

Vivekanand college (Autonomous), Kolhapur

CBCS (Choice Based Credit System) Syllabus

B.Sc. Part - I Biotechnology (Entire)

to be implemented from June 2018 onwards

CHOICE BASED CREDIT SYSTEM SYLLABUS ForBachelor of SciencePart - I BIOTECHNOLOGY (Entire)

1. TITLE : Biotechnology-Entire

2. YEAR OF IMPLEMENTATION: - CBCS Syllabus will be implemented fromJune, 2018 onwards.3. PREAMBLE:

This syllabus is framed to give sound knowledge with understanding ofBiotechnology to undergraduate students at first year of three years of B.Sc. degree course.Students learn Biotechnology as a separate subject from B.Sc. I. The goal of thesyllabus is to make the study of Biotechnology popular, interesting and encouraging to the students for higher studies including research.The new and updated syllabus is based on a basic and applied approach with vigourand depth. At the same time precaution is taken to make the syllabus comparable to the syllabi of other universities and the needs of industries and research.The syllabus is prepared after discussion at length with number of faculty members of the subject and experts from industries and research fields.The units of the syllabus are well defined, taking into consideration the level and capacity of students.

4. GENERAL OBJECTIVES OF THE COURSE / PAPER:

1) To make the students knowledgeable with respect to the subject and its practicable

Applicability.

2) To promote understanding of basic and advanced concepts in Biotechnology.

- 3) To expose the students to various emerging areas of Biotechnology.
- 4) To prepare students for further studies, helping in their bright career in the subject.
- 5) To expose the students to different processes used in industries and in research field.
- 6) To prepare the students to accept the challenges in life sciences.
- 7) To develop skills required in various industries, research labs and in the field of humanhealth.

5. DURATION

• The course shall be three year full time course.

6. PATTERN:-

Pattern of theory Examination will be Semester. Practical examination will be annual

7. MEDIUM OF INSTRUCTION:

The medium of instruction shall be English.

3) OTHER FEATURES :

(A) LIBRARY :

Reference and Text Books, Journals and Periodicals, Reference Books. - List Attached

(B) LABORATORY SAFETY EQUIPMENT :

1) Fire extinguisher

2) First aid kit

- 3) Fumigation chamber
- 4) Stabilized power supply
- 5) Insulated wiring for electric supply.
- 6) Good valves & regulators for gas supply.
- 7) Operational manuals for instruments.
- 8) Emergency exits.

Index

Sr.No.	Name	Page No.
1.	B.Sc. I CBCS Biotechnology Entire Pattern	
2.	Syllabus	
3.	Nature of Question paper	
4.	Scheme of marking	
5.	Subject Code	
6.	BoS List	

Semester - I

Sr.No	Course Title	Theory
1	DSC-A-Chemistry	40+10
2	DSC-A-Biochemistry	40+10
3	DSC-A-Plant Science	40+10
4	DSC-A-Mathematics	40+10
5	DSC-A-Computer	40+10
6	DSC-A-Bio techniques&Instrumentation	40+10
7	DSC-A-Microbiology	40+10
8	DSC-A-Physics	40+10
9	AECC-1A English for Communication	40+10

Semester - II

Sr.No	Course Title	Theory
1	DSC-B-Chemistry	40+10
2	DSC-B-Biochemistry	40+10
3	DSC-B-Animal Science	40+10
4	DSC-B-Statistics	40+10
5	DSC-B-Computer	40+10
6	DSC-B- Cell Biology	40+10
7	DSC-B-Microbiology	40+10
8	DSC-B-Physics	40+10
9	AECC-1B English for Communication	40+10

<u>Sr. No</u>	Course Name	Practicals
		(Annual)
1	Practical-ITechniques in Chemistry	50
	andBiochemistry	
2	Practical-IILaboratory Exercise in	50
	Microbiology and Instrumentation	
3	Practical-IIILaboratory Exercise in	50
	Plant Science and Animal Science	
4	Practical-IVMethods in	50
	Mathematics, Statistics and Computer	
	Application in Biotechnology	

Semester - I	DSC-A Chemistry(Credit-2)
--------------	----------------------------------

