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Abstract

Traditional control charts like Hotelling 7% are based on the assumption of multi-
variate normality and also inapplicable to high-dimensional data. A notion of data
depth has been used to measure centrality of a given point in a given data cloud. The
data depth inferences do not require multivariate normality and any constraint on the
dimension of the data. Liu (J Am Stat Assoc 90(432):1380-1387, 1995) provided
control charts for a multivariate processes based on data depth, and the performance
of the chart is not reported. There exist few tests for the location parameter of mul-
tivariate distribution based on data depth. Using these tests, we proposed nonpara-
metric control charts to detect a shift in the location parameter of the multivariate
process. We investigate the performance of the proposed control charts using the
average run-length measure for various distributions. Also, the control chart proce-
dure is illustrated by using wine quality data.

Keywords Multivariate processes - Depth functions - DD plot - Bootstrapping

1 Introduction

A multivariate data arise in number of the situations. Most of the multivariate data
analysis techniques are based on the assumption of multivariate normality. In this
situation, the Hotelling’s T2 chart is widely used to monitor the mean vector of the
process. Hotelling’s T2 chart proposed by Hotelling [7] requires multivariate nor-
mality of quality characteristics, and justification for multivariate normality is often
difficult. In practice, the assumption of multivariate normality may not be fulfilled.
Therefore, implementation of Hotelling’s T2 chart is not correct in such situations.
Recently, data depth-based nonparametric multivariate analysis techniques have

0< M. S. Barale
baralemahesh12 @ gmail.com

D. T. Shirke
dts_stats @unishivaji.ac.in

! Department of Statistics, Shivaji University, Kolhapur 416004, India

Published online: 26 March 2019 &\ Springer



Journal of Statistical Theory and Practice (2019) 13:41 Page3of19 41

2 Notion of Data Depth and DD Plot

Let X € R?, p>1be a p variate random variable having distribution F(-) and
X, X,, ..., X, be a random sample of size n from F(.). Centrality or outlying-
ness of a given observation with respect to the given distribution function F(-) or
data cloud X = (X;,X,, ..., X,) can be measured using the notion of data depth.
If x € RP, then depth of point x measures how deep/central the point x is with
respect to distribution F(-) or data cloud X. Larger is the depth value, deeper is
the corresponding observation with respect to the distribution F(-) or data cloud
X. This provides a center outward ordering of points which can be useful for mul-
tivariate statistical analysis. The depth of any point x; x € R” with respect to dis-
tribution F(-) or data cloud X is computed by using the suitable depth function
Dp(x). Zuo and Serfling [23] introduced four desirable properties for the depth
functions, which are also discussed by Liu [9]. These properties are, namely, (1)
affine invariance, (2) maximality at the center, (3) monotonicity relative to the
deepest point and (4) vanishing at infinity. One can see more details regarding the
depth functions in Zuo and Serfling [23]. There are many depth functions avail-
able in the literature such as Mahalanobis depth [14], Tukeys half-space depth
[21], Oja depth extension of Oja median [16], projection depth [22] and simpli-
cial depth [9].

A two-dimensional graph known as DD plot is introduced by Liu et al. [11].
The DD plot is very useful diagnostic tool used to compare samples from two
multivariate populations. Let F and G be two continuous distribution functions in
RP. Let X = (X;,X,, ..., X,) and Y = (¥}, Y,, ..., ¥,,) be the random samples com-
ing from F and G, respectively. Consider the Dy(x) and D(x) be the depth values
of point x with respect to F and G, respectively.

Consider a set of pairs DD(F, G) = {(Dp(x), Ds(x)), for all x € R”}. In practice,
the distributions F and G are unknown. Therefore, empirical form of DD(F, G)
is considered as DD(F,,G,,) = {(DF" (x), DGm(x)), forallx € {XuY}}. The two-
dimensional plot of DD(F,, G,,) is referred to as DD plot.

