Linear Programming

By
Ms. V. V. Pawar

Associate Professor

Definition-Linear programming deals with optimization of a function of variables known as objective function subject to a set of linear equalities and/or inequalities known as constraints.

Linear programming is a mathematical technique which involves the allocation of limited resources in an optimal manner.

Formulation of LPP

- Write down the decision variables of the problem.
- Formulate objective function to be optimized(maximized or minimized) as a linear function of the decision variables.
- Formulate the other conditions of problems such as linear equations or inequations in terms of the decision variables.
- Add non-negativity constraints from the considerations.

General formulation of LPP

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{c}_{1} \mathrm{x}_{1}+\mathrm{c}_{2} \mathrm{x}_{2}+\mathrm{c}_{3} \mathrm{x}_{3}+\ldots \ldots . \mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \\
& \text { s.t. } \\
& \mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2} \ldots \ldots . \mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}(\leq \text { or } \geq \text { or }=) \mathrm{b}_{1} \\
& \mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2} \ldots \ldots . \mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}(\leq \text { or } \geq \text { or }=) \mathrm{b}_{2} \\
& \mathrm{a}_{31} \mathrm{x}_{1}+\mathrm{a}_{32} \mathrm{x}_{2} \ldots \ldots . \mathrm{a}_{3 \mathrm{n}} \mathrm{x}_{\mathrm{n}}(\leq \text { or } \geq \text { or }=) \mathrm{b}_{3}
\end{aligned}
$$

$$
\mathrm{a}_{\mathrm{i} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 2} \mathrm{x}_{2} \ldots \ldots \ldots . \mathrm{a}_{\mathrm{in}} \mathrm{x}_{\mathrm{n}}(\leq \text { or } \geq \text { or }=) \mathrm{b}_{\mathrm{i}}
$$

$$
\mathrm{a}_{\mathrm{m} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathrm{x}_{2} \ldots \ldots . \mathrm{a}_{\mathrm{mn}} \mathrm{x}_{\mathrm{n}}(\leq \text { or } \geq \text { or }=) \mathrm{b}_{\mathrm{m}}
$$

The standard weight of a special purpose brick is 5 kg and it contains two ingredients B_{1} and B_{2}. B_{1} costs Rs. 5 per kg and B2 costs Rs. 8 per kg .Strength considerations dictate that the brick contains not more than 4 kg of Br_{1} and minimum of 2 kg of B_{2} since the demand for the product is likely to be related to the price of the brick. Formulate above problem as a L.P. model.

Let x 1 and x 2 be the weight in kg of B 1 and B 2 ingredients

$\operatorname{Min} \mathrm{Z}=5 \mathrm{x} 1+8 \mathrm{x} 2$

Subject to
$\mathrm{x} 1+\mathrm{x} 2=5$
$\mathrm{x} \leq 4$
$\mathrm{x} 2 \geq 2$
$\mathrm{x} 1, \mathrm{X} 2 \geq 0$

Egg contains 6 units of vitamin A and 7 units of vitamin B per gram and cost 12 paise per gram .Milk contains 8 units of vitamin A and 12 units of vitamin B per gram and cost 20 paise per gram. The daily minimum requirement of vitamin A and vitamin B are 100 units and 120 units respectively. Find the optimal product mix.

A manufacturer has 3 machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with which he produces 3 different articles P,Q,R. The different machine time required per article ,the amount of time available in any week on each machine and the estimated profits per article are furnished in the following table.

Let $x ı$ be the number of articles of type P
$x 2$ be the number of articles of type Q
$x 3$ be the number of articles of type R
Since profit on type P is Rs. 20/- ,20x1 be the profit on selling xı units of type P.
Similarly 6x2 and 8x3
Therefore the profit on selling x 1 articles of $\mathrm{P}, \mathrm{x} 2$ articles of Q and x 3 articles of R is given by
$\mathrm{Z}=20 \mathrm{x} 1+6 \times 2+8 \times 3$
Since machine A takes 8 hrs of time for article P, 2 hrs for article Q and 3 hrs for article R
Total units of time required on machine A is $8 \times 1+2 \times 2+3 \times 3 \leq 250$
Similarly

$$
\begin{aligned}
4 X 1+3 \times 2+0 \times 3 & \leq 150 \\
2 X 1+0 \times 2+1 \times 3 & \leq 50
\end{aligned}
$$

The general formulation of L.P.P is
Max Z= 20x1 $+6 \times 2+8 \times 3$
S.t.
$8 \times 1+2 \times 2+3 \times 3 \leq 250$
$4 \mathrm{x} 1+3 \times 2+0 \times 3 \leq 150$
$2 \times 1+0 \times 2+1 \times 3 \leq 50$
Since it is not possible to produce negative articles $\mathrm{x}, \mathrm{x} 2, \mathrm{x} 3 \geq 0$

Thank You

