"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics

Annual Teaching Plan

Academic Year: **2023-24** Subject: Physics Name of the teacher: **Dr. S. S. Latthe**

Month June				Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Superposition of Harmonic Oscillations	Superposition of Harmonic Oscillations
B.Sc. II	12		12	Linearity and superposition principle, Composition of two simple harmonic motions,	Linearity and superposition principle, Composition of two simple harmonic motions,
				Superposition of two collinear harmonic oscillations- for oscillations having equal frequencies	Superposition of two collinear harmonic oscillations- for oscillations having equal frequencies
				(Analytical and geometrical methods) and oscillations having different frequencies	(Analytical and geometrical methods) and oscillations having different frequencies
				(Beats)	(Beats)
B.Sc. III	12	121	12	Nucleus (Nuclear Structure & General Properties of nuclei)	Nucleus (Nuclear Structure & General Properties of nuclei)
				Introduction, Constituents of nuclei, Nuclear size, Nuclear magnetic moment, Electric quadrupole moment, Nuclear spin, Unit of atomic mass	Introduction, Constituents of nuclei, Nuclear size, Nuclear magnetic moment, Electric quadrupole moment, Nuclear spin, Unit of atomic mass
				(amu), Mass defect, Packing	(amu), Mass defect, Packing
				fraction, Packing fraction curve, Binding energy, B.E.	fraction, Packing fraction curve, Binding energy, B.E.
				curve, Nuclear forces, Liquid	curve, Nuclear forces, Liquid
1917-191				drop model, Semiempirical B.E. formula, Magic numbers,	drop model, Semiempirical B.E. formula, Magic numbers,

				Introduction of elementary particles.	Introduction of elementary particles.
B.Sc. III		80	80	Practicals :	Practicals :
				1) Resonance pendulum.	1) Resonance pendulum.
				2) S. T. of soap solution.	2) S. T. of soap solution.
				3) S. T. by Fergusson modified method.	3) S. T. by Fergusson modified method.
				4) Y & դ using flat spiral spring.	4) Y & η using flat spiral spring.
Month July	,			Module/Unit:	Sub-units planned
		D (1	T 4 1		
Course	Lect ures	Practicals	Total	Superposition of Harmonic Oscillations	Superposition of Harmonic Oscillations
B.Sc. II	12	121	12	Superposition of two perpendicular harmonic oscillations- for oscillations having	Superposition of two perpendicular harmonic oscillations- for oscillations having
		4		equal frequencies (Graphical and analytical methods) and oscillations having different	equal frequencies (Graphical and analytical methods) and oscillations having different
				frequencies (Lissajous figures), Uses of Lissajous figures.	frequencies (Lissajous figures), Uses of Lissajous figures.
B.Sc. III	12		12	Particles Accelerators	Particles Accelerators
				Need of accelerators, Types of accelerators (Qualitative) orbital accelerators, Cyclotron, (Principle, construction, working, theory, merits, demerits) . Limitation of cyclotron, Synchrocyclotron, (construction, working, theory) . Betatron, (principle, construction, working,	Need of accelerators, Types of accelerators (Qualitative) orbital accelerators, Cyclotron, (Principle, construction, working, theory, merits, demerits). Limitation of cyclotron, Synchrocyclotron, (construction, working, theory). Betatron, (principle, construction, working,

ĸ

×

				mathematical theory, merits) Accelerators in India.	mathematical theory, merits) Accelerators in India.
B.Sc. III		80	80	Practicals :	Practicals :
				1) 'Y' by Koenig's method.	1) 'Y' by Koenig's method.
				2) 'Y' by cornu's method.	2) 'Y' by cornu's method.
				3) Measurement of heat capacity of solid.	3) Measurement of heat capacity of solid.
				4) S. T. tension by drop weight method.	4) S. T. tension by drop weight method.
				5) Young's modulus by vibration using AFG.	5) Young's modulus by vibration using AFG.
Month Au	gust			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Coupled Oscillations: Normal modes of vibration,	Coupled Oscillations: Normal modes of vibration,
B.Sc. II	12		12	normal coordinates, degrees of freedom, types of coupling, frequency of oscillatory systems, Energy transfer in coupled oscillatory system.	normal coordinates, degrees of freedom, types of coupling, frequency of oscillatory systems, Energy transfer in coupled oscillatory system.

-

æ

B.Sc. III	12	22	12	Nuclear Radiation Detectors	Nuclear Radiation Detectors
				Introduction : Ionization chamber, G. M. counter, (principle, construction, working mechanism, limitations, merits) Scintillation Counter (principle, construction, working, advantages) Introduction to cosmic radiations, Wilson cloud chamber, Bubble chamber.	Introduction : lonization chamber, G. M. counter, (principle, construction, working mechanism, limitations, merits) Scintillation Counter (principle, construction, working, advantages) Introduction to cosmic radiations, Wilson cloud chamber, Bubble chamber.
B.Sc. III		80	80	 Practicals : 1) Cardinal points by turn table method. 2) Cardinal points by Newton's method. 3) Diffraction at single slit. 4) Diffraction at cylindrical obstacle. 5) Diffraction at straight edge 	 Practicals : 1) Cardinal points by turn table method. 2) Cardinal points by Newton's method. 3) Diffraction at single slit. 4) Diffraction at cylindrical obstacle. 5) Diffraction at straight edge
Month Sep	tember			Module/Unit:	Sub-units planned
B.Sc. II	Lect ures	Practicals	Total	Waves Motionand Ultrasonic waves Waves Motion: Transverse waves on a string, travelling	Waves Motionand Ultrasonic waves Waves Motion: Transverse waves on a string, travelling

	12		12	and standing waves on a string, Normal modes of a string, Group velocity and Phase velocity, Plane waves, Spherical waves. Ultrasonic waves: Piezo- electric effect, Production of ultrasonic waves by Piezo- electric generator, Detection of ultrasonic waves, Properties ultrasonic waves, Applications of ultrasonic waves.	and standing waves on a string, Normal modes of a string, Group velocity and Phase velocity, Plane waves, Spherical waves. Ultrasonic waves: Piezo- electric effect, Production of ultrasonic waves by Piezo- electric generator, Detection of ultrasonic waves, Properties ultrasonic waves, Applications of ultrasonic waves.
B.Sc. III	12		12	Radioactive Decay Natural radioactivity, Artificial radioactivity, Study of alpha decay by magnetic spectrograph, Velocity of alpha particles, Range of α - particles, α - disintegration energy, fine structure of α rays. Beta decay, Study by β - ray spectrometer, continuous nature, neutrino hypothesis, Gamma Decay, origin & gamma rays, γ - ray spectrum, internal conversion, Isomerism.	Radioactive Decay Natural radioactivity, Artificial radioactivity, Study of alpha decay by magnetic spectrograph, Velocity of alpha particles, Range of α - particles, α - disintegration energy, fine structure of α rays. Beta decay, Study by β - ray spectrometer, continuous nature, neutrino hypothesis, Gamma Decay, origin & gamma rays, γ - ray spectrum, internal conversion, Isomerism.
B.Sc. III		80	80	 Practicals : 1) Lloyd's single mirror. 2) Double refracting prism 3) Diameter of lycopodium powder. 4) Spherical aberration. 5) Absorption of spectrum of KMno4 solution. 	 Practicals : 1) Lloyd's single mirror. 2) Double refracting prism 3) Diameter of lycopodium powder. 4) Spherical aberration. 5) Absorption of spectrum of KMno4 solution.

Month Oct	onth October/November			Module/Unit:	Sub-units planned	
	Lect ures	Practicals	Total	Examination	Examination	
Month Dec	ember			Module/Unit:	Sub-units planned	
	Lect ures	Practicals	Total	Cardinal points Thick lens, combination of	Cardinal points Thick lens, combination of	
B.Sc. II	12		12	lenses (system)Cardinal points of an optical system (definitions only), graphical construction of image using cardinal points, Newton's formula, relation between f and f ' for any optical system, relation between lateral, axial and angular magnifications.	lenses (system)Cardinal points of an optical system (definitions only), graphical construction of image using cardinal points, Newton's formula, relation between f and f ' for any optical system, relation between lateral, axial and angular magnifications.	
B.Sc. III	12		12	Atomic Physics Quantum numbers , spatial quantization, vector atom model, Alkali Spectra, Optical spectral series, Spectral term spectral notation, energy level diagram of sodium, spin orbit interaction Zeeman effect, Explanation of Anomalous Zeeman effect on vector atom model, Anomalous Splitting of D1 and D2 Line	Atomic Physics Quantum numbers , spatial quantization, vector atom model, Alkali Spectra, Optical spectral series, Spectral term spectral notation, energy level diagram of sodium, spin orbit interaction Zeeman effect, Explanation of Anomalous Zeeman effect on vector atom model, Anomalous Splitting of D1 and D2 Line	

			80	Practicals :	Practicals :
S.Sc. III -	8	0	80	1) Self inductance by Owen's bridge.	1) Self inductance by Owen's bridge.
				2) Self inductance by Rayleigh's method.	2) Self inductance by Rayleigh's method.
				3) Self inductance by Maxwell bridge.	3) Self inductance by Maxwell bridge.
				4) Measurement of BV, BH and θ using earth inductor.	4) Measurement of BV, BH and θ using earth inductor.
				5) Hysteresis by magnetometer.	5) Hysteresis by magnetometer.
				Module/Unit:	Sub-units planned
Month Janua Course	Lect	Practicals	Total	Resolving Power of optical instruments	Resolving Power of optical instruments
B.Sc. II	ures	-	12	Resolution, Resolving power of optical instruments, Rayleigh's criterion for the limit of	Resolution, Resolving power of optical instruments, Rayleigh's criterion for the limit of
				resolution, Modified Rayleigh's criterion, comparison between magnification and resolution	resolution, Modified Rayleigh's criterion, comparison between magnification and resolutio
				resolving power of plane diffraction grating, resolvin power of a prism.	resolving power of plane

c. III 12	-	12	IV bi s F s c	lolecular system, the	Molecular system, type of bonds, diatomic molecule as a rigid rotator rotational states of diatomic molecule, Raman effect, Experimental study of Raman effect, classical theory of Raman effect, Applications of Raman effect
3.Sc. III -	80	80		 Practicals : 1) e/m of electron by Thomson's method. 2) Measurement of dielectric constant. 3) Resistivity of semiconductor crystal with temperature by four probe method. 5) Calibration of wire using Carey-foster key 	 3) Resistivity of semiconductor crystal with temperature by four probe method. 5) Calibration of wire using Carey-foster key
Month Febr	uary Lect Practica	lls	Total	Module/Unit: Polarization of light	Sub-units planned Polarization of light

Explanationexplanationerfraction through uniaxial refraction through uniaxial crystals, Nicolrefraction through uniaxial crystals, Nicolrefraction through uniaxial crystals, Nicolprism(construction, working), production and detection of circularly and elliptically polarizedrefraction through uniaxial crystals, NicolB.Sc. III12-12Laser PhysicsB.Sc. III12-12Laser PhysicsOrdinary Light, Laser, Spontaneous and stimulated emission, Populations Inversion, Monochromaticity, directionality, Pumping (optical, electrical) Ruby laser He-Ne laser, Diode laser, Laser applications, (Industrial, medical, nuclear, optical), Types of lasersOrdinary Light, medical, nuclear, optical), Types of lasers	refraction unouge crystals, Nicol prism(construction, working), production and detection of production and detection of circularly and elliptically
--	--

			Practicals :
80	80	Practicals :	
3.Sc. III - 80		1) Study of divergence of LASER beam.	1) Study of divergence of LASER beam.
5*		2) Measurement of wavelength of LASER using	2) Measurement of wavelength of LASER using grating.
		grating. 3) Lattice constant using XRD powder.	3) Lattice constant using XRD powder.
		4) To measure numerical aperture of optical fibre.	4) To measure numerical aperture of optical fibre.
		5) Obtain interference fringe using Biprism.	using bip in
		Module/Unit:	Sub-units planned
Month March			Interference
Course Lect practica ures B.Sc. II 12 -	Ils Total	amplitude and division of wave front	of interference, Division of amplitude and division of wave front, Division of wave front – Lloyds single mirror(determination of wavelength of light of monochromatic source),Division of thin parallel films (reflected lig only), Wedge shaped film Newton's rings and application
		for determination wavelength and refr index of light.	of for determination of wavelength and refractive index of light.