Units	Lectures(30)
I Init - I	
Unit - I Basics Concepts in Chemistry Introduction- Definition and Explanation of important basic terms of following, Solutions – Problems based on Normaltiy, Molarity, Mole Fraction, Mixed Solution, ppb, ppm, Mili moles Exercises Acids and Bases - Lowry–Bronsted and Lewis concepts, strong andweak acids and bases, Ionic product of Water, pH, pKa, pKb, Hydrolysis of salts. Buffers -Solutions concept,types, Henderson equation for acid andbasic buffers, Buffer action and buffer capacity. Analytical and Industrial Chemistry-Introduction, Importance of Analysis, Analytical processes(Qualitative and Quantities) Classification of Analysis, sampling of solids,liquids, gases. Reaction Kinetics Introduction-Meaning and definitions of- rate constant, order andmolecularity of reaction, activation energy, Integrated rate expressions for zero, 1st and 2nd order reactions, Characteristics of 1st order reactions, Catalysis- Definition, types of catalysis with example, characteristics ofcatalysis, Thermodynamics Introduction- Reversible and irreversible processes, internal energy, Enthalpy, heat of reaction and its types, First Law- Statement andmathematical expression, Hess law, Measurement of ΔH, Trouton's rule, Kirchoff's equation, Second law- Statement, concept of entropy (Criteria for spontaneous and non-spontaneous processes), Third law-Absolute entropies and their uses, Gibbs and Helmholtz free energy functions-Criteria for thermodynamic, equilibrium and spontaneity, ΔG and K, ΔG and work function, Relation between ΔH and ΔG(Gibbs-Helmholtz quation), Phase equilibria- Clapeyron-Clausis equation and	15
Unit - II	
Structure and Bonding.	
 Introduction- Types of bonds. Ionic covalent bond, Co-ordinate bond, Metallic bond, hydrogen bond, Electrostatic Interaction, Vanderwaal's forces. formation of ionicand covalent bond with examples, e.g. NaCl, KCl, HCl, CH₄, Cl₂, H₂. VBT- Postulates. Concept of Hybridization, sp, sp2, sp3 hybridization with respect to BeCl₂. BF₃, SiCl₄(Along with consequences with respect to bondlength, bond angle, bond energy and shape of the molecule. Dipole moment- Definition and significance. Hydrogen Bonding- Definition, intra and intermolecular hydrogenbonding with suitable example (Water, Proteins, alcohols, Hydroxy acids,Zhenols). Ionic solids- Definition and general characteristics, comparisonbetween, ionic and covalent compounds. 	15

	Definition and formation of Co-ordinate bond in $BF_3 \leftarrow NH_3 \& NH_4^+$,	
	Distinction between double salt and complex salt, Description of terms	
	Ligand, Co-ordination number (CN), Coordination sphere, Essential and	
	trace elements in biological process, Metallo porphyrins, w.r.t.	
l	Hemoglobin and Myoglobin, Metalloenzymes (Zn, Mg, Mn)	

References-

- 1) University general chemistry C. N. R. Rao, Macmillan.
- 2) Physical chemistry R. A. Alberty, Wiley Eastern Ltd.
- 3) Quantum chemistry including molecular spectroscopy- B. K. Sen.
- 4) Organic chemistry D. J. Cram and G. S. Hammond (Mcgraw-Hill).
- 5) A Guide-book to mechanism of organic chemistry-Peter Sykes-6th Edition.
- 6) Theoretical principles of inorganic chemistry- G.S. Manku
- 7) Physical chemistry by Sharma and Puri
- 8) Instrumental methods of chemical analysis- Chatwal & Anand
- 9) Instrumental methods of chemical analysis- B. K. Sharma
- 10) Organic chemistry VOL-II 5th Edition- I. L. Finar
- 11) An introduction to electrochemistry- Samuel Glassstone
- 12) The elements of physical chemistry P.W. Atkins.
- 13) Essential of physical chemistry- B.S. Bahel. & G. D.Tuli.
- 14) Principels of physical chemistry S.H Maron & Pruton
- 15) Concisein inorganic chemistry
- 16) Organic chemistry Morrison & Boyd

