STATISTICAL INFERENCE

ΒY

MR.A.B. BHOSALE

ASSISTANT PROFESSOR

VIVEKANAND COLLEGE, KOLHAPUR

STATISTICAL INFERENCE

Statistical inference is the act of generalizing from a **sample** to a **population** with calculated degree of certainty.

We want to learn about population *parameters*

PARAMETERS AND STATISTICS

We MUST draw distinctions between parameters and statistics

	Parameters	Statistics
Source	Population	Sample
Calculated?	No	Yes
Constants?	Yes	No
Examples	μ, σ, ρ	\overline{x}, s, \hat{p}

STATISTICAL INFERENCE

STATISTICAL INFERENCE

Statistical inference provides methods for drawing conclusions about a population from sample data.

There are two forms of statistical inference:

- Hypothesis ("significance") tests
- Confidence intervals

EXAMPLE: NEAP MATH SCORES

- Young people have a better chance of good jobs and wages if they are good with numbers.
- NAEP math scores
 - Range from 0 to 500
 - Have a Normal distribution
 - Population standard deviation σ is known to be 60
 - Population mean μ not known
- We sample *n* = 840 young mean
- Sample mean ("x-bar") = 272
- Population mean µ unknown
- We want to estimate population mean NEAP score $\boldsymbol{\mu}$

Reference: Rivera-Batiz, F. L. (1992). Quantitative literacy and the likelihood of employment among young adults. *Journal of Human Resources*, **27**, 313-328.

CONDITIONS FOR INFERENCE

- I. Data acquired by Simple Random Sample
- 2. Population distribution is Normal or large sample
- 3. The value of σ is known
- 4. The value of μ is **NOT** known

THE DISTRIBUTION OF POTENTIAL SAMPLE MEANS: THE SAMPLING DISTRIBUTION OF THE MEAN

- Sample means will vary from sample to sample
- In theory, the sample means form a sampling distribution
- The sampling distribution of means is Normal with mean μ and standard deviation equal to population standard deviation σ divided by the square root of *n*:

This relationship is known as the square root law

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = SE_{\overline{x}}$$

This statistic is known as the **standard error**

STANDARD ERROR OF THE MEAN

For our example, the population is Normal with $\sigma = 60$ (given). Since n = 840,

MARGIN OF ERROR *M* FOR 95% CONFIDENCE

- The 68-95-99.7 rule says 95% of x-bars will fall in the interval μ ± 2·SE_{xbar}
- More accurately, 95% will fall in
 - $\mu \pm 1.96 \cdot SE_{xbar}$
- I.96·SE_{xbar} is the margin of error m for 95% confidence

IN REPEATED INDEPENDENT SAMPLES:

We call these intervals Confidence Intervals (CIs)

HOW CONFIDENCE INTERVALS BEHAVE

OTHER LEVELS OF CONFIDENCE

Confidence intervals can be calculated at various levels of confidence by altering coefficient $\mathbf{z}_{1-\alpha/2}$

α ("lack of confidence level")	.10	.05	.01
Confidence level (1–α)100%	90%	95%	99%
Z _{1-α/2}	1.645	1.960	2.576

(I-A)100% CONFIDENCE **INTERVAL FOR** FOR M WHEN **S** KNOWN $\overline{\mathbf{X}} \pm \mathbf{Z}_{1-\frac{\alpha}{2}} \cdot S\overline{E}_{\overline{x}}$ where $SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

MARGIN OF ERROR (M)

Margin of error (m) quantifies the precision of the sample mean as an estimator of μ . The direct formula for m is:

$$m = z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

Note that *m* is a function of

- confidence level I α (as confidence goes up, z increase and m increases)
- population standard deviation σ (this is a function of the variable and cannot be altered)
- sample size n (as n goes up, m decreases; to decrease m, increase n!)

TESTS OF SIGNIFICANCE

- Recall: two forms of statistical inference
 - Confidence intervals
 - Hypothesis tests of statistical significance
- Objective of confidence intervals: to estimate a population parameter
- Objective of a test of significance: to weight the evidence against a "claim"

TESTS OF SIGNIFICANCE: REASONING

- As with confidence intervals, we ask what would happen if we repeated the sample or experiment many times
- Let $X \equiv$ weight gain
 - Assume population standard deviation σ = I
 - Take an SRS of n = 10,
 - $SE_{xbar} = 1 / \sqrt{10} = 0.316$
 - Ask: Has there weight gain in the population?