 $\frac{1}{2}$

×

c. III 12	12	Co ose sta co ga fe su c	smology, Big-bang theory, cillating theory, steady- ate theory, Hubble's law, smological tests, Milky way laxy, our solar system, ratures of sun, interior of unspots, static haracteristics of earth and mars.	Cosmology, Big-bang theory, oscillating theory, steady- state theory, Hubble's law, cosmological tests, Milky way galaxy, our solar system, features of sun, interior of sunspots, static characteristics of earth and mars.
B.Sc. III - 80) 80		 Practicals : UJT as voltage sweep generator. Astable multivibrator by using IC 555 timer. Monostable multivibrato by using IC 555 timer. IV characteristics of P-N diode and LED. Inverting amplifier using a - Amp 741. 	 UJT as voltage sweep generator. Astable multivibrator by using IC 555 timer. Monostable multivibrator by using IC 555 timer. IV characteristics of P-N diode and LED. Inverting amplifier using op - Amp 741.
			Module/Unit:	Sub-units planned
Month April				Examination

solatte HEAD DEPARTMENPOF PHYSICS VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)

solat

Teacher Incharge

 ϵ_{\star}

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous) Department of Physics Annual Teaching Plan

Academic Year: **2023-24** Subject: Physics Name of the teacher: **Dr. G. J. Navathe**

Month June				Module/Unit:	Sub-units planned	
Course	Lect ures	Practicals	Total	Introduction to Quantum Mechanics	Introduction to Quantum Mechanics	
B.Sc. III	12	-	12	Origin of quantum mechanics, Review of black body radiation, Photoelectric effect, matter waves, De- Broiglie hypothesis , experimental evidence of de Broglie theory (Davisson and Germer experiment), wave particle duality, Heisenberg's uncertainty principle and different forms uncertainty principle	Origin of quantum mechanics, Review of black body radiation, Photoelectric effect, matter waves, De- Broiglie hypothesis , experimental evidence of de Broglie theory (Davisson and Germer experiment), wave particle duality, Heisenberg's uncertainty principle and different forms uncertainty principle	
B.Sc. I	16	-	16	Gravitation:	Gravitation:	
				Newton's Law of Gravitation, Motion of a particle in a central force field (motion in a plane, angular momentum is conserved, areal velocity is constant), Kepler's Laws (statement only), Satellite in circular orbit and applications, Geosynchronous orbits, Weightlessness, Basic idea of global positioning system (GPS) and its applications.	Newton's Law of Gravitation, Motion of a particle in a central force field (motion in a plane, angular momentum is conserved, areal velocity is constant), Kepler's Laws (statement only), Satellite in circular orbit and applications, Geosynchronous orbits, Weightlessness, Basic idea of global positioning system (GPS) and its applications.	
B.Sc. II	-	64	64	Practicals :	Practicals :	

ĩ				 To record and analyze the cooling temperature of hot object as a function of time using a thermocouple. To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge 	 To record and analyze the cooling temperature of hot object as a function of time using a thermocouple. To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge
				 Temperature of flame. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. 	 3) Temperature of flame. 4) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
Month J	uly			Module/Unit:	Sub-units planned
Course	Lect	Practicals	Total	The Schrodinger's Equation	The Schrodinger's Equation
B.Sc. III	12		12	Physical interpretation of wave function, Schrodinger's time dependent and independent equation (one and three dimensional) Requirements of wave function, Eigen value, Eigen function, Normalized orthogonal and orthonormal wave functions, Probability current density (Continuity equation). Examples on Normalization of wave function	Physical interpretation of wave function, Schrodinger's time dependent and independent equation (one and three dimensional) Requirements of wave function, Eigen value, Eiger function, Normalized orthogonal and orthonormal wave functions, Probability current density (Continuity equation). Examples or Normalization of wave function
B.Sc. I	16	-	16	Oscillations Simple harmonic motion (SHM), Differential equation of SHM and its solutions, Kinetic and Potential Energy, Total Energy and their time averages, Damped oscillations, Forced oscillations.	Oscillations Simple harmonic motion (SHM), Differential equation of SHM and its solutions, Kinetic and Potential Energy, Total Energy and their time averages, Damped oscillations, Forced oscillations.

D.00		64	64	Practicals :	Practicals :
II				1) Measurement of rise, fall and delay time using a CRO	1) Measurement of rise, fall and delay time using a CRO
				2) Measurement of distortion of a RF signal generator using distortion factor meter.	2) Measurement of distortion of a RF signal generator using distortion factor meter.
				3) . Measurement of R, L and C using a LCR bridge/ universal bridge.	3) . Measurement of R, L and C using a LCR bridge/ universal bridge.
				 Measurement of time period, frequency, average period using using universal counter/frequency counter. 	 Measurement of time period, frequency, average period using using universal counter/frequency counter.
Month A	ugust	1		Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Operator in Quantum Mechanics	Operator in Quantum Mechanics
B.Sc. III	12		12	Definition of an operator in quantum mechanics, commutation relation in quantum mechanics, position, momentum and angular momentum operator, Angular momentum operator, Angular momentum operator in spherical polar coordinate system, Hamilton operator, Hamilton operator commutation relation between x' and p. Expectation value of an operator communication relation between L2 and components of L, Raising and lowering operator L+ and L Eigen values of L2 and L1. Concept of parity operator. Concept of Hermitian operator.	Definition of an operator in quantum mechanics, commutation relation in quantum mechanics, position, momentum and angular momentum operator, Angular momentum operator, Angular momentum operator in spherical polar coordinate system, Hamilton operator, Hamilton operator commutation relation between x' and p. Expectation value of an operator communication relation between L2 and components of L, Raising and lowering operator L+ and L Eigen values of L2 and L1. Con cept of parity operator. Concept of Hermitian operator.

B.Sc. I	16	-	16	Elasticity	Elasticity
			7.	Bending of beam, Bending moment, Cantilever (without considering weight of cantilever), Beamsupported at both the ends (without considering weight of beam). Torsional oscillation, Work done in twisting a wire, Twisting couple on a cylinder, Torsional pendulum - Determination of Rigidity modulus and moment of inertia, Determination of Y, η and σ by Searles method.	Bending of beam, Bending moment, Cantilever (without considering weight of cantilever), Beamsupported at both the ends (without considering weight of beam). Torsional oscillation, Work done in twisting a wire, Twisting couple on a cylinder, Torsional pendulum - Determination of Rigidity modulus and moment of inertia, Determination of Y, η and σ by Searles method.
B.Sc. II	-	64	64	Practicals :	Practicals :
				1) To determine wavelength of 1) Sodium &2)spectrum of Mercury light usingplane diffraction grating.	1) To determine wavelength of 1) Sodium &2)spectrum of Mercury light usingplane diffraction grating.
				2). Goniometer I-To study cardinal points of opticalsystem.	2). Goniometer I-To study cardinal points of opticalsystem.
				3) Goniometer II- To study the equivalent focal length of opticalsystem.	3) Goniometer II- To study the equivalent focal length of opticalsystem.
				4) To study angle of specific rotation of sugar using Polarimeter.	4) To study angle of specific rotation of sugar using Polarimeter.
Month Se	eptembe	er	1	Module/Unit:	Sub-units planned
B.Sc. III	Lect ures	Practicals	Total	Applications of Schrodinger's Steady State Equation	Applications of Schrodinger's Steady State Equation
				Quantum mechanics treatment of particle in rigid box (1D and 3D). Step potential relation and transmission coefficient. Barrier potential- Tunnelling	Quantum mechanics treatment of particle in rigid box (1D and 3D). Step potential relation and transmission coefficient. Barrier potential- Tunnelling

 \mathbf{e}

	12	-	12	effect, α-decay, simple harmonic oscillator.	effect, α-decay, simple harmonic oscillator.
B.Sc. I	16	~	16	Surface Tension Surface Tension, Angle of contact and wettability, relation between surface tension, excess of pressure and radius of curvature, Experimental determination of surface tension by Jaeger's method, Factors affecting surface tension, Applications of surface tension.	Surface Tension Surface Tension, Angle of contact and wettability, relation between surface tension, excess of pressure and radius of curvature, Experimental determination of surface tension by Jaeger's method, Factors affecting surface tension, Applications of surface tension.
B.Sc. II		64	64	 Practicals : 1) Characteristics of Transistor. 2) Use of sextant to measure height of object. 3) Crystal Oscillator. 4) Colpitts oscillator. 	 Practicals : 1) Characteristics of Transistor. 2) Use of sextant to measure height of object. 3) Crystal Oscillator. 4) Colpitts oscillator.
Month O	Month October/November			Module/Unit:	Sub-units planned
	Lect ures	Practicals	Total	Examination	Examination
Month D	ecembe	r		Module/Unit:	Sub-units planned
	Lect ures	Practicals	Total	Elementary band theory	Elementary band theory

B.Sc. 1 II	2 -			Introduction of free electron theory (Classical and Quantum mechanical), Kronig Penny model, Effective mass of an electron, Band Gaps. Conductors, Semiconductors and insulators. P and N type	Introduction of free electron theory (Classical and Quantum mechanical), Kronig Penny model, Effective mass of an electron, Band Gaps. Conductors, Semiconductors and insulators. P and N type
			-	semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall voltage and Hall coefficient.	semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall voltage and Hall coefficient.
B.Sc. I	16	-	16	Electricity Introduction – DC and varying currents, LR Circuit, RC circuit and LC circuit, Growth and decay of currents, Theory of B.G. and constants of B.G., time constants T	Growth and decay of currents
B.Sc. II		64	64	 Practicals : 1) Ic 555 timer. 2) Electronic switch using transistor. 3) Characteristics of FET. 4) FET as VVR. 	 Practicals : 1) Ic 555 timer. 2) Electronic switch using transistor. 3) Characteristics of FET. 4) FET as VVR.
Month	January			Module/Unit: Dielectric Properties of	Sub-units planned Dielectric Properties of

B.Sc. III	12 -		F D S C C F A C	olarization. Local Electric ield at an Atom. Depolarization Field. Electric usceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons.	Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons.
B.Sc. I	16	-	16	A.C. Circuits Complex numbers and their application in solving a. c. series LCR circuit, complex impedance,Reactance, Admittance, and Susceptance Resonance in LCR series circuit, Sharpness of resonance (qualitative treatment only), Q-factor (definition only) A.C. Bridge - Owen's Bridge	circuit, Sharpness of resonance (qualitative treatment only), Q-factor

- 1		C A	64	Practicals :	Practicals :
B.Sc. II	-	64		1) To determine the wavelength of sodium light using Fresenel Biprism.	1) To determine the wavelength of sodium light using Fresenel Biprism.
				2) To determine the Resolving Power of a Prism.	2) To determine the Resolving Power of a Prism.
				3) To determine the Resolving Power of a Plane Diffraction Grating.	3) To determine the Resolving Power of a Plane Diffraction Grating.
				4) To determine wavelength of Laser light using diffraction of single slit.	4) To determine wavelength of Laser light using diffraction of single slit.
	- here on			Module/Unit:	Sub-units planned
Month F	ebruary		Total	X-Ray Diffraction	X-Ray Diffraction
Course	Lect ures	Practicals	Totat	Reciprocal lattice and its	
B.Sc. III	12	-	12	properties, concept of Brillouin zone, diffraction of X-rays by crystals, Ewak construction, Bragg's law in reciprocal lattice, X-ray diffraction methods: 1) Lau method. 2) Rotating crystal 3 Powder method - Principle Construction, Working analysis of cubic crystal b powder crystal method	f Brillouin zone, diffraction o X-rays by crystals, Ewald construction, Bragg's law in reciprocal lattice, X-ray diffraction methods: 1) Lau method. 2) Rotating crystal 3 Powder method - Principle Construction, Working

÷,

 ofa multimeter for measuring high frequency voltage and currents. 3) To measure Q of a coil and its dependence on frequency using a Q-meter. 4) Measurement of voltage, frequency, time period and phase angle using CRO. Module/Unit: Sub-units planned 	.Sc. I 16 -	In ar M la s c c c c	agnetism troduction to magnetization nd intensity of fagnetization, Biot-Savart's aw & its applications - traight conductor, circular coil, solenoid carrying current, Divergence and curl of magnetic field, Magnetic o	agnetism roduction to magnetization d intensity of agnetization, Biot-Savart's w & its applications - raight conductor, circular oil, solenoid carrying urrent, Divergence and curl f magnetic field, Magnetic rector potential, Ampere's circuital lawat earth's surface
Notion MaterialsLectPracticalsTotalMagneticMaterialsandMagneticsCourseLectPracticalsTotalMagneticMagneticsandMagneticstheir Properties:	Month March		 Practicals : To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance. 2) To observe the limitations of a multimeter for measuring high frequency voltage and currents. 3) To measure Q of a coil and its dependence on frequency using a Q-meter. 4) Measurement of voltage, frequency, time period and phase angle using CRO. Module/Unit: 	 To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance. To observe the limitations ofa multimeter for measuring high frequency voltage and currents. To measure Q of a coil and its dependence on frequency using a Q-meter. Measurement of voltage, frequency, time period and phase angle using CRO. Sub-units planned Magnetic Materials and

B.Sc. III	12		12	Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Hysteresis and hysteresis curve, diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic materials.	Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Hysteresis and hysteresis curve, diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic materials.
B.Sc. I	16		16	Network Theorems Introduction, Node, Junction, Branch, Loop, Active and passive elements, Thevenin's theorem, Nortan's theorem and equivalence between them, problems.	Network Theorems Introduction, Node, Junction, Branch, Loop, Active and passive elements, Thevenin's theorem, Nortan's theorem and equivalence between them, problems.
B.Sc. II		64	64	 Practicals : 1) To determine the value of Stefan's Constant. 2) To determine the coefficient of thermal conductivity of copper by Searle's Apparatus. 3) To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method. 	 Practicals : 1) To determine the value of Stefan's Constant. 2) To determine the coefficient of thermal conductivity of copper by Searle's Apparatus. 3) To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
Month A	Month April			Module/Unit:	Sub-units planned
Lectures		Practicals	Total	Examination	Examination

Fine al he

.