DSC-A - Biochemistry (Credit-2)

Units	Lectures(30)
Unit- I Origin of life: - Basic concept, A.I. Oparin concept, Urey Miller'sexperiment, Concept of Biomolecules- in general about Carbohydrate, protein, lipid just definition with at least one example. p^H, pka value definition,H-H Equation, Biological Buffer Systems - e.g. Phosphate, Bicarbonate, Haemoglobin buffer system, Protein buffer system Nucleic acids : Nucleosides, nucleotides, polynucleotide, DNA and its different forms with properties. (A, B, C, D, & Z), RNA and its types m-RNA, t-RNA. r-RNA Forces Stabilizing nucleic acid structure.	15
Unit- IICarbohydrates:Classification, glyceraldehyde, simple aldoses &ketoses, confirmation of D-glucose, biological importance of carbohydrates, reactions of monosaccharide (Oxidation, reduction, osazone), glycosidic bond, disaccharides (Sucrose, maltose, lactose),polysaccharides - homo polysaccharides, e.g.Starch, glycogen,Cellulose.Lipids:Classification, Simple lipid - Triacyl glycerol & waxes.Compound lipid-Phospholipid, e.g. Phosphotidyl choline, ethanolamine Glyserolipid, Sphingolipids, e.g. Sphingomycelin, cerebrosides, gangliosides.Physical properties,- state,color, odour,melting point, solubility, specific gravity, geometric isomerism, insulation, emulsification ,surface tension.Chemical properties- sap value, acid value, iodine no., rancidity; Derived lipid- Cholesterol, lipoprotein - LDL, VLDL, HDL,Chylomicrons. Liposome.	15

References:-

- 1) Biochemistry Nelson & Cox
- 2) Biochemistry Stryer
- 3) Enzymes Trevor Palmer
- 4) Biochemistry Voiet & Voiet
- 5) Biochemistry J. L. Jain
- 7) Biochemistry Powar and Chatwal
- 8) Protein Purification- Harris and Angel
- 9) Principles of Biochemistry T. N. Pattabriraman.
- 10) Biochemistry 3rd Edition Hames & Hopper.
- 11) General Biochemistry J. H. Well.
- 12) Biochemistry J. H. Ottaway & D. K. Apps
- 13) Biochemistry U. Satyanarayanan

DSC-A - Plant Science (Credit 2)

Units	Lectures(30)
UNIT-I Plant Diversity Outline of General Classification of Plant Kingdom. Algae – General characters and economic importance Fungi – General characters and economic importance Lichens -General account and economic importance Bryophytes – General characters and economic importance Pteridophytes – General characters and economic importance Gymnosperms – General characters and economic importance Angiosperms – General characters and economic importance Taxonomy of Angiosperms Taxonomy :- Definition, Aims, objectives and functions, Binomial nomenclature and its significance, Categorize of plant species as per IUCN, Methods of conservation, study of Outline of Bentham & Hookers System of classification of plants	15
Unit IISexual Reproduction in Angiosperms:-Structure of Typical Flower – Floral whorls and functions:-Calyx,corolla, Androecium, Gynoecium.Fertilization:- Definition, Double fertilization and its significanceFruit - Definition, Double fertilization and its significanceFruit - Definition, formation, Types: a) Simple, b) Aggregate, c) Composite.Seed –Definition and its types, Dormancy of seed- Definition, Causes and Breaking of seed dormancy, Seed germination- Concept, Types-Epigeal and Hypogeal, factorsaffecting seed germination.Plant Anatomy, Tissues- Simple and complex (Xylem and Phloem) Meristem its types and functions.	15

Reference Books:

- 1) Devlin R.M. Fundamentals of plant physiology (MacMillan)
- 2) Malik C.P. Plant physiology, Kalyani publishers
- 3) Dube H.C. Text of fungi, bacteria and viruses.
- 4) Bold H.C. The Plant kingdom, Prentice Hall India
- 5) Chopra G.L. i. Class book of algae, ii. Class book of fungi
- 6) Dutta A.C. A Class book of botany, Oxford University Press
- 7) Kumar H.D. Biodiversity and sustainable development (Oxford & IBH)
- 8) Mukherji H. Plant groups (New central book depot)
- 9) Parihar N.S. An Introduction to embryophyta (Central book depot)
- 10) Vasishtha P.C. Botany for degree students-Gymnosperms
- 11) Naik V.N. Taxonomy of angiosperms
- 12) Lawrence G.H. Taxonomy of flowering plants
- 13) Chopra G.L. Angiosperms (Systematic and life cycle)
- 14) Shivarajan V.V. Introduction to principles of taxonomy.