TESTS OF STATISTICAL SIGNIFICANCE: PROCEDURE

A. The claim is stated as a null hypothesis H_0 and alternative hypothesis H_a

- B. A test statistic is calculated from the data
- C. The test statistic is converted to a probability statement called a *P*-value
- D. The *P*-value is **interpreted**

TEST FOR A POPULATION MEAN – NULL HYPOTHESIS

- Example: We want to test whether data in a sample provides reliable evidence for a population weight gain
- The null hypothesis H₀ is a statement of "no weight gain"
- In our the **null hypothesis** is $H_0: \mu = 0$

ALTERNATIVE HYPOTHESIS

- The alternative hypothesis H_a is a statement that contradicts the null.
- In our weight gain example, the alternative hypothesis can be stated in one of two ways
 - One-sided alternative H_a: µ > 0 ("positive weight change in population")
 - Two-sided alternative H_a: µ ≠ 0 ("weight change in the population")

TEST STATISTIC

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}}$$

where

$\overline{x} \equiv$ the sample mean

 $\mu_0 \equiv$ the value of the parameter under the null hypothesis

$$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

TEST STATISTIC, EXAMPLE

Given : $\sigma = 1$ Data : $\bar{x} = 1.02$; n = 10 $SE_{\bar{x}} = \frac{1}{\sqrt{10}} = 0.3126$

$$z_{\text{stat}} = \frac{x - \mu_0}{SE_{\overline{X}}} = \frac{1.02 - 0}{0.3162} = 3.23$$

Basics of Significance Testing

P-VALUE FROM Z TABLE

Convert z statistics to a P-value:

- For H_a: μ > μ₀
 P-value = Pr(Z > z_{stat}) = right-tail beyond z_{stat}
- For H_a: μ < μ₀
 P-value = Pr(Z < z_{stat}) = left tail beyond z_{stat}
- For $H_a: \mu \neq \mu_0$ *P*-value = 2 × one-tailed *P*-value

P-VALUE: INTERPRETATION

- **P-value (definition)** \equiv the probability the sample mean would take a value as extreme or more extreme than observed test statistic when H_0 is true
- **P-value (interpretation)** Smaller-and-smaller P-values \rightarrow stronger-and-stronger evidence *against* H_0
- P-value (conventions)
 - $.10 < P < 1.0 \Rightarrow$ evidence against H_0 not significant
 - $.05 < P \leq .10 \Rightarrow$ marginally significant
 - $.01 < P \leq .05 \Rightarrow$ significant
 - $0 < P \leq .01 \Rightarrow$ highly significant

P-VALUE: EXAMPLE

- $z_{stat} = 3.23$
- One-sided
 P-value
 = Pr(Z > 3.23)
 = I 0.9994
 = 0.0006
- Two-sided P-value
 - $= 2 \times \text{one-sided } P$
 - $= 2 \times 0.0006$
 - = 0.0012

Conclude: P = .0012Thus, data provide highly significant evidence against H_0

SIGNIFICANCE LEVEL

- $\alpha \equiv$ threshold for "significance"
- If we choose $\alpha = 0.05$, we require evidence so strong that it would occur no more than 5% of the time when H_0 is true

Decision rule

P-value ≤ $α \Rightarrow$ evidence is significant

P-value > α \Rightarrow evidence *not* significant

• For example, let $\alpha = 0.01$

P-value = 0.0006

Thus, $P < \alpha \implies$ evidence is significant

SUMMARY

z TEST FOR A POPULATION MEAN

Draw an SRS of size *n* from a Normal population that has unknown mean μ and known standard deviation σ . To test the null hypothesis that μ has a specified value,

$$H_0: \mu = \mu_0$$

calculate the **one-sample** *z* **statistic**

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

In terms of a variable Z having the standard Normal distribution, the P-value for a test of H_0 against

$$H_a: \mu > \mu_0$$
 is $P(Z \ge z)$

 $H_a: \mu < \mu_0 \text{ is } P(Z \leq z)$

 $H_a: \mu \neq \mu_0 \text{ is } 2P(Z \geq |z|)$

Basics of Significance Testing

Z

26

RELATION BETWEEN TESTS AND CIS

- The value of μ under the null hypothesis is denoted μ_0
- Results are significant at the α -level of when μ_0 falls outside the $(1-\alpha)100\%$ CI
- For example, when $\alpha = .05 \Rightarrow (1-\alpha)100\%$ = (1-.05)100% = 95% confidence
- When we tested H₀: μ = 0, two-sided P = 0.0012.
 Since this is significant at α = .05, we expect "0" to fall outside that 95% confidence interval

RELATION BETWEEN TESTS AND CIS

Data: x-bar = 1.02,
$$n = 10$$
, $\sigma = 1$

95% CI for
$$\mu = \bar{x} \pm z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 1.02 \pm 1.96 \frac{1}{\sqrt{10}}$$
$$= 1.02 \pm 0.62 = 0.40 \text{ to } 1.64$$

Notice that 0 falls outside the 95% CI, showing that the test of H_0 : $\mu = 0$ will be significant at $\alpha = .05$

THANK YOU...!