÷

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics

Annual Teaching Plan

Academic Year: 2023-24 Subject: Physics Name of the teacher: Dr. S. I. Inamdar

Month June				Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Kinetic Theory of Gases and thermometry	Kinetic Theory of Gases and thermometry
B.Sc. II	12	-	12	Mean free path, expression, approximate method derivation of Maxwell's law of distribution of	Mean free path, expression, approximate method derivation of Maxwell's law of distribution of
				velocities and its experimental verification, Transport Phenomena: transport of momentum	velocities and its experimental verification, Transport Phenomena: transport of momentum
		63		(viscosity), transport of thermal energy (conduction), Transport of mass (diffusion),	(viscosity), transport of thermal energy (conduction), Transport of mass (diffusion),
B.Sc. III	12	-	12	Crystal Structure	Crystal Structure
				Types of the solids, Amorphous, crystalline, lattice, lattice translation vectors, lattice with basis (Central , non central elements) Unit cell , Examples of crystal structure NaCl, KCl, ZnS, Diamond, Miller Indices, Calculations of coordination number, lattice constant, reciprocal lattices, types of lattices, Brillouin Zones, Diffraction of X-rays, Bragg's law, atomic, geometrical factor, Bragg's X-ray spectrometer	Types of the solids, Amorphous, crystalline, lattice, lattice translation vectors, lattice with basis (Central , non central elements) Unit cell , Examples of crystal structure NaCl, KCl, ZnS, Diamond, Miller Indices, Calculations of coordination number, lattice constant, reciprocal lattices, types of lattices, Brillouin Zones, Diffraction of X-rays, Bragg's law, atomic, geometrical factor, Bragg's X- ray spectrometer

B.Sc. III	(a)	80	80	Practicals :	Practicals :
				1) Resonance pendulum.	1) Resonance pendulum.
				2) S. T. of soap solution.	2) S. T. of soap solution.
				3) S. T. by Fergusson modified method.	3) S. T. by Fergusson modified method.
				4) Y & η using flat spiral spring.	4) Y & η using flat spiral spring.
Month Jul	y			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Kinetic Theory of Gases and thermometry	Kinetic Theory of Gases and thermometry
B.Sc. II	12	ie v	12	Law of equipartition of energy (qualitative) and its applications to specific heat of monoatomic and	Law of equipartition of energy (qualitative) and its applications to specific heat of monoatomic and
				diatomic gases. Thermometry: Concept of heat and temperature, temperature scales, principle of thermometry mercury thermometer, platinum	diatomic gases. Thermometry: Concept of heat and temperature, temperature scales, principle of thermometry mercury
				resistance thermometer, thermocouple. (Principle, construction and theory)	thermometer, platinum resistance thermometer, thermocouple. (Principle, construction and theory)
B.Sc. III	12	-	12	Lattice Vibration and Thermal Properties of Solid	Lattice Vibration and Thermal Properties of Solid
				Lattice vibrations, Phonons, normal modes of one dimensional and diatomic chain, Acoustical and optical phonons, Phonons spectrum in solids, Dulong Petit's law (Classical Theory), Einstein and Debye theories of specific heat of solids.	Lattice vibrations, Phonons, normal modes of one dimensional and diatomic chain, Acoustical and optical phonons, Phonons spectrum in solids, Dulong Petit's law (Classical Theory), Einstein and Debye theories of specific heat of solids.

٠

÷.

3=	80	80	Practicals :	Practicals :
			1) 'Y' by Koenig's method.	1) 'Y' by Koenig's method.
			2) 'Y' by cornu's method.	2) 'Y' by cornu's method.
			3) Measurement of heat capacity of solid.	3) Measurement of heat capacity of solid.
			4) S. T. tension by drop weight method.	4) S. T. tension by drop weight method.
			5) Young's modulus by vibration using AFG.	5) Young's modulus by vibration using AFG.
gust			Module/Unit:	Sub-units planned
Lect ures	Practicals	Total	Laws of Thermodynamics Thermodynamic system,	Laws of Thermodynamics Thermodynamic system,
12	-	12	thermodynamic variables, thermodynamic state, equation of state,	thermodynamic variables, thermodynamic state, equation of state,
			thermodynamic equilibrium, Zeroth Law of thermodynamics, Internal energy, First law of	thermodynamic equilibrium, Zeroth Law of thermodynamics, Internal energy, First law of
			thermodynamics, conversion of heat into work, specific heats CP& CV, Applications of First Law	thermodynamics, conversion of heat into work, specific heats CP& CV, Applications of First Law
			(Isothermal process, Adiabatic process, Isochoric, Isobaric), relation between CP & CV	(Isothermal process, Adiabatic process, Isochoric, Isobaric), relation between CP & CV
	Lect ures	gust Lect Practicals ures	gust Lect Practicals Total	I) 'Y' by Koenig's method.2) 'Y' by cornu's method.2) 'Y' by cornu's method.3) Measurement of heat capacity of solid.4) S. T. tension by drop weight method.gustModule/Unit:Lect uresPracticalsTotal12-1212-12-12-12-12-13Laws of Thermodynamics Thermodynamic variables, thermodynamic system, thermodynamic state, equation of state, thermodynamics, Internal energy, First law of thermodynamics, conversion of heat into work, specific heats CP& CV, Applications of First Law (Isothermal process, Isochoric, Isobaric), relation between CP

B.Sc. III B.Sc. III	12	80	80	MagneticPropertiesofMaterialsMagneticmaterials,permeability,susceptibility,magnetization,magneticmoment,electronparamagneticmaterials,Paramagneticmaterials,ferromagnetic,ferromagnetic,classicaltheoryofdiamagnetismandparamagnetism,Curieconstant,WeissVeisstheoryofferromagnetism,andparamagnetism,curieconstant,Weisstheoryofferromagnetism,andferromagneticdomain,Hysteresisloopforferromagneticmaterials.Practicals :1)Cardinal points by turntablemethod.2)Cardinal points by turntablemethod.3)Diffraction at single slit.4)Diffraction at cylindricalobstacle.5)5)Diffraction at straight edge	MaterialsMagneticmaterials,permeability,susceptibility,magnetization,magneticmoment,electronparamagneticmaterials,Paramagneticmaterials,ferromagnetic,ferromagnetic,classicaltheoryofdiamagnetismparamagnetism,CurieCurieconstant,Weisstheoryofferromagnetism,andferromagnetism,paramagnetism,Curieconstant,WeissVeisstheoryofferromagnetism,andferromagneticdomain,Hysteresisloopforferromagneticmaterials.Practicals :1)Cardinal pointsbyturntablemethod.
Month Sept	ember			Module/Unit:	Sub-units planned
B.Sc. II	Lect ures	Practicals	Total	Laws of Thermodynamics Work done during isothermal and adiabatic processes, reversible & irreversible processes, Second law	Laws of Thermodynamics Work done during isothermal and adiabatic processes, reversible & irreversible processes, Second law

	12		12	of thermodynamics, Carn ideal heat engine, Carn cycle (Working, efficiency Carnot's theorem, Entropy (concept significance),change entropy, Entropy changes	ot's ideal heat engine, Carno y), cycle (Working, efficiency) Carnot's t & theorem, Entropy (concept
				reversible & irreversible processes, Th law of thermodynamic Entropy change in conduction of heat,	ird irreversible processes, Thir
				diffusion of gases ,physic significance of entropy, U attainability of absolute zero Zero	n- significance of a d
B.Sc. III	12	-	12	point energy. Superconductivity	point energy.
B.Sc. III		80		Idea of superconductivity Critical temperature, Critical magnetic field. Meissne effect. Type I and type I Superconductors, London's Equation and Penetration Depth, Isotope effect	Il Critical temperature, Critical magnetic field. Meissner I effect. Type I and type II s Superconductors London's
	-	80	80	Practicals :	Practicals :
				1) Lloyd's single mirror.	1) Lloyd's single mirror.
				2) Double refracting prism	2) Double refracting prism
				3) Diameter of lycopodium powder.	3) Diameter of lycopodium powder.
				4) Spherical aberration.	4) Spherical aberration.
Ionth Oct-1				5) Absorption of spectrum of KMno4 solution.	5) Absorption of spectrum of KMno4 solution.
lonth Octob	per/Nov	ember		Module/Unit:	Sub-units planned

	Lect	Practicals	Total	Examination	Examination
Ionth Dec	ures			Module/Unit:	Sub-units planned
	Lect ures	Practicals	Total	Thermodynamic Potentials Enthalpy, Gibbs, Helmholtz, Internal Energy functions,	Thermodynamic Potentials Enthalpy, Gibbs, Helmholtz, Internal Energy functions, Maxwell's thermodynamical
3.Sc. II				Maxwell's thermodynamical relations, Joule-Thomson effect, Clausius- Clapeyron equation, Expression for (CP – CV), CP/CV, TdS equations.	relations, Joule-Thomson effect, Clausius- Clapeyron equation, Expression for (CP – CV), CP/CV, TdS equations.
B.Sc. III	12	-	12	Instrumentations :Introduction to CRO Block Diagram of CRO Applications of CRO: (1 Study of Waveform, (2 Measurement of Voltage Current, Frequency, an Phase Difference.	2) Applications of Waveform, (2 Study of Waveform, (2 Measurement of Voltage Current, Frequency, an Phase Difference.
B.Sc. III	75	80	80	Practicals : 1) Self inductance by Owen bridge.	Practicals : 1's 1) Self inductance by Owen bridge.
					by 2) Self inductance Rayleigh's method.
				3) Self inductance by Maxw bridge.	Maxwell bridge.
				4) Measurement of BV, I and θ using earth inductor.	and θ using earth inductor.
				5) Hysteresis magnetometer.	by 5) Hysteresis magnetometer.
	Januar			Module/Unit:	Sub-units planned

Course	Lect	Practicals	Total	Theory of Radiation	Theory of Radiation
	ures			Thermal radiations,	Thermal radiations,
B.Sc. II	12	-	12	Blackbody radiation and its importance, Black body in practice, its temperature dependence ,emissive power, absorptive power, pressure of radiation ,Experimental study of black body radiation spectrum, Concept of energy density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.	Blackbody radiation and its importance, Black body in practice, its temperature dependence ,emissive power, absorptive power, pressure of radiation ,Experimental study of black body radiation spectrum, Concept of energy density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.
B.Sc. III	12		12	Special functions of ICs IC 555, Block diagram and special functions if ICs, Astable Operation: Circuit diagram, frequency of oscillation and duty cycle, Applications as tone brust oscillator, voltage controlled frequency shifters. Monostable operation: circuit diagram, Applications as touch switch and frequency divider. Bistable Operation: Circuit diagram and circuit action.	-

B.Sc. III	<u>646</u>	80	80	Practicals :	Practicals :
				1) e/m of electron by Thomson's method.	1) e/m of electron by Thomson's method.
				2) Measurement of dielectric constant.	2) Measurement of dielectric constant.
				3) Resistivity of semiconductor crystal with temperature by four probe method.	3) Resistivity of semiconductor crystal with temperature by four probe method.
				5) Calibration of wire using Carey-foster key	5) Calibration of wire using Carey-foster key
Month Febr	uary			Module/Unit:	Sub-units planned
Course	Lect	Practicals	Total	Classical statistics	Classical statistics
B.Sc. II	ures 12		12	Degrees of freedom ,momentum space, position space ,Phase space, Microstate and Macrostate, Accessible microstates, priory probability thermodynamic probability, probability distribution, Maxwell- Boltzmann distribution law, energy or speed, evaluation of constants α and β , Entropy and Thermodynamic probability, Distribution of molecular speeds.	Degrees of freedom ,momentum space, position space ,Phase space, Microstate and Macrostate, Accessible microstates, priory probability thermodynamic probability, probability distribution, Maxwell- Boltzmann distribution law, energy or speed, evaluation of constants α and β , Entropy and Thermodynamic probability, Distribution of molecular speeds.
B.Sc. III	12		12	Digital Electronics Introduction to logic gates, De-Morgan's theorem, NAND and NOR gates as universal gates, R-S and J-K flip flops, half and full adder, parallel binary adder.	Digital Electronics Introduction to logic gates, De-Morgan's theorem, NAND and NOR gates as universal gates, R-S and J-K flip flops, half and full adder, parallel binary adder.