Consider the situation where two populations have different location param-
eters. Panels a, b and c in Figs. 1, 2, 3 and 4 show various patterns of DD plots
for various types of shifts in location for Mahalanobis depth, half-space depth
and projection depth, respectively. Here, F is taken as bivariate normal with
mean u = (0,0)7 and G is bivariate normal with shifted mean p; = p+61,
6 =0,0.5,1 and 1.5 with equal scatter. When F and G are identical, then DD plot
shows all points clustered along the 45° diagonal line, whatever be the depth
function used. If there is any difference in two distributions, points will deviate
from the diagonal. DD plot exhibits a noticeable departure from the diagonal line
in a symmetric manner. When F is not identical to G, different depth functions
show different DD plot patterns, a leaf-shaped pattern for Mahalanobis depth
and half-space depth, the star-shaped pattern for projection depth. But the depar-
ture from diagonal line pulls down from the point (max, Dp (), max, DGm(t)) to
(0, 0), leaving the upper right corner empty and spreading out the points around
the midrange of the diagonal line. As shift increases, the points get concentrate
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testing the aforementioned null hypothesis. The smaller 7, provide evidence against
the null hypothesis, that is, two samples have different location vectors. The p value
for the test can be obtained using popular permutation test procedure, and it is given
by

B
PLy=1/B Y I(T} < Toy), (1)

i=1

where I(a < b) = 1, if a < b; = 0, otherwise Ty, is the observed value of statistic
T, calculated from the combined sample, 7} are the values of the statistic T, com-
puted using ith permuted combined sample i = 1,2, ..., B and B is the total number
of permutations.

3.2 W;-Based and W,-Based Test

Shirke and Khorate [20] have proposed two nonparametric tests based on data depth
differences for testing equality of mean vectors of two multivariate populations. Test
statistic provided by Shirke and Khorate [20] are given as follows:

m+n
1
Wy=—— 2, 1D, @)~ Dg, @)l; L EXUY
= & Pr@ Dol neXU .
and
1 m+n ‘
W2 m+n Z(DF (Z) DG (Z)) ’ ZiEXUY. (3)

Reject the null hypothesis for larger values of W, and W,. Larger the value of W, and
W, indicate stronger evidence against location shift between the two distributions.
The p value is obtained by using Fishers permutation test as follows

B
pi=1/B) IW; 2 W,,,), @)
i=1

where I(a > b) = 1,if a < b; = 0, otherwise WlObs is the value of test statistic W, cal-
culated from the original combined sample, W7 are the values of the test statistic W,

computed from ith permuted combined sample i = 1,2, ..., B and B is the number of
permutations. On the similar lines, p value for W,-based test can be obtained. Gen-
eral theory says that for the permutatlon test, the true p value can be computed by
using all possible permutations “——— (""”‘) of combined sample. However, Boos and
Zhang [3] and Marozzi [15] suggcsted to use B = 8\/!‘_4 where M is the number of
Monte Carlo simulations. Therefore, for M = 5000, 2000 and 1000, values of B are
choosen to be 566, 358 and 253.

@ Springer



Journal of Statistical Theory and Practice (2019) 13:41 Page110f19 41

The larger location shift between the two distributions, the smaller is the value of
T and the larger values of W, and W,. Thus, the stronger the evidence of the process
is out of control. Here, it is difficult to obtain distribution of T, W, and W,. We call
these charts as T chart, W, chart and W, chart.

4.2 Control Limits of T Chart, W, Chart and W, Chart

Similar to the various multivariate control charts, T chart, W, chart and W, chart
have only single control limit lower control limit (LCL) for T chart and upper con-
trol limit (UCL) for W, and W, chart, respectively. It is not easy to find exact dis-
tribution of T, W, and W,. We use the method of bootstrapping to obtain control
limits of proposed charts. We give an algorithm for obtaining control limits of the
proposed chart as follows:

Generate a bootstrap sample of size m from the reference sample of size n.
Compute the test statistic with respect to the whole reference sample.

Repeat the procedure B time to get B bootstrap sample statistics (77,77, ..., Tp).
Compute lower (100 X a)th quantile of (77,77, ..., Tp)asaLCLforT chart.