- 15) Pandey B.P. Text book of angiosperms
- 16) Eames A.J. and An introduction of plant anatomy, Mac Daniels L.H.
- 17) Esau K. Anatomy of seed plants
- 18) Esau K. Plant anatomy
- 19) Fahn A. Plant anatomy
- 20) Mathur R.C. Systematic botany

DSC-A -	Mathematics	(Credit 2)
---------	-------------	------------

Units	Lectures (30)
Unit I	
Complex Numbers	
Introduction, Operations on complex numbers, Complex conjugate, Modules and argument of complex number and simple examples on it, DE MOIVRE'S Theorem, Simple examples on above theorem	
Matrices	
Definition and types of Matrices, Algebra of Matrices (addition, subtraction, scalarmultiplication and multiplication of matrices), Examples on operation of Matrices, Characteristic Polynomial	15
using Caley Hamilton Theorem, Rank of a Matrix (Definition) and examples, System of Linear equation - i) Non homogenean,	
ii) Homogenean, With examples, Eigen values and eigen vectors	
with simple examples.	
Unit II	
Differential equation	
Definition of ordinary differential equation and degree, order of differential equation, Exact differential equation with simple examples.	
Linear differential equation $\frac{dy}{dx} + py = Q$ method of	
solution with simple examples.	
Bernoulli's differential equation with examples.	15
Application of differential equation	15
i) Growth and decay problems	
ii) Newton's law of cooling with examples	
Partial differentiation	
Introduction, Simple examples on evaluation of partial derivatives,	
Composite function with examples, Homogenous function	
(Definition), Euler's theorem for first and second order, Simple examples on above theorems, Maxima and Minima (Two variables)	

References:

- 1) Mathematics for biologists by Sujata Tapare (vision publication).
- 2) Algebra and geometry by G. V. Khumbojkar.
- 3) Calculus and differential equation (Phadake prakashan).
- 4) Prof. L. G. Kulkarni, Dr. P. B. Jadhav

DSC-A - Computer (Credit 2)

Units	Lectures (30)
Unit IComputer basics:Definition, Block Dig.(I/O/Secondary storage), Applications, Generations, Types of computer, Numbering system (binary to decimal & decimal to binary)Operating System:Definition, functions, process management, multiprogramming, multitasking, multiprocessing, time sharing, memory management, uniprogramming, memory model, multiprogramming, memory model,virtual memory, security, some popular O.S. Ms-DOS, MicrosoftWindows, UnixOffice Operation: Microsoft Word-concept of toolbar, character, paragraph & document formatting, drawing toolbar, Header, Footer, Document editing, Page setup, short cut Keys, Text and graphics Microsoft Excel-Concept of spreadsheet, Creating worksheet, Well formatted documents, concept of row, column, cell and formula bar, using function, using shortcuts, charts, conditional formatting PowerPoint-Slide presentation, slide layout, Design, custom animation.	15
Unit- IIDatabase Management System-Need of database, data models- Hierarcical, Network, Relational, Object Oriented, Main components of DBMS-DDL, DML.Basic of Bioinformatics-Internet, World wide web, Web browser, Search Engine (Google), Searching data from Search Engine, Bioinformatics Introduction - Nature of Biological data, characteristics of data, Tools for protein function analysis -Homology and similarity, structureanalysis, sequence analysis, BLAST, FASTA, EMBOSS, Clustalw, Applications & scope of Bioinformatics.	15

Reference Books

- 1) Computer Fundamentals by P. K. Sinha
- 2) C Application programs and Projects by Pramod Vasambekar
- 3) Use of Computer from Vision Publication
- 4) Let Us C by Kanetkar
- 5) Ansi C by Balgurusami