B.Sc. III	Ē	80	80	Practicals :	Practicals :
				1) Study of divergence of LASER beam.	1) Study of divergence of LASER beam.
				2) Measurement of wavelength of LASER using grating.	2) Measurement of wavelength of LASER using grating.
				3) Lattice constant using XRD powder.	3) Lattice constant using XRD powder.
				4) To measure numerical aperture of optical fibre.	4) To measure numerical aperture of optical fibre.
				5) Obtain interference fringes using Biprism.	5) Obtain interference fringes using Biprism.
Month Mar	ch		1	Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Quantum statistics	Quantum statistics
B.Sc. II	12	-	12	Need of quantum statics ,Bose-Einstein distribution law, photon gas, Planck, s radiation law Fermi-Dirac distribution law, free electron in metal ,electron gas, comparison of M.B., B.E., and F.D. statistics.	law, photon gas, Planck, s radiation law Fermi-Dirac distribution law,
B.Sc. III	12		12	BipolarJunctiontransistors:n-p-n and p-n-p Transistors.Characteristics of CB, CE andCC Configurations. Currentgains α and β . Relationsbetween α and β . Load Lineanalysis of Transistors. DCLoad line and Q point. Active,Cut-off, and SaturationRegions. Voltage Divider BiasCircuit for CE Amplifier. h-parameter Equivalent Circuit.	BipolarJunctiontransistors:n-p-n and p-n-p Transistors.Characteristics of CB, CE andCC Configurations. Currentgains α and β . Relationsbetween α and β . Load Lineanalysis of Transistors. DCLoad line and Q point. Active,Cut-off, and SaturationRegions. Voltage DividerBias Circuit for CE Amplifier.h-parameterEquivalent

				Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance, Current, Voltage and Power Gains.	stage CE amplifier using Hybrid Model. Input and
B.Sc. III		80	80	 Practicals : 1) UJT as voltage sweep generator. 2) Astable multivibrator by using IC 555 timer. 3) Monostable multivibrator by using IC 555 timer. 4) IV characteristics of P-N diode and LED. 5) Inverting amplifier using op - Amp 741. 	 Practicals : UJT as voltage sweep generator. Astable multivibrator by using IC 555 timer. Monostable multivibrator by using IC 555 timer. IV characteristics of P-N diode and LED. Inverting amplifier using op - Amp 741.
Month Apri	I			Module/Unit:	Sub-units planned
Lectures		Practicals	Total	Examination	Examination

Jun Teacher Incharge

۰ م

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics

Annual Teaching Plan

Academic Year: **2023-24** Subject: Physics Name of the teacher: **Mr. A. V. Shinde**

Month J	une			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Orthogonal Curvilinear C ordinates:	
B.Sc. III	12	-	12	Introduction to Cartesia spherical polar and cylindric co-ordinate systems, concept of orthogonal curvilinear co- ordinates, unit tangent vector, arc length, area and volum elements in orthogona curvilinear co-ordinate system gradient, divergence, curl, de and Laplacian in orthogona curvilinear co-ordinate system extension of gradient divergence, curl, del and Laplacian in Cartesian, spherical polar and cylindrical coordinate systems	n, Introduction to Cartesian spherical polar and cylindrica co-ordinate systems, concept o orthogonal curvilinear co- ordinates, unit tangent vectors arc length, area and volume elements in orthogonal curvilinear co-ordinate system, gradient, divergence, curl, del and Laplacian in orthogonal curvilinear co-ordinate system, extension of gradient, divergence, curl, del and Laplacian in
Sc. II	-	32	32	Practicals :	Practicals :
				1) To record and analyze the cooling temperature of hot object as a function of time using a thermocouple.	1) To record and analyze the cooling temperature of hot object as a function of time using a thermocouple.
				2) To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge	2) To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge
				3) Temperature of flame.	3) Temperature of flame.
				4) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow	4) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow

				method.	method.
Month July				Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Differential Equations:	Differential Equations:
B.Sc. III	12	-	12	Types of differential equations, degree, order, linearity, homogeneity of differential equations, Method of separation of variables for olving partial differential equations, solutions of Laplace equation in two dimension	Types of differential equations, degree, order, linearity, homogeneity of differential equations, Method of separation of variables for olving partial differential equations, solutions of Laplace equation in two dimension
B.Sc. II	-	32	32	Practicals : 1) Measurement of rise, fall and delay time using a CRO	Practicals : 1) Measurement of rise, fall and delay time using a CRO
				2) Measurement of distortion of a RF signal generator using distortion factor meter.	2) Measurement of distortion of a RF signal generator using distortion factor meter.
				3) . Measurement of R, L and C using a LCR bridge/ universal bridge.	3) . Measurement of R, L and C using a LCR bridge/ universal bridge.
				4) Measurement of time period, frequency, average period using using universal counter/frequency counter.	 Measurement of time period, frequency, average period using using universal counter/frequency counter.
Month A	Month August			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Fourier series and integrals	Fourier series and integrals

B.Sc. III	12	2	12	Fourier series and Fourier transform, Dirichlet condition, (Statement only) Properties of Fourier series: 1) convergence, 2) Integration 3) Differentiation. Physical applications of Fourier series 4) square wave (high frequencies) 5) full wave rectifier, Differentiation and integration of Fourier series, Fourier transform, Inverse functions.	Fourier series and Fourier transform, Dirichlet condition, (Statement only) Properties of Fourier series: 1) convergence, 2) Integration 3) Differentiation. Physical applications of Fourier series 4) square wave (high frequencies) 5) full wave rectifier, Differentiation and integration of Fourier series, Fourier transform, Inverse functions.
B.Sc. II	-	32	32	Practicals :	Practicals :
				1) To determine wavelength of 1) Sodium &2)spectrum of Mercury light usingplane diffraction grating.	1) To determine wavelength of 1) Sodium &2)spectrum of Mercury light usingplane diffraction grating.
				2). Goniometer I-To study cardinal points of opticalsystem.	2). Goniometer I-To study cardinal points of opticalsystem.
				3) Goniometer II- To study the equivalent focal length of opticalsystem.	3) Goniometer II- To study the equivalent focal length of opticalsystem.
			N	4) To study angle of specific rotation of sugar using Polarimeter.	4) To study angle of specific rotation of sugar using Polarimeter.
Month Se	eptembe	er		Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Complex analysis Revision of complex numbers and their graphical representation, Euler's formula, DeMoiver's theorem, Roots of complex number, Functions of complex numbers, Analyticity and Cauchy-	Complex analysis Revision of complex numbers and their graphical representation, Euler's formula, DeMoiver's theorem, Roots of complex number, Functions of complex numbers, Analyticity and Cauchy- Reimann condition, examples

	ures	Practicals	Total	Lagrangian Dynamics	Lagrangian Dynamics
Aonth De	cembe Lect			Module/Unit:	Sub-units planned
4	Lect ures	Practicals	Total	Examination	Examination
Month O				Module/Unit:	Sub-units planned
B.Sc. II		08	08	 Practicals : 1) Characteristics of Transistor. 2) Use of sextant to measure height of object. 3) Crystal Oscillator. 4) Colpitts oscillator. 	Practicals : 1) Characteristics of Transistor. 2) Use of sextant to measure height of object. 3) Crystal Oscillator. 4) Colpitts oscillator.
				Reimann condition, example of analytical function, Singular functions, Poles and branch points, order of singularity, Integration of function of complex variable Cauchy's inequality, Cauchy's integral formula	Singular functions, Poles a branch points, order of singularity, Integration of function of complex variable

B.Sc. III	12	-	12	Introduction Basic Concepts: (1) Co-ordinate system (2) Degrees of freedom; Constraints:	Introduction Basic Concepts: (1) Co-ordinate system (2) Degrees of freedom; Constraints:
				Holonomic constraints, Nonholonomic constraints, Forces of constraints, Configuration space,	Holonomic constraints, Nonholonomic constraints, Forces of constraints, Configuration space,
				Generalized Co-ordinates, Principle of virtual work, D'Alembert's principal. Lagrange's equation	Generalized Co-ordinates, Principle of virtual work, D'Alembert's principal. Lagrange's equation
				from D'Alembert's principle. Application of Lagrange's equation to a particle in a space,	from D'Alembert's principle. Application of Lagrange's equation to a particle in a space,
				Atwood's machine and bead sliding on uniformly rotating wire under force free condition, simple	Atwood's machine and bead sliding on uniformly rotating wire under force free condition, simple
				pendulum unit.	pendulum unit.
B.Sc. II	-	32	32	Practicals :	Practicals :
				1) Ic 555 timer.	1) Ic 555 timer.
				2) Electronic switch using transistor.	2) Electronic switch using transistor.
				3) Characteristics of FET.	3) Characteristics of FET.
				4) FET as VVR.	4) FET as VVR.
Month Ja	inuary			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Variational principles	Variational principles

B.Sc. III	12	-	12	Hamilton's principle, Deduction of Hamilton's principle from D' Alembert's principle, Deduction	Hamilton's principle, Deduction of Hamilton's principle from D' Alembert's principle, Deduction
				of Lagrange's equation from Hamilton's principle. Application of Hamilton's principle: shortest	of Lagrange's equation from Hamilton's principle. Application of Hamilton's principle: shortest
				distance between two points in plane, Brachistochrone problem.	distance between two points in plane, Brachistochrone problem.
B.Sc. II	940 (32	32	Practicals :	Practicals :
				 To determine the wavelength of sodium light using Fresenel Biprism. To determine the Resolving Power of a Prism. To determine the Resolving Power of a Plane Diffraction Grating. 	 To determine the wavelength of sodium light using Fresenel Biprism. To determine the Resolving Power of a Prism. To determine the Resolving Power of a Plane Diffraction Grating.
				4) To determine wavelength of Laser light using diffraction of single slit.	4) To determine wavelength of Laser light using diffraction of single slit.
Month F	ebruary			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Non-inertial and Rotating co-ordinate system	Non-inertial and Rotating co-ordinate system

B.Sc. III	12	-	12	Inertial and non-inertial framed of reference Fictitious or Pseudo force, centrifugal force,	Inertial and non-inertial framed of reference Fictitious or Pseudo force, centrifugal force,
				uniformly rotating frame, Motion relative to earth. Application of Coriolis force: 1) Formation of	uniformly rotating frame, Motion relative to earth. Application of Coriolis force: 1) Formation of
				cyclone, 2) Particles in a horizontal plane, 3) Freely falling body at earth's surface	cyclone, 2) Particles in a horizontal plane, 3) Freely falling body at earth's surface
B.Sc. II	-	32	32	Practicals :	Practicals :
				1) To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.	1)To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
				2) To observe the limitations of a multimeter for measuring high frequency voltage and currents.	2) To observe the limitations of a multimeter for measuring high frequency voltage and currents.
				3) To measure Q of a coil and its dependence on frequency using a Q-meter.	3) To measure Q of a coil and its dependence on frequency using a Q-meter.
				4) Measurement of voltage, frequency, time period and phase angle using CRO.	4) Measurement of voltage, frequency, time period and phase angle using CRO.
Month M	larch			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Special theory of Relativity	Special theory of Relativity

B.Sc. III	12		12	Introduction: Galilean transformation, the Michelson-Morley experiment, Ether hypothesis	Introduction: Galilean transformation, the Michelson-Morley experiment, Ether hypothesis
				Postulates of special theory of relativity, Lorentz transformations, Relativistic addition of	Postulates of special theory of relativity, Lorentz transformations, Relativistic addition of
			j.	velocities, Length contraction, Time dilation, Variation of mass with velocity, Mass energy	velocities, Length contraction, Time dilation, Variation of mass with velocity, Mass energy
				relation.	relation.
B.Sc. II	1 2 0	32	32	Practicals :	Practicals :
				1)To determine the value of Stefan's Constant.	1)To determine the value of Stefan's Constant.
				2) To determine the coefficient of thermal conductivity of copper by Searle's Apparatus.	2) To determine the coefficient of thermal conductivity of copper by Searle's Apparatus.
				3) To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.	3) To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
				4) To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.	4) To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.
Month A	Month April			Module/Unit:	Sub-units planned
Lectures		Practicals	Total	Examination	Examination

Junder Teacher Incharge

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics

Annual Teaching Plan

Academic Year: **2023-24** Subject: Physics Name of the teacher: **Dr. Namrata A. Narewadikar**

ISPAN N

Month Jul	У			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Vectors	Vectors
B.Sc. 1	28	-	28	Vector algebra: Definition of vector, polar vectors and axial vectors, addition of vectors, rectangular resolution of vectors, unit vector (Def) position vector of a point, product of two vector, scalar and vector products- scalar or dot products and its geometrical interpretation, work done as a scalar product, vector or cross product and their useful results, area of parallelogram, scalar triple product, vector triple product and its geometrical interpretation, problems.	vector, polar vectors and axial vectors, addition of vectors, rectangular resolution of vectors, unit vector (Def) position vector of a point, product of two vector, scalar and vector products- scalar or dot products and its geometrical interpretation, work done as a scalar product, vector or cross product and their useful results, area of parallelogram, scalar triple
				Momentum and Energy	Momentum and Energy
				Introduction to mechanics, Mechanics of a particle- Conservation theorem of linear momentum, angular momentum, and energy	Introduction to mechanics, Mechanics of a particle- Conservation theorem of linear momentum, angular momentum, and energy

B.Sc. I	16				
	10	-	16	Practicals:	Practicals:
				1)Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope.	1)Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope.
				2) To determine the Moment of Inertia of a Flywheel.	2) To determine the Moment of Inertia of a Flywheel.
				 To determine the Moment of inertia of a disc using auxiliary annular ring. 	 To determine the Moment of inertia of a disc using auxiliary annular ring.
Month A				4) Young's modulus of material of Bar by vibration	4) Young's modulus of material of Bar by vibration
Month Au	gust			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Momentum and Energy	Momentum and Energy
B.Sc. 1 28	28	-	28	Concept of Centre of Mass, Mechanics of system of particles- Conservation theorem of linear momentum, angular momentum and energy	Concept of Centre of Mass, Mechanics of system of particles- Conservation theorem of linear momentum, angular momentum and energy
				Differential Equation	Differential Equation
				Introduction to differential equation, Ordinary and Partial differential Equations, 1 st order homogenous differential equation, 2 nd order homogenous differential equations with constants coefficients, examples	Introduction to differential equation, Ordinary and Partial differential Equations, 1 st order homogenous differential equation, 2 nd order