=R P

Similarly, upper (100 X (1-a))th quantile of W}, (W); i =1,2,... B is used as
UCL for W, (W,) chart. Generally, B should be sufficiently large enough. In practice,
B = 1500 to 2000 is sufficient. The proposed charts implement data-dependent con-
trol limits, which will vary as reference sample size and subgroup sample size vary.
A usual Shewhart-type control chart uses fixed control limits based on distribution
of charting statistics. In this scenario, the control limits vary even if data follow an
identical in-control distribution, which does not require information about in-control
distribution . While using bootstrapping there is no need of actual in-control distri-
bution F, the limits obtained might not be accurate to study run-length distribution
properties when the reference sample size n is too small.

5 Performance Study

An average run length (ARL) is one of the performance measures used for compar-
ing the control charts. ARL is defined as the expected number of samples required
to get a first out-of-control signal, and it can be obtained by taking reciprocal of
false alarm probability. A control chart with minimum out-of-control ARLs shows
better assignable cause detection ability. The proposed charts are compared by tak-
ing in-control ARL ~ 200 with the Q chart due to Liu [10] based on data depth by
using R software. We have considered bivariate normal, bivariate Cauchy and bivar-
iate skew normal distribution as in-control process distributions, and out-of-control
observations are generated by giving shift 6 in location parameter of in-control pro-
cess distributions. Here, we have taken reference sample of size n = 100 primar-
ily and subgroup sample of size m = 10, 15 for various shifts 6 = 0.2,0.4, 0.6,0.8
and 1 in location parameter. The control limit is obtained by using the method of
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Table 1 Comparison of Q, T, W, and W, charts for different depth function when n = 100

Depth Half-space Projection

function

m 6 Qchart Tchart W chart W,chart (Qchart Tchart  W,chart W, chart

Normal

10 0 202.84  205.80  209.65 216.48 208.01  200.27 202.31 200.00
02 13964  123.69 100.14 85.00 142.67  120.49 168.28 155.86
04 61.58 38.63 20.09 20.45 54.88 37.85 106.03 88.98
0.6 22.26 11.30 5.82 5.85 20.09 12.13 54.63 42.37
0.8 7.06 3.99 2.38 2.44 6.77 4.68 27.51 22.13
1 2.92 2.01 1.44 1.49 2.81 2.36 15.59 11.95

15 0 209.09 21698  206.60 201.04 206.56  202.66  208.15 213.60
02 143.65 124.69 74.74 76.52 125.17  110.10 156.54 148.99
04 49.10 31.22 11.87 13.09 48.39 25.89 81.89 66.50
0.6 14.47 6.88 3.05 337 13.09 6.96 35.69 25.44
0.8 4.59 2.34 1.49 1.55 426 2.65 15.40 11.08
1 1.88 1.34 1.10 1.14 1.90 1.50 7.36 5.95

Cauchy

10 O 20097 20195  206.08 200.24 199.53 20145 204.04 200.93
02 20092 12376 144.03 137.21 177.14  158.08 173.46 170.71
04 17670 54.24 64.76 55.99 159.16 73.20 117.40 96.62
0.6 137.82 22.37 26.62 22.90 117.13 29.56 72.31 52.44
0.8 9345 9.01 12.79 10.57 72.33 11.15 40.60 26.49
1 68.71 185.29 7.03 5.59 43.89 4.79 23.93 15.47

15 0 199.25  203.38  208.02 200.98 201.74  202.26  211.02 208.67
0.2 18042  169.60 138.00 123.81 197.08  132.92 169.70 155.62
04 13734 81.29 50.47 45.07 147.09 50.13 101.64 66.07
0.6 101.27 31.43 20.16 16.90 91.17 15.73 53.63 31.01
0.8 68.57 10.18 9.83 8.77 58.54 5.34 25.79 14.35
1 47.00 3.97 5.65 5.19 27.04 244 13.73 7.46