DSC-A - Biotechniques & Instrumentation (Credit 2)

Units	Lectures (30)
Unit - I Protein Purification: Method of cell disruption (Blenders, grindingwith abrasives, presses, enzymatic method, sonication); Saltparticipation- Salting in, salting out, organic solvent precipitation, dialysis, ultra filtration. Centrifugation- Basic principles, RCF, Sedimentation coefficient, Svedberg's constant, Types of centrifuge: Desktop, High speed and Ultracentrifuge, Preparative centrifugation: Differential and density gradient centrifugation	15
Unit IIMicroscopya) General principles of microscopy- Image formation, magnification,numerical aperture (Uses of oil immersion objective), resolving power ofmicroscope and working distance. b) Ray diagram, special features, applications and comparative study ofcompound microscope and Electron Microscope (Scanning andTransmission Electron Microscope).UV-Visible Spectroscopy Introduction to spectroscopy, properties of electromagnetic radiation (UV and Visible range,Electromagnetic spectrum,Electronic Transitions, Principle, Instrumentation with respect to colorimeter and single beamspectrophotometer.Principle,Instrumentation, Applications of UV and Visiblespectrophotometer and colorimeter Lambert-Beer's law, Basic Laboratory Instruments: Introduction, Principle and applications of electrophoresis-Supporting media- Agarose, PAGE. Construction & WorkingpHmeter, Autoclave, LaminarAir Flow.	15

References:-

- 1) Biophysical Chemistry by Nath and Upadhya.
- 2) Practical biochemistry principles and techniques by Wilson and Walker.
- 3) Instrumental methods of chemical analysis by Chatwal and Anand.
- 4) Lab Manual in Biochemistry by J. Jayaraman.
- 5) Chromatography: Concepts and Contrasts- 1988 James Miller, John Wiley and Sons, Inc.
- 6) Analytical Biochemistry by Holme.
- 7) Spectroscopy by B.P. Straughan and S. Walker
- 8) Introduction to HPLC by R.J. Hamilton and P.A. Sewell

DSC-A- Microbiology (Credit 2)