B.Sc. 1	16	-	16	Practicals:	Practicals:
				1)Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope.	1)Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope.
				2) To determine the Moment of Inertia of a Flywheel.	2) To determine the Moment of Inertia of a Flywheel.
				3) To determine the Moment of inertia of a disc using auxiliary annular ring.	3) To determine the Moment of inertia of a disc using auxiliary annular ring.
				4) Young's modulus of material of Bar by vibration	4) Young's modulus of material of Bar by vibration
Month Sep	otember			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Laws of motion	Laws of motion
B.Sc. I	28	-	28	Introduction of coordinate systems (Cartesian, Polar, Cylindrical and Spherical), Definition of translational and rotational motion, force, and torque, Frame of reference- Inertial and Non inertial frame with examples, Newtons laws of motion (first, second and third) with proofs	Introduction of coordinate systems (Cartesian, Polar, Cylindrical and Spherical), Definition of translational and rotational motion, force, and torque, Frame of reference- Inertial and Non inertial frame with examples, Newtons laws of motion (first, second and third) with proofs
B.Sc. I	16	-	16	Practicals:	Practicals:
				1)Modulus of rigidity of material of wire by torsional oscillations.	1)Modulus of rigidity of material of wire by torsional oscillations.
				2) Y/η of Wire by Searle's method.	2) Y/η of Wire by Searle's method.
				3)To determine g by Bar Pendulum.	3)To determine g by Bar Pendulum.
				4) To determine g by Kater's Pendulum.	4) To determine g by Kater's Pendulum.
Aonth Octo	ber		1	Module/Unit:	Sub-units planned

Lectures	Practicals	Total	Rotational motion	Rotational motion
28	-	28	Rotational variables- Angular position, Angular displacement, Angular velocity, Angular acceleration, Torque, Moment of Inertia- definition, M.L of a spherical shell about its axis of symmetry, M.L of solid cylinder about its symmetry axis, Motion of spherical shell and solid cylinder rolling down an inclined plane	Rotational variables- Angular position. Angular displacement. Angular velocity. Angular acceleration. Torque. Moment of Inertia- definition, M.I. of a spherical shell about its axis of symmetry, M.I. of solid cylinder about its symmetry axis. Motion of spherical shell and solid cylinder rolling down an inclined plane
16	-	16	Practicals:	Practicals:
			 Modulus of rigidity of material of wire by torsional oscillations. Y/η of Wire by Searle's method. To determine g by Bar Pendulum. To determine g by Kater's Pendulum. 	 Modulus of rigidity of material of wire by torsional oscillations. Y/ŋ of Wire by Searle's method. To determine g by Bar Pendulum. To determine g by Kater's Pendulum.
cember			Module/Unit:	Sub-units planned
Lectures	Practicals	Total	Vector Differential	Vector Differential
28	-	28	Introduction, Del operator, gradient of scalar field and its physical significance, divergence of vector field and its physical significance, curl of vector field	Introduction, Del operator, gradient of scalar field and its physical significance. divergence of vector field and its physical significance, curl of vector field
	28 16 16 cember Lectures	28 - 16 - 16 - cember Lectures Practicals	28 - 28 16 - 16 16 - 16 Lectures Practicals Total	28 - 28 Rotational variables- Angular position. Angular displacement. Angular displacement. Angular velocity. Angular acceleration. Torque. Moment of Inertia- definition. M.I. of a spherical shell about its axis of symmetry. M.I. of solid cylinder about its symmetry axis. Motion of spherical shell and solid cylinder rolling down an inclined plane 16 - 16 Practicals: 1)Modulus of rigidity of material of wire by torsional oscillations. 2) Y/n of Wire by Searle's method. 3)To determine g by Bar Pendulum. 4) To determine g by Kater's Pendulum. 28 - 28 28 - 28

B.Sc. 1	16	-	16	Practicals :	Practicals :
				1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.	1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.
				2) To determine constants of B. G.	2) To determine constants of B. G.
				 To compare capacitances using De'Sauty's bridge. 	 To compare capacitances using De'Sauty's bridge.
				4) To determine impedance of series LCR circuit.	4) To determine impedance of series LCR circuit.
Month Janu	ary			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Vector Integral:	Vector Integral:
B.Sc. 1	28	-	28	Line integral, surface integral, volume integral (definitions only), Gauss divergence theorem (statements and proof), Stoke's theorem, Greens symmetrical theorem.	Line integral, surface integral, volume integral (definitions only), Gauss divergence theorem (statements and proof), Stoke's theorem, Greens symmetrical theorem

B.Sc. I	16	-	16	Practicals :	Practicals :
				1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.	1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.
				2) To determine constants of B. G.	2) To determine constants of B. G.
				 To compare capacitances using De'Sauty's bridge. 	 To compare capacitances using De'Sauty's bridge.
				4) To determine impedance of series LCR circuit.	4) To determine impedance of series LCR circuit.
Month Feb	oruary			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Electrostatics	Electrostatics
B.Sc. I	28	-	28	Electrostatic field, electric flux, Gauss, theorem of electrostatics, electric potential as line integral of electric field, potential due to a point charge and group	Electrostatic field, electric flux, Gauss, theorem of electrostatics, electric potential as line integral of electric field, potential due to a point charge and group
				of point charges, electric dipole, uniformly charged spherical shell and solid	of point charges, electric dipole, uniformly charged spherical shell and solid
				sphere, calculation of electric field from potential, capacitance of an isolated	sphere, calculation of electric field from potential, capacitance of an isolated
				spherical conductor, parallel plate, spherical and cylindrical condenser, energy per	spherical conductor, parallel plate, spherical and cylindrical condenser, energy per
				unit volume in electrostatic field, problems.	unit volume in electrostatic field, problems.

B.Sc. 1	16		16	Practicals :	Practicals :
				1) To verify the Thevenin theorem.	1) To verify the Thevenin theorem.
				2) To verify the Norton theorem.	2) To verify the Norton theorem.
				 Determination of low resistance using Carey foster's Bridge. 	3) Determination of low resistance using Carey foster's Bridge.
				4)) Verification of Kirchoff's voltage and current law	4)) Verification of Kirchoff's voltage and current law
Month Marc	ch			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Dielectrics	Dielectrics
B.Sc. 1	28	-	28	Dielectric medium, polarization vector, displacement vector, Gauss's theorem in dielectrics, Parallel plate capacitor completely filled with dielectric.	Dielectric medium, polarization vector, displacement vector, Gauss's theorem in dielectrics, Parallel plate capacitor completely filled with dielectric.
B.Sc. I	16	-	16	Practicals :	Practicals :
				1) To verify the Thevenin theorem.	1) To verify the Thevenin theorem.
				2) To verify the Norton theorem.	2) To verify the Norton theorem.
				3) Determination of low resistance using Carey foster's Bridge.	3) Determination of low resistance using Carey foster's Bridge.
				4)) Verification of Kirchoff's voltage and current law	4)) Verification of Kirchoff's voltage and current law
Month April				Module/Unit:	Sub-units planned
Lectures		Practicals	Total	Examination	Examination

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous) Department of Physics

Annual Teaching Plan

Academic Year: 2023-24 Subject: Physics Name of the teacher: Dr. T. U. Urunkar

Month June				Module/Unit:	Sub-units planned
Course B.Sc. I	Lectures 08	Practicals -	Total 08	Basic Tools of Astronomers Optical telescopes-Galilean, Newtonian, Cassegranian, Hubble space telescope, Magnifying power of telescope, Resolving power of telescope, Spectroscope (prism, grating), UV, IR, Radio, X-Ray.	Basic Tools of Astronomers Optical telescopes-Galilean, Newtonian, Cassegranian, Hubble space telescope, Magnifying power of telescope, Resolving power of telescope, Spectroscope (prism, grating), UV, IR, Radio, X-Ray.
B.Sc. II		32	12	Practicals :	Practicals :
				1) To record and analyze the cooling temperature of hot object as a function of time using a thermocouple.	1) To record and analyze the cooling temperature of hot object as a function of time using a thermocouple.
				2) To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge	2) To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge
				3) Temperature of flame.	3) Temperature of flame.
				4) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow	4) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow
B.Sc. I	32	~	32	Practicals :	Practicals :
				1) Numerical Integration.	1) Numerical Integration.
				2) Numerical Differentiation.	2) Numerical Differentiation.
				3) Numerical interpolation.	3) Numerical interpolation.

				4) Solution of ordinary differential equations.	4) Solution of ordinary differential equations.
Month Ju	lly				
Course	Lectures	Practicals	Total	Module/Unit:	Sub-units planned
B.Sc. I	08		08	The Nature of Light and Message of The Star Light Light as an electromagnetic wave, Electromagnetic spectrum. Electromagnetic radiation from heated object, Doppler shift, and its applications.	The Nature of Light and Message of The Star Light Light as an electromagnetic wave, Electromagnetic spectrum. Electromagnetic radiation from heated object Doppler shift, and its applications.
B.Sc. II	-	32	32	Practicals :	Practicals :
			 Measurement of rise, fall and delay time using a CRO Measurement of distortion of a RF signal generator using distortion factor meter. 	 Measurement of rise, fall and delay time using a CRO Measurement o distortion of a RF signa generator using distortion factor meter. 	
				3) . Measurement of R, L and C using a LCR bridge/ universal bridge.	3) . Measurement of R, L and C using a LCR bridge/ universal bridge.
				4) Measurement of time period, frequency, average period using using universal counter/frequency counter.	 Measurement of time period, frequency, average period using using universal counter/frequency counter.
B.Sc. I	(H)	32	32	Practicals :	Practicals :
				 Numerical Integration. Numerical Differentiation. Numerical interpolation. Solution of ordinary 	 Numerical Integration. Numerical Differentiation. Numerical interpolation. Solution of ordinary
Month Au	ugust			differential equations.	differential equations. Sub-units planned

Course	Lectures	Practicals	Total	Module/Unit:	Sub-units planned
B.Sc. I	08	*	08	Theories on origin of stars Nebular hypothesis, Spectral classification of stars, O,B,A,F,G,K,M., Nuclear Reactions in stars, Luminosity of star, Photon diffusion time, luminosity of star, gravitational potential energy of a star, internal temperature and pressure of a star.	Theories on origin of stars Nebular hypothesis, Spectral classification of stars, O,B,A,F,G,K,M., Nuclear Reactions in stars, Luminosity of star, Photon diffusion time, luminosity of star, gravitational potential energy of a star, internal temperature and pressure of a star.
B.Sc. II	-	32	32	 Practicals : To determine wavelength Sodium &2)spectrum of Mercury light usingplane diffraction grating. 2). Goniometer I-To study cardinal points of opticalsystem. 3) Goniometer II- To study the equivalent focal length of opticalsystem. 4) To study angle of specific rotation of sugar using Polarimeter. 	 Practicals : To determine wavelength Sodium &2)spectrum of Mercury light usingplane diffraction grating. 2). Goniometer I-To study cardinal points of opticalsystem. 3) Goniometer II- To study the equivalent focal length of opticalsystem. 4) To study angle of specific rotation of sugar using Polarimeter.

B.Sc. I	32		32	Practicals :	Practicals :
				1) Measurement of terrestrial distance using Sextant.	1) Measurement of terrestrial distance using Sextant.
				2) Total internal reflection in prism.	2) Total internal reflection in prism.
				3) To use idea of parallax to determine large distance	3) To use idea of parallax to determine large distance
				4) Adjustment of spectrometer for parallel light using Schuster's method	4) Adjustment of spectrometer for parallel light using Schuster's method
Mr. d. C.	1			Module/Unit:	Sub units planned
Month Se	ptember	(p)			Sub-units planned
Course	Lectures	Practicals	Total	Study of spectra	Study of spectra
B.Sc. I	08		08	Atomic spectra-emission and absorption spectra (Fraunhofer lines), Stellar spectra, Classification of stellar spectra.	
B.Sc. II	-	32	32	Practicals :	Practicals :
				1) Characteristics of Transistor.	1) Characteristics of Transistor.
				2) Use of sextant to measure height of object.	2) Use of sextant to measure height of object.
				3) Crystal Oscillator.	3) Crystal Oscillator.
				4) Colpitts oscillator.	4) Colpitts oscillator.

B.Sc. II		32	32	Practicals :	Practicals :
				1) Measurement of terrestrial distance using Sextant.	1) Measurement of terrestrial distance using Sextant.
				2) Total internal reflection in prism.	2) Total internal reflection in prism.
				3) To use idea of parallax to determine large distance	3) To use idea of parallax to determine large distance
				4) Adjustment of spectrometer for parallel light using Schuster's method	4) Adjustment of spectrometer for parallel light using Schuster's method
Month Oc	tober/Nove	mber		Module/Unit:	Sub-units planned
	Lectures	Practicals	Total	Examination	Examination
Month De	cember			Module/Unit:	Sub-units planned
	Lectures	Practicals	Total	Fluids	Galaxies
B.Sc. I	08		08	Perfect Fluid: Assumptions, Equation of state, equation of motion, stars of uniform density, limit of mass to radius ratio. Basic equations of fluid mechanics, Energy equation, continuity equation viscosity, gas dynamics, waves and instabilities, turbulence, orbit theory, properties	Fluids Perfect Fluid: Assumptions, Equation of state, equation of motion, stars of uniform density, limit of mass to radius ratio. Basic equations of fluid mechanics, Energy equation, continuity equation viscosity, gas dynamics, waves and instabilities, turbulence, orbit theory, properties
B.Sc. II	-	32	32	Practicals :	Practicals :
				1) Ic 555 timer.	1) Ic 555 timer.
				2) Electronic switch using transistor.	2) Electronic switch using transistor.
		x .		3) Characteristics of FET.	3) Characteristics of FET.
				4) FET as VVR.	4) FET as VVR.