Skew normal

10 0 21591 20320  206.02 200.49 201.48  202.60  205.92 202.30
0.2 580.78 89.18 47.17 57.07 92.15 67.44 136.85 119.82
04 142.62 13.96 4.97 4.51 19.18 12.49 53.64 44.61
0.6 16.60 2.64 1.36 1.24 3.78 3.08 19.79 15.27
0.8 3.12 1.15 1.01 1.01 1.35 1.35 7.88 6.29
1 1.25 1.01 1.00 1.00 1.02 1.03 3.93 3.19

15 0 205.52  205.19  208.07 208.60 199.52  201.38  210.32 208.03
02 721.50 73.30 25.08 28.39 88.83 58.62 122.05 102.26
04 14177 8.27 1.96 2.00 14.47 7.73 36.70 26.84
0.6 10.61 1.55 1.03 1.01 2.46 1.86 11.12 7.60
0.8 1.82 1.02 1.00 1.00 1.10 1.08 3.94 3.21
1 1.04 1.00 1.00 1.00 1.00 1.00 2.03 1.72
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y = 1.5, 2 to the scale matrix. Table 3 describes the ARL values when there is a shift
in location and scale both. It is observed that the result described above holds. The T

:IalglgV: cf:rﬁpﬁ;znwth%hﬁtﬁ Y Q chart T chart W, chart W, chart

scatter matrix for n = 100 and Normal

m =10 0 1 20221 20213 200.29 205.71
0.5 1 36.92 20.66 76.57 61.44
1 1 2.89 235 14.98 12.04
1.5 1 1.09 1.12 4.87 4,08
0 1.5 205.01 95.37 315.46 265.93
0.5 1.5 38.45 16.99 119.47 93.28
1 1.5 2.94 2.84 24.99 19.55
1.5 1.5 1.10 1.27 7.85 6.58
0 2 207.98 57.38 357.93 284.07
0.5 2 35.49 15.29 146.94 108.13
1 2 2.97 3.23 34.15 26.01
1.5 2 1.09 1.41 11.96 9.34
Cauchy
0 1 199.65 204.94 203.02 206.65
0.5 1 137.61 45.15 95.06 73.31
1 1 45.27 4.72 23.31 16.04
1.5 1 13.26 1.54 7.88 527
0 1.5 202.38 101.09 286.97 264.16
0.5 1.5 132.37 31.69 153.24 112.68
1 1.5 49.30 5.33 42.93 26.00
1.5 1.5 13.34 1.79 14.00 8.79
0 2 187.70 69.24 301.95 277.35
0.5 2 129.61 26.41 183.91 130.83
1 2 47.39 5.43 57.47 35.52
1.5 2 13.14 2.08 19.46 12.38
Skew Normal
0 1 205.98 201.09 205.18 200.34
0.5 1 8.30 5.51 32.62 24.39
1 1 1.02 1.03 3.97 3.25
1.5 1 1.00 1.00 1.50 1.41
0 1.5 205.23 70.95 269.00 229.60
0.5 1.5 8.08 3.56 30.25 23.40
1 1.5 1.02 1.03 4.88 4.10
1.5 1.5 1.00 1.00 1.88 1.74
0 2 191.30 31.44 240.84 184.75
0.5 2 8.52 2.68 28.47 21.98
1 2 1.01 1.04 5.62 4.88
1.5 2 1.00 1.00 2.23 2.06
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Fig.6 W, chart for wine quality data
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Fig.7 W, chart for wine quality data

correctly of quality level “six” and 118 out of 145 samples of quality level “five”. A
W, chart detects 50 samples as an out-of-control out of 219 samples and 74 samples
out of 145. A W, chart detects 48 samples as an out-of-control out of 219 samples
and 73 samples out of 145. It can be seen that T chart has less type I error as com-
pared to W, and W, charts.

7 Concluding Remarks
There are very few methods are available to tackle the problem of multivariate

non-normality in the area of multivariate statistical process control. In the present
paper, we provide the control charts based on the notion of data depth. A notion
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