Transportation Problem By Ms. V. V. Pawar Associate Professor

Definition – The transportation problem is to transport various amounts of a <u>single homogeneous</u> commodity, that are initially stored at various origins to different destinations in such a way that the total transportation cost is minimum.

https://youtu.be/WZIyL6pcItY

Mathematical Formulation-

Consider a transportation problem with m origins(rows) and n destinations(columns).

Let c_{ij} be the cost of shipping (transporting) one unit of the product. A.ai be the quantity of commodity available at origin i. b_j the quantity o commodity needed at destination j .Above TP can be stated in the table form as

Origins		1	2	j	n	Availability
	1	x11 ^{C11}	x ₁₂ ^{c12}	 хij ^{сij}	X _{n1}	aı
	2	x ₂₁	x ₂₂	X _{2j}	X _{n2}	a ₂
		I				
	i	x _{i1}	x _{i2}	 x _{ij}	x _{in}	a,
	m	x _{m1}	X _{m2}	 X _{mj}	X _{mn}	a _m
Demand	b ₁	b1	b ₂	bj	b _n	$\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_j$

The linear programming problem of TP is given by Minimize $Z = \sum_{i=1}^{m} \sum_{j=i}^{n} c_{ij} x_{ij}$

Subject to constraints

 $\sum_{j=1}^{n} x_{ij} = a_i \qquad i = 1, 2, \dots, m \text{ (Row sum)}$ $\sum_{i=1}^{m} x_{ij} = b_j \qquad j = 1, 2, \dots, n \text{ (Column sum)}$ $x_{ij} \ge 0 \qquad \text{for all i and j}$ The given TP is said to be balanced if $\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_j$ i.e. if total demand is equal to total supply.

Feasible Solution: Any set of non-negative allocations (xij >0) which satisfies the satisfies the row and column sum (rim requirement) is called a feasible solution.

Basic Feasible Solution: a feasible solution is called a 'basic feasible Solution' if the number of non-negative allocations is equal to m+n-1, where m is the number of rows and n the number of columns in a transportation table.

Non-degenerate Basic Feasible solution: Any feasible solution to transportation problem containing , origins and n destinations is said to be "non –degenerate " if it contains m+n-1 occupied cells and each allocation is in an independent position.

Thank You....!