B.Sc. I - 32 22	
32 32 Practicals :	Practicals :
1)I-V Characteristics of cell.	f solar 1)I-V Characteristics of solar cell.
2) Goniometer: Equivale focal length	focal length
3) Study of Lissajous fig using CRO.	gures 3) Study of Lissajous figures using CRO.
4) Determination of wavelength of light by spectrometer.	4) Determination of wavelength of light by spectrometer.
Course Lectures Practicals Total H	Sub-units planned
B.Sc. I 08 - 08	Hydrodynamics
B.Sc. II - 22	Equation of continuity - conservation of mass, Ideal fluid and Euler's equation of motion, Navier Stokes equation for viscous fluid.
32 32 Practicals :	Practicals :
 To determine the wavelength of sodium light using Fresenel Biprism. To determine the Resolving Power of a Prism. To determine the Resolving Power of a Plane Diffraction Grating. To determine wavelength of Laser light using diffraction of single slit. 	 Fracticals : To determine the wavelength of sodium light using Fresenel Biprism. To determine the Resolving Power of a Prism. To determine the Resolving Power of a Plane Diffraction Grating. To determine wavelength of Laser light using

B.Sc. I	-	32	32	Practicals :	Practicals :
				1) Determination of Planck's constant using LED	1) Determination of Planck's constant using LED
				2) Divergence of LASER beam	2) Divergence of LASER beam
				3) Measurement of wavelength of given LASER source using diffraction grating.	3) Measurement of wavelength of given LASER source using diffraction grating.
				4) Calibration of spectrometer.	4) Calibration of spectrometer.
Month Fel	bruary			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Stellar evolution I	Stellar evolution I
B.Sc. I	08		08	Birth of a star, maturity of a star, ageing of stars, death of a star, supernova explosion, pulsars and black holes.	Birth of a star, maturity of a star, ageing of stars, death of a star, supernova explosion, pulsars and black holes.

B.Sc. II	50	32	32	Practicals :	Practicals :
				1) To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.	1) To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
				2) To observe the limitations of a multimeter for measuring high frequency voltage and currents.	2) To observe the limitations of a multimeter for measuring high frequency voltage and currents.
				3) To measure Q of a coil and its dependence on frequency using a Q-meter.	3) To measure Q of a coil and its dependence on frequency using a Q-meter.
				4) Measurement of voltage, frequency, time period and phase angle using CRO.	4) Measurement of voltage, frequency, time period and phase angle using CRO.
B.Sc. I	a 2	32	32	Practicals :	Practicals :
				1) Determination of Planck's constant using LED	1) Determination of Planck's constant using LED
				2) Divergence of LASER beam	2) Divergence of LASER beam
				3) Measurement of wavelength of given LASER source using diffraction grating.	3) Measurement of wavelength of given LASER source using diffraction grating.
				4) Calibration of spectrometer.	4) Calibration of spectrometer.
Month Ma	arch			Module/Unit:	Sub-units planned

Course	Lectures	Practicals	Total	StellarevolutionIIStellar evolution IIHertzsprung-Russell(H-R)Hertzsprung-Russell (H-R)diagram-whiteandreddwarfs, electron in a whitedwarfs, electron in a whitedwarfs, electron in a whitedwarf, Chandrasekharlimit,Neutron stars
B.Sc. I	08	-	08	
B.Sc. 1	I -	32	32	Practicals :Practicals :1) To determine the value of Stefan's Constant.1) To determine the value of Stefan's Constant.2) To determine the coefficient of thermal conductivity of copper by Searle's Apparatus.1) To determine the value of Stefan's Constant.3) To determine the Coefficient of Thermal3) To determine the Thermal
				CoefficientofThermalCoefficientofThermalConductivityofCubyAngstrom's Method.Angstrom's Method.Angstrom's Method.4)Todeterminethecoefficientofthermalconductivityofabadconductor by Lee andconductor by Lee andCharlton's disc method.Coefficientof

	32	32	Practicals :	Practicals :
3.Sc. 1 -			1) Determination of Planck's constant using LED	1) Determination of Planck's constant using LED
			2) Divergence of LASER beam	2) Divergence of LASER beam
			3) Measurement of wavelength of given LASER source using diffraction grating.	3) Measurement of wavelength of given LASER source using diffraction grating.
			4) Calibration of spectrometer.	spectrometer.
Month April			Module/Unit:	Sub-units planned
Lectures	Practicals	Total	Examination	Examination

Teacher Incharge

le DEPARTMENDOF PHYSICS VIVEKANAND COLLEGE, KOURAPUR (EMPOWERED AUTONOMOUS)

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics Annual Teaching Plan

Academic Year: 2023-24 Subject: Physics Name of the teacher: Mr. Anurath Nagnath Gore

Month July				Module/Unit:	Sub-units planned
Course B.Sc. I	Paper Mechanics – II	Lectures 16	Total 16	Newton's Law of Gravitation, Motion of a particle in a central force field (motion in a plane, angular momentum is conserved, areal velocity is constant), Kepler's Laws (statement only), Satellite in circular orbit and applications, Geosynchronous orbits, Weightlessness, Basic idea of global positioning system (GPS) and its applications.	Newton's Law of Gravitation, Motion of a particle in a central force field (motion in a plane, angular momentum is conserved, areal velocity is constant), Kepler's Laws (statement only), Satellite in circular orbit and applications, Geosynchronous orbits, Weightlessness, Basic idea of global positioning system (GPS) and its applications.
B.Sc. II		Practicals 32	32	1. Measurement of Planck's constant using Black body radiation. 2. To determine the value of Stefan's 4 th. power of low. 3. To study Lissajous figures by using CRO. 4. To determine the frequency of an electrically maintained tuning fork by Melde's experiment and to verify $\lambda 2$ - T Law. 5. Goniometer I-To study cardinal points of optical system. 6. To determine the Resolving Power of a Plane Diffraction Grating. 7. Characteristics of Transistor. 8.A.C/D.C Sentivity by C.R.O	1. Measurement of Planck's constant using Black body radiation. 2. To determine the value of Stefan's 4 th. power of low. 3. To study Lissajous figures by using CRO. 4. To determine the frequency of an electrically maintained tuning fork by Melde's experiment and to verify $\lambda 2$ - T Law. 5. Goniometer I-To study cardinal points of optical system. 6. To determine the Resolving Power of a Plane Diffraction Grating. 7. Characteristics of Transistor. 8. A. C/D.C Sentivity by C.R.O
Month Augu	ıst			Module/Unit:	Sub-units planned
Course B.Sc. I	Paper Mechanics – II	Lectures 16	Total 16	Unit-I. 2. Oscillations	Simple harmonic motion (SHM), Differential

Sc. II	Practicals 3	2	32	 Measurement of Planck's constant using Black body radiation. To determine the value of Stefan's 4 th. power of low. To study Lissajous figures by using CRO. To determine the frequency of an electrically maintained tuning fork by Melde's experiment and to verify λ2– T Law. Goniometer I-To study cardinal points of optical system. 	6.10 determine the Resolving Power of a Plane
				 6. To determine the Resolving Power of a Plane Diffraction Grating. 7. Characteristics or Transistor. 8. A. C/D.C Sentivity by C.R.O 	 T. Characteristics of Transistor. S.A.C/D.C Sentivity by C.R.O
Month September				Module/Unit:	Sub-units planned
Course	paper	Lectures	Total	Module/Onit.	
B.Sc. I	Mechanics – II	16	16	Unit-II- 3 .Elasticity	Bending of beam, Bending moment, Cantilever (without considering weight of cantilever Beamsupported at both th ends (without considering weight of beam). Torsional oscillation, Work done twisting a wire, Twistir couple on a cylinde Torsional pendulum Determination of Rigidi modulus and moment inertia, Determination of η and σ by Searl method
		Practica	ls Tot	al Module/Unit:	Sub-units planned

	1.20	1.00		
B.Sc-II	32	32	 To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. To determine coefficient of viscosity of water by capillary flow method (Poiseuille's Method. Viscosity of liquid by Searl's viscometer. Goniometer II- To study the equivalent focal length of optical system. To determine the Resolving Power of a Prism. Transistor as a regulated power supply. Costant of B.G. 	 To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. To determine coefficient of viscosity of water by capillary flow method (Poiseuille's Method. Viscosity of liquid by Searl's viscometer. Goniometer II- To study the equivalent focal length of optical system. To determine the Resolving Power of a Prism. Transistor as a regulated power supply. Costant of B.G.
Month October			Module/Unit:	Sub-units planned
Course- B.Sc. I Mechanics – II	Lecture 16	Total 16	Unit-II .4. Surface - Tension:	Surface Tension, Angle of contact and wettability, relation between surface tension, excess of pressure and radius of curvature, Experimental determination of surface tension by Jaeger's method, Factors affecting surface tension, Applications of surface tension.
Course	Practicals	Total	Module/Unit:	Sub-units planned
B.Sc-II			 To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. To determine coefficient of viscosity of water by capillary flow method (Poiseuille's Method. 	 To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. To determine coefficient of viscosity of water by capillary flow method (Poiseuille's Method.

			 4. Viscosity of liquid by Searl's viscometer. 5. Goniometer II- To study the equivalent focal length of optical system. 6. To determine the Resolving Power of a Prism. 7. Transistor as a regulated power supply. 8. Costant of B.G 	 4. Viscosity of liquid bySearl's viscometer. 5. Goniometer II- To study the equivalent focal length of optical system. 6. To determine the Resolving Power of a Prism. 7. Transistor as a regulated power supply. 8. Costant of B.G
Month December			Module/Unit:	Sub-units planned
Course: B.ScI	Lecture	Total	Unit-1.1. Vector	1. Vector Differential:
Paper- ELECTRICITY AND MAGNETISM – II	16	16	Differential	(07) Introduction, Del operator, gradient of scalar field and its physical significance, divergence of vector field and its physical significance, curl of vector field
B.Sc-II	Practicals 32	Total 32	 To determine the the thermal conductivity of good conductor by Forb's Method. Temperature of flame. To determine the velocity of sound in air by resonating bottle. To determine the velocity of sound in air by Kundt's tube. Determination of Cuachy's constant. Determination of wavelength of light using Newton's ring. Resistance of B.G. by half deflection method. Bridge rectifier with π filter. 	1. To determine the the thermal conductivity of good conductor by Forb's Method. 2. Temperature of flame. 3. To determine the velocity of sound in air by resonating bottle. 4. To determine the velocity of sound in air by Kundt's tube. 5. Determination of Cuachy's constant. 6. Determination of wavelength of light using Newton's ring. 7. Resistance of B.G. by half deflection method 8. Bridge rectifier with π filter
Month January				
Course- B.ScI			Module/Unit:	Module/Unit:
Paper- ELECTRICITY AND MAGNETISM – II	Lecture 16	Total 16	Unit-1.2.Vector Integral	Line integral, surface integral, volume integral (definitions only), Gauss divergence theorem (statements and proof), Statements of Stoke's theorem, Greens symmetrical theorem.
Course- B.ScII	Practicals 32	Total 32	Module/Unit:	Module/Unit:

				+ .1 .1 .
e.		t ا ا	hermal conductivity of good conductor by Forb's Method. 2. Temperature of flame. 3. To determine the velocity of sound in air by resonating bottle.	 1. To determine the the thermal conductivity of good conductor by Forb's Method. 2. Temperature of flame. 3. To determine the velocity of sound in air by resonating bottle. 4. To determine the velocity of sound in air by Kundt's tube. 5. Determination of Cuachy's constant. 6. Resolving power of grating. 7. Transistor as regulated power supply.
Month February	Lecture	Total	Module/Unit	Sub-units planned
Paper- ELECTRICITY AND MAGNETISM – II	16	16	1. Electrostatics: (10) Electrostatic field, electric flux, Gauss's theorem of electrostatics, electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere, calculation of electric field from potential, capacitance of an isolated spherical conductor, parallel plate, spherical and cylindrical condenser energy per unit volume in electrostatic field.	spherical and cylindrical condenser, energy per unit
Course- B.Sc-II	Practicals 32	Total 32		 of resistance of parameter. 2. Variation of thermos emacross two junction of thermocouple with temperature. 3. To investigate the motion of coupled oscillators. 4. Coilpitt's oscillator. 5. Determination of thickness of thin film usi interference of wedge shaped thin film. 6. Polarimeter. 7. Calibration of bridge

Month March	Lecture	Tota		
0	Deeture	1014	I Module/Unit	Sub-units planned
Course- B.ScI				
Paper- ELECTRICITY AND MAGNETISM – II	16	16	unit-II.4. Dielectrics:	Dielectric medium, polarization vector, displacement vector, Gauss's theorem in dielectrics, Parallel plate capacitor completely filled with dielectric.
Course- B.Sc-II			Module/Unit	Sub-units planned
	Practicals	Total		Sub-units planned
nth March	32	32	 To determine the temperature of coefficient of resistance of platinum resistance thermometer. Variation of thermos emf across two junction of thermocouple with temperature. To investigate the motion of coupled oscillators. Coilpitt's oscillator. Determination of thickness of thin film using interference of wedge shaped thin film. Polarimeter. Calibration of bridge wire by Griffith's method. High resistance by Leakage method. 	of resistance of platinum resistance thermometer. 2. Variation of thermos emf across two junction of thermocouple with temperature. 3. To investigate the motion of coupled oscillators. 4. Coilpitt's oscillator. 5. Determination of thickness of thin film using interference of wedge shaped thin film. 6. Polarimeter. 7. Calibration of bridge wire by Griffith's method. 8. High resistance by Leakage method.
_			Module/Unit	Sub-units planned
1. Contract (1. Co	•	-	Examination	Examination