Unit-IMicrobiology : Definition, History, Introduction to typesofMicroorganisms – Bacteria, Algae, Fungi, Protozoa and Viruses,Beneficial and harmful activities of microorganisms, Appliedbranchesof Microbiology, major microbiological institutes inIndia.Morphology and cytology of BacteriaMorphology of Bacteria – i) Size, ii) Shape, iii) ArrangementsCytology of Bacteria –	
 Microbiology : Definition, History, Introduction to types ofMicroorganisms – Bacteria, Algae, Fungi, Protozoa and Viruses, Beneficial and harmful activities of microorganisms, Applied branchesof Microbiology, major microbiological institutes in India. Morphology and cytology of Bacteria Morphology of Bacteria – i) Size, ii) Shape, iii) Arrangements Cytology of Bacteria – 	
ofMicroorganisms – Bacteria, Algae, Fungi, Protozoa and Viruses, Beneficial and harmful activities of microorganisms, Applied branchesof Microbiology, major microbiological institutes in India. Morphology and cytology of Bacteria Morphology of Bacteria – i) Size, ii) Shape, iii) Arrangements Cytology of Bacteria –	
 Beneficial and harmful activities of microorganisms, Applied branchesof Microbiology, major microbiological institutes in India. Morphology and cytology of Bacteria Morphology of Bacteria – i) Size, ii) Shape, iii) Arrangements Cytology of Bacteria – 	
branchesof Microbiology, major microbiological institutes in India. Morphology and cytology of Bacteria Morphology of Bacteria – i) Size, ii) Shape, iii) Arrangements Cytology of Bacteria –	
India. Morphology and cytology of Bacteria Morphology of Bacteria – i) Size, ii) Shape, iii) Arrangements Cytology of Bacteria –	
Morphology and cytology of Bacteria Morphology of Bacteria – i) Size, ii) Shape, iii) Arrangements Cytology of Bacteria –	
Morphology of Bacteria – i) Size, ii) Shape, iii) Arrangements	
Cytology of Bacteria –	
Structure and functions of :i)Cell wall, ii) Cell membrane, iii)	
Cansule and slime layer iv) Flagella v)Pilli vi) Nuclear material	
vii) Mesosome viii) Ribosome	
Viruses - General characteristics and Cultivation lytic cycle of T ₁ 15	
besteriophage	
Bacterial taxonomy	
Concertal taxonomy:	
General principles of bacterial nomenciaturea) Taxonomic ranks,	
b) Common or Vernacular name, c) Scientific or International	
name, Criteria for bacterial classification- Morphological, cultural,	
biochemical & serological characters, Concept of bacterial species	
& strain.	
Microbial nutrition	
Nutritional requirements of microorganisms : Water;	
Micronutriets; Macronutrients; Carbon, Energy source; Oxygen	
and	
Hydrogen; Nitrogen, Sulpher and Phosphorous and growth	
factors-	
auxotroph.prototroph and fastidious organisms.	
Nutritional types of microorganism based on carbon and energy	
sources - a Autotrophs b Heterotrophs c Phototrophs d	
Chemotrophs e Photoautotrophs f Chemoautotrophs g	
Phtoheterotrophs, b. Chemoheterotrophs	
I moneterotrophs, n. chemoneterotrophs.	
Concent of Sterilization:	
Definitions of Starilization Disinfection Anticentic Cormiside	
Ministeria Agencia Societization, Anusepuc, Germicide,	
Microbiostasis, Asepsis, Sanitization.	
Methods of sterilization by- a) Physical agents: 1) temperature-dry	
heat, moist heat ii) Radiation- U.V, Gamma radiation iii) Bacteria	
proof filter- membrane filter.b) Chemical agents:- Phenol &	
Phenolic compounds, Alcohol, Heavymetals(e.g. mercury).c) 15	
Gaseous agents- Ethylene oxide, formaldehyde	
Stains and staining procedures -	
Definition of dye and stain, Classification of stains – Acidic, Basic	
and Neutral, Principles, Procedure, Mechanism and application of	
staining, Procedures - i) Simple staining, ii) Negative staining, iii)	
Differential staining : Gram staining and Acid fast staining, iv)	
Special staining: Capsule staining, cell wall staining, endospore	
staining	

References:

- 1) General Microbiology-Stanier
- 2) Introduction to Microbiology-Ingraham
- 3) Brock biology of Microorganisms-Madigan et al
- 4) Fundamentals of Microbiology-Frobisher
- 5) Microbiology-Pelczar
- 6) General Microbiology Pawar & Daginawala
- 7) Text book of microbiology-Ananthanarayan & Panikar

DSC-A - Physics(Credit 2)

Units	Lecture (30)
Unit I Elasticity: Introduction, definitions of stress and strain in solids, types of strainand stress, Hooks law, definition of Young's modulus (Y), bulkmodulus (K) and modulus of rigidity (), relation between Y, , andK (without derivation), stress strain curve, importance of elasticity .Viscosity and Surface Tension Introduction, streamline and turbulent flows, concept of viscosity,coefficient of viscosity, effect of temperature and pressure on viscosityof liquids, concept of pressure energy and Bernoulli's theorem (withoutproof), Application of Bernoulli's Theorem venturimeter, Pitots tube(working only), review of surface tension, surface energy, capillaryaction, angle of contact, wetability, relation between surface tension,excess pressure and curvature (without derivation), factors affectingsurface tension, methods of measurement of surface tension- Jaegersmethod (formula and working only), applications of surface tension.	15
Unit IISound waves:Introduction, mechanical and electromagnetic waves, transverse andlongitudinal waves with characteristics, principle of superposition ofwaves (Statement only), phenomenon of beats and expression forfrequency of beats, application of beats, audible, ultrasonic andinfrasonic waves, properties of ultrasonic waves and theirapplications, Doppler effect and its applicationsThermodynamics and Thermometry: Introduction, various temperature scales (Kelvin, Celsius,Fahrenheit, Reaumer and Rankin), thermal energy, platinumresistance thermometer-principle, construction and working,	15

References:

- 1. Physics by Devid Hallday Roberet Resnik, (Vol-I and Vol-II) Wiley Eastern limited
- 2. Fundamental of mechanics, S. K. Saxena, Himalaya Publications
- 3. Perspectives of modern physics, Aurthur Beiser, McGrawHill Publication
- 4. Heat and thermodynamics, Zemansky, McGrawHill Publication
- 5. Fundamentals of optics, Jenkins white, McGrawHill Publication
- 6. Text book of optics, N. Subrahmanyan Brijlal, S. Chand and Company Limited
- 7. Optics by Ajoy Ghatak, Tata McGrawHill Publication
- 8. Properties of matter, D. S. Mathur, Sha, alal Charetible trust
- 9. Solar energy, Suhas Sukatme, Tata McGrawHill Publication
- 10. Principle of electronics, V. K. Mehta, S. Chand and Company Limited
- 11. Digital principles and application, Malvino and Leach, Tata McGrawHill Publication
- 12. Elements of spectroscopy, Gupta, Kumar, Sharma, Pragati Prakashan
- 13. Introduction to atomic spectra, H. E. White, McGrawHill Publication
- 14. Biophysics, Vastala Piramal, Dominent Publishers and Distributor

Semester- II

DSC-B - Chemistry(Credit-2)

Units	Lectures(30)
Unit I	
Unit I Fundamentals and Mechanistic Basis of Organic Reaction - Introduction ,Reaction mechanism-Definition, curved arrownotation, substrate , Reagents, Types of reagents, types of reactions,Reactive intermediate Carbocataion, Carbanion, Carbon Free radicalsSN1 and SN2 mechanisms (Hydrolysis of t-butyl halide and primaryalkyl halide) with energy profile diagram.Elimination reactions- E1 and E2 mechanisms (Dehydration ofalcohol), Hoffman's and Saytzeff's rules- statements andjustifications.Addition reactions- Electrophilic addition reactions in alkenes(Markovnikoff and anti-Markovnikoff additions), nucleophilicaddition reactions of carbonyl compounds (cyanohydrin formation).Concept of an aromaticity.Mechanism of SE reactions in benzene- Nitration, sulphonation, halogenation, diazotization, Friedel- Craft's alkylation and acylationreactions. Orientation effects as exemplified by– NO2, OH functional groups. Stereochemistry - Geometrical isomerism in alkenes. Optical activity- Plane polarized light (PPL), Polarimeter, specificrotation, Chirality- Chiral molecules, symmetry elements, asymmetriccarbon, compounds with one and two chiral centers, diastereomers.enantiomers, tartaric	15
acid E-Z and R-S nomenclatures. Numerical Problems	
Unit - II	
 Titrimetric Analysis and Gravimetric Analysis Principle of volumetric analysis, titration, titrant, titrand, endpoint,Equivalence point, titration error, indicator.Primary and secondary standards, preparation of standard solutionsCharacteristics and examples.Theory of acid base indicators, choice and suitability of indicators.Types if titrations—acid base, redox, precipitation, complexometric,Titration curve and end-point evaluationGravimetric analysis: solubility and precipitation, factors affectingsolubility, nucleation, practicsal size, crystal growth, colloidal state, ageing or digestion of pptCo precipitation and post precipitation, washing, drying and ignition of precipitate Chemistry of Natural Products Terpenoids-Isoprene rule, structure determinations of citral.Natural Pigments- Carotenoids and their functions in Plants, structural details of chlorophyll. Alkaloids- Basic structure, classification with suitable examples. 	15

References-

- 1) University General Chemistry C. N. R. Rao, Macmillan.
- 2) Physical Chemistry R. A. Alberty, Wiley Eastern Ltd.
- 3) Quantum Chemistry Including Molecular Spectroscopy- B. K. Sen.
- 4) Organic Chemistry D. J. Cram and G. S. Hammond (Mcgraw-Hill).
- 5) A Guide-book to Mechanism of Organic Chemistry-Peter Sykes-6th Edition.

