	

Ģ

		36	 Practicals : To verify the Thevenin theorem. To verify the Norton theorem. Determination of low resistance using Carey foster's Bridge. Verification of Kirchoff's voltage and current law 	Covered	
Month March			Module/Unit:		
B.Sc. I 36	-	36	 Practicals : To verify the Thevenin theorem. To verify the Norton theorem. Determination of low resistance using Carey foster's Bridge. Verification of Kirchoff's voltage and current law 	Covered	
Lectures			Module/Unit:		
colui og	Practic als	Total	Examination		

Imm Teacher Incharge

Head of the Department of Physics Vivekanand College, Kolhapur

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur (Autonomous) Department of Physics Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: Miss A. S. Patil

Month Ju	ine			Syllabus Assigned	Syllabus Covered / Not Covered	Remark
B.Sc. I	Practicals	lecture s	Total 36	Practicals: 1)Measurements of length (or diameter) using Vernier	Covered	
D.SC. 1	50		50	 calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 		
Month Ju	ıly			Module/Unit:		
B.Sc. I	36	-	36	 Practicals: 1) Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 	Covered	ġ
Month A	ugust			Module/Unit:		

B.Sc. I	36	-	36	 Practicals: 1) Modulus of rigidity of material of wire by torsional oscillations. 2) Y/η of Wire by Searle's method. 3) To determine g by Bar Pendulum. 4) To determine g by Kater's Pendulum. 	Covered	
Month S	leptember			Module/Unit:		
B.Sc. I	36		36	 Practicals: 1)Modulus of rigidity of material of wire by torsional oscillations. 2) Y/η of Wire by Searle's method. 3)To determine g by Bar Pendulum. 4) To determine g by Kater's Pendulum. 	Covered	
Month () ctober/Nove	mber		Module/Unit:		
B.Sc. I	36		36	Examination		
Month I	December		- I	Module/Unit:		
B.Sc. I	36 B.Sc. I	8	36	 Practicals : Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity. To determine constants of B. G. To compare capacitances using De'Sauty's bridge. 	Covered	

B.Sc. I	36		36	 Practicals : Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity. To determine constants of B. G. To compare capacitances using De'Sauty's bridge. To determine impedance of series LCR circuit. 	Covered
Month F	ebruary			Module/Unit:	
B.Sc. I	36		36	 Practicals : 1) To verify the Thevenin theorem. 2) To verify the Norton theorem. 3) Determination of low resistance using Carey foster's Bridge. 4)) Verification of Kirchoff's voltage and current law 	Covered
Month M	larch			Module/Unit:	<u>`````````````````````````````````````</u>
B.Sc. 1	36	5.00	36	 Practicals : To verify the Thevenin theorem. To verify the Norton theorem. Determination of low resistance using Carey foster's Bridge. Verification of Kirchoff's voltage and current law 	Covered
Month A	pril			Module/Unit:	
Lectures		Practic als	Total	Examination	

Patila

١

Teacher Incharge

Heast of the Department of Physics Vivekanand College, Kolhapur

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's

Vivekanand College, Kolhapur (Autonomous) Department of Physics Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: Miss S. M. Kumbhar

Month J	une			Syllabus Assigned	Syllabus Covered / Not Covered	Remark
	Practicals	lecture s	Total	Practicals: 1)Measurements of length (or	Covered	
B.Sc. 1	36		36	 diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 		
Month J	uly			Module/Unit:		
B.Sc. I	36 August	-	36	 Practicals: Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. To determine the Moment of Inertia of a Flywheel. To determine the Moment of inertia of a disc using auxiliary annular ring. Young's modulus of material of Bar by vibration 	Covered	
Month A			1		0 1	
B.Sc. I	36		36	 Practicals: 1) Modulus of rigidity of material of wire by torsional oscillations. 2) Y/η of Wire by Searle's method. 3) To determine g by Bar Pendulum. 4) To determine g by Kater's Pendulum. 	Covered	

Month Se	eptember			Module/Unit:	
B.Sc. I	36		36	 Practicals: 1)Modulus of rigidity of material of wire by torsional oscillations. 2) Y/η of Wire by Searle's method. 3)To determine g by Bar Pendulum. 4) To determine g by Kater's Pendulum. 	Covered
Month C	ctober/Nove	mber		Module/Unit:	
B.Sc. I	36		36	Examination	
Month D	December	1		Module/Unit:	
B.Sc. I	36 B.Sc. I	-	36	 Practicals : Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity. To determine constants of B. G. To compare capacitances using De'Sauty's bridge. To determine impedance of series LCR circuit. 	Covered
Month Ja	anuary			Module/Unit:	
B.Sc. 1	36		36	 Practicals : Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity. To determine constants of B. G. To compare capacitances using De'Sauty's bridge. To determine impedance of series LCR circuit. 	Covered

B.Sc. I	36	-	36	 Practicals : To verify the Thevenin theorem. To verify the Norton theorem. Determination of low resistance using Carey foster's Bridge. Verification of Kirchoff's voltage and current law 	Covered
Month N	Month March			Module/Unit:	
B.Sc. I	36	-	36	 Practicals : 1) To verify the Thevenin theorem. 2) To verify the Norton theorem. 3) Determination of low resistance using Carey foster's Bridge. 4)) Verification of Kirchoff's voltage and current law 	Covered
Month April				Module/Unit:	
Lectures Practic Total als		Examination			

marsha Teacher Incharge

Head of the Department of Physics Vivekanand College, Kolhaour

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics Syllabus Completion Report

Academic Year: 2018-19 Subject: Physics Name of the teacher: Mr. A. V. Shinde

Month June		Syllabus Assigned	Syllabus Covered / Not Covered	Remark
S	cture Total	Practicals: 1)Measurements of length (or diameter) using Vernier	Covered	
B.Sc. I 36	36	 diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 		
Month July		Module/Unit:		
B.Sc. 36 =	36	 Practicals: 1) Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 	Covered	
Month August		Module/Unit:		

B.Sc. I	36		36	 Practicals : Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity. To determine constants of B. G. To compare capacitances using De'Sauty's bridge. To determine impedance of series LCR circuit. 	Covered
Month F	ebruary			Module/Unit:	
B.Sc. I	36		36	 Practicals : To verify the Thevenin theorem. To verify the Norton theorem. Determination of low resistance using Carey foster's Bridge. Verification of Kirchoff's voltage and current law 	Covered
Month M	larch			Module/Unit:	
B.Sc. I	36		36	 Practicals : 1) To verify the Thevenin theorem. 2) To verify the Norton theorem. 3) Determination of low resistance using Carey foster's Bridge. 4)) Verification of Kirchoff's voltage and current law 	Covered
Month April				Module/Unit:	
Lectures Practic Total als Total			Total	Examination	

Junder Teacher Incharge