Teacher Incharge

selectte HEAD DEPARTMENT OF PHYSICS VIVEKANAND COLLEGE, KOLMAPUR (EMPOWERED AUTONOMOUS)

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous) Department of Physics Annual Teaching Plan

Academic Year: **2023-24** Subject: Physics Name of the teacher: **Miss S. P. Patil**

Month Ju	ine			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	History of Astronomy	History of Astronomy
B.Sc. I	08	-	08	Babylonian astronomy, Greek astronomy, Aristotle work, Ptolemy's astronomical work, Copernican heliocentric theory, Tychonian system.	Babylonian astronomy, Greek astronomy, Aristotle work, Ptolemy's astronomical work, Copernican heliocentric theory, Tychonian system
B.Sc. II	12	-	12	History of Astronomy and Apparent Luminosity of Stars:-	History of Astronomy and Apparent Luminosity of Stars:-
				Babylonian astronomy, Greek astronomy, Aristotle work, Ptolemy's astronomical work,	Babylonian astronomy, Greek astronomy, Aristotle work, Ptolemy's astronomical work,
				Copernican heliocentric theory, Tychonian system, Luminosity of stars, Magnitude scale,	Copernican heliocentric theory, Tychonian system, Luminosity of stars, Magnitude scale,
				expression for luminosity ,flux and magnitude ,Luminosity measurement(1)Visual method (2)	expression for luminosity ,flux and magnitude ,Luminosity measurement(1)Visual method (2)
				Photographic method, and (3) Photoelectric method.	Photographic method, and (3) Photoelectric method.
B.Sc. I	32	-	32	Practicals:	Practicals:
				1)Measurements of length (or diameter) using Vernier calliper, screw gauge,	1)Measurements of length (or diameter) using Vernier calliper, screw gauge,

Month Ju	V			 spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration Module/Unit: 	 spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration Sub-units planned
Course	Lectures	Practicals	Total	The Sky, Calendar and Celestial coordinates The moon, Sun and stars as calendars, sidereal day, sidereal time.	The Sky, Calendar and Celestial coordinatesThe moon, Sun and stars as calendars, sidereal day, sidereal time.
B.Sc. I	08		08		
B.Sc. II	12		12	The Sky , Calendar and Celestial coordinates The moon, Sun and stars as calendars, sidereal day, sidereal time, appearance of the celestial, sphere and its parts, celestial co-ordinates, longitude and latitude on the earth celestial co-ordinates,	The Sky , Calendar and Celestial coordinates The moon, Sun and stars as calendars, sidereal day, sidereal time, appearance of the celestial, sphere and its parts, celestial co-ordinates, longitude and latitude on the earth celestial co-ordinates,
B.Sc. I	-	32	32	 Practicals : 1) Numerical Integration. 2) Numerical Differentiation. 3) Numerical interpolation. 4) Solution of ordinary differential equations. 	 Practicals : 1) Numerical Integration. 2) Numerical Differentiation. 3) Numerical interpolation. 4) Solution of ordinary differential equations.

Ionth Aug	gust			Module/Unit:	Sub-units planned
3.Sc. I	08	-	08	The Stellar distances Measurement of terrestrial distances, distance of moon, distance of planets, Astronomical unit aberration of star light,	The Stellar distances Measurement of terrestrial distances, distance of moon, distance of planets, Astronomical unit aberration of star light,
B.Sc. II	12	-	12	The Stellar distances Measurement of terrestria distances, distance of moor distance of planets, Astronomical unit aberration of star ligh Definition of parallax an Geocentric parallax Trigonometric parallax of stars, light years and parsec.	n, distances, distance distance of planets, Astronomical unit aberration of star light, nd Definition of parallax and Geocentric parallax, Trigonometric parallax of
B.Sc. I	32	-	32	diameter) using ver	 microscope. 2) To determine the Mome of Inertia of a Flywheel. 3) To determine the Mome of inertia of a disc us auxiliary annular ring. 4) Young's modulus of

Month Se	ptember			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Constellations, Comets, Asteroids, Meteors	Constellations, Comets Asteroids, Meteors
B.Sc. I	08		08	Identification of stars ,Constellations – Aries, Pisces, Orion, Asterisms – summer triangle and Big Dipper (Saptarishi). Comets, Asteroids, Meteors- Structure, chemical composition and orbits.	Identification of stars ,Constellations – Aries Pisces, Orion, Asterisms – summer triangle and Big Dipper (Saptarishi). Comets, Asteroids, Meteors- Structure, chemical composition and orbits.
B.Sc. II	12		12	Constellations, Comets, Asteroids, Meteors	Constellations, Comets Asteroids, Meteors
				Identification of stars ,Constellations – Aries, Pisces, Orion, Asterisms – summer triangle and	Identification of stars ,Constellations – Aries Pisces, Orion, Asterisms – summer triangle and
				Big Dipper (Saptarishi). Comets, Asteroids, Meteors- Structure, chemical composition and orbits.	Big Dipper (Saptarishi). Comets, Asteroids, Meteors- Structure, chemical composition and orbits.
B.Sc. II	90	32	32	Practicals:	Practicals:
				1) Modulus of rigidity of material of wire by torsional oscillations.	1) Modulus of rigidity of material of wire by torsional oscillations.
				2) Y/ η of Wire by Searle's method.	2) Y/ η of Wire by Searle's method.
				3)To determine g by Bar Pendulum.	3)To determine g by Bar Pendulum.
				4) To determine g by Kater's Pendulum.	4) To determine g by Kater's Pendulum.
Month Oc	tober/Nove	mber		Module/Unit:	Sub-units planned
	Lectures	Practicals	Total	Examination	Examination

Month De	ecember			Module/Unit:	Sub-units planned
	Lectures	Practicals	Total	Galaxies	Galaxies
B.Sc. I	08		08	Components of the Universe: Introduction of Stars, Planets, Asteroids, Meteors, Comets, Galaxies, Formation of galaxies, visual morphology of galaxy, Types of galaxiesElliptical, Spiral, Barred spiral, irregular, Hubble tuning fork diagram, Peculiar galaxies, Radio galaxies, Seyfert galaxy, Quasars. [Galaxy: Nomenclature, observation theory, Types and morphology, properties, formation and evolution, large scale structure]	Peculiar galaxies, Radio galaxies, Seyfert galaxy
B.Sc. II	12		12	Galaxies Components of the Universe: Introduction of Stars, Planets, Asteroids, Meteors, Comets, Galaxies, Formation of galaxies, visual morphology of galaxy, Types of galaxiesElliptical, Spiral, Barred spiral, irregular, Hubble tuning fork diagram, Peculiar galaxies, Radio galaxies, Seyfert galaxy, Quasars. [Galaxy: Nomenclature, observation theory, Types and morphology, properties, formation and evolution, large scale structure]	Introduction of Stars, Planets Asteroids, Meteors, Comets Galaxies, Formation of galaxies, visual morphology of galaxy, Types of galaxiesElliptical, Spiral Barred spiral, irregular Hubble tuning fork diagram Peculiar galaxies, Radio galaxies, Seyfert galaxy Quasars. [Galaxy]
B.Sc. I	-	32	32	Practicals: 1) Modulus of rigidity of material of wire by torsional oscillations.	Practicals: 1) Modulus of rigidity of material of wire by torsional oscillations.
				 Y/η of Wire by Searle's method. 	2) Y/η of Wire by Searle's method.

.

Month Jar				3) To determine g by Bar Pendulum.4) To determine g by Kater's Pendulum.	 3) To determine g by Bar Pendulum. 4) To determine g by Kater' Pendulum.
· · · · · · · · · · · · · · · · · · ·				Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Milky Way galaxy	Milky Way galaxy
B.Sc. I	08	-	08	Shape of the galaxy, interstellar medium and molecules, Radio emission from interstellar carbon monoxide, clusters of stars, Galactic clusters. [Appearance, size and mass, contents, structure, formation, environment, astronomical history]	Shape of the galaxy, interstellar medium and molecules, Radio emission from interstellar carbon monoxide, clusters of stars, Galactic clusters. [Appearance, size and mass, contents, structure, formation, environment, astronomical history]
3.Sc. II	12			Milky Way galaxy Shape of the galaxy, interstellar medium and molecules, Radio emission from interstellar carbon monoxide, clusters of stars, Galactic clusters. [Appearance, size and mass, contents, structure, formation, environment, astronomical history]	Milky Way galaxy Shape of the galaxy, interstellar medium and molecules, Radio emission from interstellar carbon monoxide, clusters of stars, Galactic clusters. [Appearance, size and mass, contents, structure, formation, environment, astronomical history]

÷

B.Sc. II	~	32	32	Practicals :	Practicals :
				 Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity. 	 Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.
				2) To determine constants of B. G.	2) To determine constants of B. G.
				3) To compare capacitances using De'Sauty's bridge.	3) To compare capacitances using De'Sauty's bridge.
				4) To determine impedance of series LCR circuit.	4) To determine impedance of series LCR circuit.
Month Fe	bruary			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Cosmology	Cosmology
B.Sc. I	08		08	The expanding universe, Big Bang universe, the steady state cosmology and oscillating universe, Hubble law. Hubble constant, cosmological tests.	The expanding universe, Big Bang universe, the steady state cosmology and oscillating universe, Hubble law. Hubble constant, cosmological tests.
B.Sc. II	12	-	12	Cosmology The expanding universe, Big Bang universe, the steady state cosmology and oscillating universe, Hubble law. Hubble constant, cosmological tests.	Cosmology The expanding universe, Big Bang universe, the steady state cosmology and oscillating universe, Hubble law. Hubble constant, cosmological tests.

		32	32	Practicals :	Practicals :
3.Sc. I		52		 Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity. 	 Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.
				2) To determine constants of B. G.	2) To determine constants of B. G.
				3) To compare capacitances using De'Sauty's bridge.	 To compare capacitances using De'Sauty's bridge.
				4) To determine impedance of series LCR circuit.	4) To determine impedance of series LCR circuit.
Month M	larah			Module/Unit:	Sub-units planned
Month M			Total	The Solar system	The Solar system
Course	Lectures	Practicals		Origin of the solar system and planets, Basic structure of Sun -Sun's interior, the photosphere, the solar	of Sun -Sun's interior, the photosphere, the solar
B.Sc. 1	08	-	08	atmosphere (chromosphere and corona). Sunspots, Sun' rotation and Solar magneti field, Explanation for observed features of sunspots Planetary properties and quic facts of Mercury, Venus, an Mars. Moon, Structure of th moon and its quick facts	 and corona). Sunspots, Sun's rotation and Solar magnetic field, Explanation for observed features of sunspots Planetary properties and quick facts of Mercury,

B.Sc. II	12	-	12	The Solar system	The Solar system
				Origin of the solar system and planets, Basic structure of Sun -Sun's interior, the photosphere, the solar atmosphere (chromospheres and corona). Sunspots, Sun's rotation and Solar magnetic field, Explanation for observed features of sunspots, Planetary properties and quick facts of Mercury, Venus, and Mars. Moon, Structure of the moon and its quick facts	Origin of the solar system and planets, Basic structure of Sun -Sun's interior, the photosphere, the solar atmosphere (chromospheres and corona). Sunspots, Sun's rotation and Solar magnetic field, Explanation for observed features of sunspots, Planetary properties and quick facts of Mercury, Venus, and Mars. Moon, Structure of the moon and its quick facts
B.Sc. I	93	32	32	Practicals :	Practicals :
				1) To verify the Thevenin theorem.	1) To verify the Thevenin theorem.
				2) To verify the Norton theorem.	2) To verify the Norton theorem.
				3) Determination of low resistance using Carey foster's Bridge.	3) Determination of low resistance using Carey foster's Bridge.
				4)) Verification of Kirchoff's voltage and current law	4)) Verification of Kirchoff's voltage and current law
Month Ap	bril		1	Module/Unit:	Sub-units planned
Lectures		Practicals	Total	Examination	Examination

Teacher Incharge

the sela HEAD DEPARTMENDOF PHYSICS VIVEKANAND COLLEGE, KOLHAPUR (EMPOWERED AUTONOMOUS)

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous) Department of Physics

Annual Teaching Plan

Academic Year: **2023-24** Subject: Physics Name of the teacher: **Miss G. G. Jadhav**

Month Ju	ine			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Stellar evoluation Birth of a star, maturity of a	Stellar evoluation Birth of a star, maturity of a star,
B.Sc. II	12	-	12	star, ageing of stars, death of a star, supernova explosion, pulsars and black holes.	ageing of stars, death of a star, supernova explosion, pulsars and black holes
B.Sc. I	~	32	32	 Practicals: 1)Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 	 Practicals: 1) Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration
Month Ju	ıly			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Stellar evoluation	Stellar evoluation

B.Sc. II	12	*	12	Hertzsprung-Russell (H-R) diagram- white and red dwarfs, electron in a white dwarf, Chandrasekhar limit, Neutron stars	Hertzsprung-Russell (H-R) diagram- white and red dwarfs, electron in a white dwarf, Chandrasekhar limit, Neutron stars
B.Sc. I		32	32	 Practicals: 1)Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration 	 Practicals: 1) Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. 2) To determine the Moment of Inertia of a Flywheel. 3) To determine the Moment of inertia of a disc using auxiliary annular ring. 4) Young's modulus of material of Bar by vibration
Month A	ugust			Module/Unit:	Sub-units planned
Course B.Sc. II	Lect ures 12	Practicals -	Total	Theories on origin of stars Nebular hypothesis ,Spectral classification of stars, O,B,A,F,G,K,M., Nuclear Reactions in stars,	Theories on origin of stars Nebular hypothesis ,Spectral classification of stars, O,B,A,F,G,K,M., Nuclear Reactions in stars,

B.Sc.		32	32	Practicals:	Practicals:
				1)Modulus of rigidity of material of wire by torsion oscillations.	1)Modulus of rigidity of al material of wire by torsional oscillations.
				2) Y/η of Wire by Searle's method.	2) Y/η of Wire by Searle's method.
				3)To determine g by Bar Pendulum.	3)To determine g by Bar Pendulum.
				4) To determine g by Kater Pendulum.	's 4) To determine g by Kater's Pendulum.
M					
Month S				Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Theories on origin of stars	
	uies			Luminosity of star. Photo	I uminosite C
B.Sc. II	12	-	12	diffusion time, luminosity of star, gravitational potentia energy of a	of diffusion time, luminosity of al star, gravitational potential energy of a
B.Sc. I		32		star, internal temperature and pressure of a star.	star, internal temperature and pressure of a star.
		52	32	Practicals:	Practicals:
				1)Modulus of rigidity of material of wire by torsional oscillations.	1)Modulus of rigidity of material of wire by torsional oscillations.
				2) Y/η of Wire by Searle's method.	 2) Y/η of Wire by Searle's method.
				3)To determine g by Bar Pendulum.	3)To determine g by Bar Pendulum.
lonth Oct	oher			4) To determine g by Kater's Pendulum.	4) To determine g by Kater's Pendulum.
		D		Module/Unit:	Sub-units planned
	Lect ires	Practicals	Total	Examination	Examination
onth Dec	ember			Module/Unit:	
L	ect	Practicals	Total		Sub-units planned
1	res		Total	Magneto hydrodynamics	Magneto hydrodynamics

B.Sc.	II 12	-	12	Motion of charged particle is electromagnetic field, Idea hydro magnetic equation, Characteristics of plasma in magnetic field plasma	al electromagnetic field, Idea hydro magnetic equation,
B.Sc. I	5	32	32	Practicals :	Practicals :
			, ,	1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.	1)Use a Multimeter for
				2) To determine constants of B. G.	2) To determine constants of B. G.
				3) To compare capacitances using De'Sauty's bridge.	3) To compare capacitances using De'Sauty's bridge.
				4) To determine impedance of series LCR circuit.	4) To determine impedance of series LCR circuit.
Month Ja	anuary			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Magneto hydrodynamics	Magneto hydrodynamics
B.Sc. II	12	1=:	12	Diffusion and frozening effect,	Diffusion and frozening effect,
				Magnetohydrodynamic	Magnetohydrodynamic equation -magnetic pressure and magnetic tension, confinement of
COLLA	-				

B.Sc. I	÷	32	32	Practicals :	Practicals :
				1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.	1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.
				2) To determine constants of B. G.	2) To determine constants of B. G.
				3) To compare capacitances using De'Sauty's bridge.	3) To compare capacitances using De'Sauty's bridge.
				4) To determine impedance of series LCR circuit.	4) To determine impedance of series LCR circuit.
Month Fe	ebruary			Module/Unit:	Sub-units planned
Course	Lect ures	Practicals	Total	Hydrodynamics Equation of continuity -	Hydrodynamics Equation of continuity -
B.Sc. II	12		12	conservation of mass, Ideal fluid and Euler's equation of motion, Navier-Stokes equation for viscous fluid.	conservation of mass, Ideal fluid and Euler's equation of motion, Navier-Stokes equation for viscous fluid.

B.Sc. I	-	32	32	Practicals :	Derect
					Practicals :
				1) To verify the Thevenin theorem.	1) To verify the Thevenin theorem.
				2) To verify the Norton theorem.	2) To verify the Norton theorem.
				3) Determination of low resistance using Carey foster's Bridge.	3) Determination of low resistance using Carey foster's Bridge.
				4)) Verification of Kirchoff's voltage and current law	4)) Verification of Kirchoff's voltage and current law
Month N	Aarch			Module/Unit:	
Course	Lect	Practicals	TI		Sub-units planned
	ures	Tracticals	Total	Hydrodynamics	Hydrodynamics
B.Sc. II	12	1	12	Ideal fluid and Euler's equation of motion,	Ideal fluid and Euler's equation of motion,
				Navier-Stokes equation for viscous fluid.	Navier-Stokes equation for viscous fluid.
B.Sc. I		32	32	Practicals :	D
				- 22	Practicals :
				1) To verify the Thevenin theorem.	1) To verify the Thevenin theorem.
				2) To verify the Norton theorem.	2) To verify the Norton theorem.
				3) Determination of low resistance using Carey foster's Bridge.	3) Determination of low resistance using Carey foster's Bridge.
				4)) Verification of Kirchoff's voltage and current law	4)) Verification of Kirchoff's voltage and current law
10nth Apr	il			Module/Unit:	Sub-units planned
ectures		Practicals	Total	Examination	
					Examination

Gadhall Teacher Incharge

-

"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha's Vivekanand College, Kolhapur (Autonomous)

Department of Physics

Annual Teaching Plan

Academic Year: 2023-24 Subject: Physics Name of the teacher: Miss S. S. Gawade

Month Ju	ne			Module/Unit:	Sub-units planned	
Course B.Sc. II	Lectures 12	Practicals	Total 12	The Nature of Light and Message of The Star LightLight as an electromagnetic waves, Electromagnetic spectrum. Electromagnetic radiation	The Nature of Light and Message of The Star LightLight as an electromagnetic waves,Electromagnetic spectrum.Electromagnetic radiation	
B.Sc. I		32	32	 Practicals: Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. To determine the Moment of Inertia of a Flywheel. To determine the Moment of inertia of a disc using auxiliary annular ring. Young's modulus of material of Bar by vibration 	 Practicals: 1) Measurements of length (o diameter) using Vernier calliper screw gauge, spherometer and travelling microscope. 2) To determine the Moment o Inertia of a Flywheel. 3) To determine the Moment o inertia of a disc using auxiliary annular ring. 4) Young's modulus of material Bar by vibration 	
Month Ju	ly		-	Module/Unit:	Sub-units planned	
Course	Lectures	Practicals	Total			

B.Sc. 1 II	2	3	12	The Nature of Light and Message of The Star Light	The Nature of Light and Message of The Star Light
				Heated object, Doppler shift and its applications, Atomic spectra-emission and absorption spectra (Fraunhofer lines), Stellar spectra, Classification of stellar spectra	Heated object, Doppler shift and its applications, Atomic spectra- emission and absorption spectra (Fraunhofer lines), Stellar spectra, Classification of stellar spectra
B.Sc		32	32	Practicals:	Practicals:
I		-		 Measurements of length (or diameter) using Vernier calliper, screw gauge, spherometer and travelling microscope. To determine the Moment of Inertia of a Flywheel. To determine the Moment of inertia of a disc using auxiliary annular ring. Young's modulus of material of Bar by vibration 	 Measurements of length (or diameter) using Vernier calliper. screw gauge, spherometer and travelling microscope. To determine the Moment of Inertia of a Flywheel. To determine the Moment of inertia of a disc using auxiliary annular ring. Young's modulus of materialof Bar by vibration
Month Au	gust			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Basic Tools of Astronomers	Basic Tools of Astronomers
B.Sc. III	12		12	Optical telescopes-Galilean, Newtonian, Cassegranian, Hubble space telescope,	Optical telescopes-Galilean Newtonian, Cassegranian, Hubble space telescope,

B.Sc. I	-	32	32	Practicals:	Practicals:
				1)Modulus of rigidity of material of wire by torsional oscillations.	1)Modulus of rigidity of material of wire by torsional oscillations.
				2) Y/η of Wire by Searle's method.	2) Y/η of Wire by Searle's method.
				3)To determine g by Bar Pendulum.	3)To determine g by Bar Pendulum.
				4) To determine g by Kater's Pendulum.	4) To determine g by Kater's Pendulum.
Month Sep	otember			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Basic Tools of Astronomers	Basic Tools of Astronomers
				Magnifying power of telescope, Resolving power of	Magnifying power of telescope Resolving power of telescope
B.Sc. II	12		12	telescope, Spectroscope (prism, grating), UV, IR,	Spectroscope (prism, grating) UV, IR,
*				Radio, X-Ray and Gravitational waves astronomy.	Radio, X-Ray and Gravitational waves astronomy.
B.Sc. I	2	32	32	Practicals:	Practicals:
				1)Modulus of rigidity of material of wire by torsional oscillations.	1)Modulus of rigidity of material of wire by torsional oscillations.
				2) Y/η of Wire by Searle's method.	2) Y/ η of Wire by Searle's method.
				3)To determine g by Bar Pendulum.	3)To determine g by Bar Pendulum.
				4) To determine g by Kater's Pendulum.	4) To determine g by Kater's Pendulum.
Month October				Module/Unit:	Sub-units planned
	T	Practicals	Total	Examination	Examination
	Lectures				
Month Dec				Module/Unit:	Sub-units planned

÷

B.Sc. II	12	-	12	Perfect Fluid: Assumptions ,Equation of state, equation of motion, TOV equation, stars of uniform density, limit of mass to radius ratio.	Perfect Fluid: Assumption ,Equation of state, equation of motion, TOV equation, stars of uniform density, limit of mass to radius ratio.
B.Sc. I		32	32	Practicals :	Practicals :
				1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.	1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.
				2) To determine constants of B. G.	2) To determine constants of B. G.
				3) To compare capacitances using De'Sauty's bridge.	3) To compare capacitances using De'Sauty's bridge.
				4) To determine impedance of series LCR circuit.	4) To determine impedance of series LCR circuit.
Month Jan	uary			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Fluids	Fluids
B.Sc. II	12	-	12	Basic equations of fluid mechanics, Energy	Basic equations of fluid mechanics, Energy
				equation, continuity equation viscosity, gas dynamics, waves and instabilities, turbulence, orbit theory, properties	equation, continuity equation viscosity, gas dynamics, waves and instabilities, turbulence, orbit theory, properties

÷

B.Sc. I	-	32	32	Practicals :	Practicals :
				1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.	1)Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c), Checking electrical fuses and Continuity.
				2) To determine constants of B. G.	2) To determine constants of B. G.
				3) To compare capacitances using De'Sauty's bridge.	3) To compare capacitances using De'Sauty's bridge.
6				4) To determine impedance of series LCR circuit.	4) To determine impedance of series LCR circuit.
Month Feb	pruary]	I	Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Electrodynamics	Electrodynamics
B.Sc. II	12	-	12	Scalar electric potentiall (φ),Vector magnetic potential(A), Poisson's and Laplace's equation, Maxwell's equation in vacuum, Electromagnetic waves in vacuum- wave equation and wave	Scalar electric potential(φ),Vector magnetic potential(A), Poisson's and Laplace's equation, Maxwell's equation in vacuum Electromagnetic waves ir vacuum- wave equation and wave
B.Sc. I	E .	32	32	Practicals :	Practicals :
				1) To verify the Thevenin theorem.	1) To verify the Thevenin theorem.
				2) To verify the Norton theorem.	2) To verify the Norton theorem.
				3) Determination of low resistance using Carey foster's Bridge.	3) Determination of low resistance using Carey foster's Bridge.
a				4)) Verification of Kirchoff's voltage and current law	4)) Verification of Kirchoff's voltage and current law

Month Ma	ırch			Module/Unit:	Sub-units planned
Course	Lectures	Practicals	Total	Electrodynamics	Electrodynamics
B.Sc. II	12	-	12	velocity, Scattering of light, scattering cross section, Thomson's and Rayleigh scattering,	velocity, Scattering of light, scattering cross section, Thomson's and Rayleigh scattering,
				explanation for blue color of the sky, red color of sunset and sunrise.	explanation for blue color of the sky, red color of sunset and sunrise.
B.Sc. I		32	32	Practicals :	Practicals :
				1) To verify the Thevenin theorem.	1) To verify the Thevenin theorem.
				2) To verify the Norton theorem.	2) To verify the Norton theorem.
				3) Determination of low resistance using Carey foster's Bridge.	3) Determination of low resistance using Carey foster's Bridge.
				4)) Verification of Kirchoff's voltage and current law	4)) Verification of Kirchoff's voltage and current law
Month April				Module/Unit:	Sub-units planned
Lectures Prac		Practicals	Total	Examination	Examination

<u>Cayali</u> Teacher Incharge

2

.

sslatte DEPARTMENT OF PHYSICS VIVEKANAND COLLEGE, KOLRAPUR (EMPOWERED AUTONOMOUS)