- 6) Theoretical Principles of Inorganic Chemistry- G.S. Manku
- 7) Physical Chemistry by Sharma and Puri
- 8) Instrumental methods of chemical analysis- Chatwal & Anand
- 9) Instrumental methods of chemical analysis- B. K. Sharma
- 10) Organic Chemistry VOL-II 5th Edition- I. L. Finar
- 11) An introduction to electrochemistry- Samuel Glassstone
- 12) The elements of physical chemistry P.W. Atkins.
- 13) Essential of physical chemistry- B .S. Bahel. & G. D.Tuli.
- 14) Principels of Physical Chemistry S.H Maron & Pruton
- 15) Concisein Inorganic chemistry J.D. Lee

DSC-B - Biochemistry (Credit-2)

Units	Lectures (30)	
Unit- IProtein: Amino acid classification (Depending upon R group), structure of amino acids, single letter codes of amino acids, peptide bond, classification of protein based on composition - Simple ,conjugate, derived. Determination of primary structure (Sanger's method, Edman's method, Dansylchloride), structural level organisation of proteins- Primary ,Secondary- forces stabilizing secondary structure types - α - helix, β-sheets, Tertiary structure (Describe different bonds), w.r.t. Myoglobin.Quaternary structure w.r.t. Hemoglobin.Biological functions of Proteins.Chromatography : Introduction, Theory, Principle and applications of Thin layer chromatography, paper chromatography, column chromatography, size exclusion chromatography. Ion exchange chromatography, Affinity chromatography.	15	Refer nces:- Bioch mistr Nelso & Coz Bioch mistr
Unit- II Enzymes: Introduction, IUB classification, active site, energy of activation, transition state hypothesis, lock and key hypothesis, Induced fit hypothesis, enzyme inhibition- types competitive, non-competitive, un-competitive. M-M equation, Line weaver- Burk plot Co-enzymes: Thiamine, riboflavin, niacin, pyridoxol phosphate, (Introduction, structure, sources, daily requirement, biological functions deficiency)	15	Stryer Enzy es Trevo

Palmer

4) Biochemistry - Voiet & Voiet

5) Biochemistry - J.L.Jain

6) Basic Biophysics- M. Daniel

7) Biochemistry - Powar and Chatwal

8) Protein Purification- Harris and Angel

9) Practical biochemistry – Keith Wilson And Walker

10) Principles of Biochemistry - T. N. Pattabriraman.

11) Biochemistry 3rd Edition – Hames & Hopper.

12) General Biochemistry – J. H. Well.

DSC-B - Animal Science(Credit 2)

Units	Lectures (30)

Unit- I Life concepts and characteristics of life. Cell theory, Understanding the diversity of life, 3 domain systems, Six kingdom system, General classification of animal kingdom.(up to classes), Non-chordates –Study of phylum Porifera, Ceolenterata,Platyhelmenthes, Nemathelmenthes, Arthropoda, Mollusca & Echinodermata – General characters with representative examples-Sycon, Hydra, Liver fluke/ Taenia, Earthwarm / Nereis, Cockroach,Pearl oister / Pila, Starfish Chordates:-Study of class Pisces, Amphibia, Reptilia & Mammalia – Generalcharacters with representative examples – Lebeo, Frog, Cobra,Alligator, Fowl and Rat Host Parasite Relationship Protozoan parasite- Plasmodium(Morphology,parasitic adaptations,Life cycle), Nematode parasite- Ascaris(Morphology,parasitic adaptations,Life cycle), Platehelminthes parasite- Liver fluke(Morphology,parasitic adaptations,Life cycle)	15
Unit- II Tissues - i) Epithelial ii) Muscular iii) Nervous iv) Connective tissue-Blood (Plasma, Serum, Clotting), Bone, Cartilage. Histological Architecture - i) Skin ii) Tooth iii) Liver iv) Kidney v) Uterus Applied zoology - Vermiculture, Apiculture, Sericulture, Pearl culture, Pisci culture	15

References :

- 1. Kotpal Invertebrates
- 2. Kotpal Chordates
- 3. Shukla and U. Pandey- Applied Zoology.

Units	Lectures (30)
Unit-I Introduction to statistics and collection of data. Meaning of statistics, Scope of statistics in Biological and medical sciences, Primary and Secondary data, Classification of data, Inclusive and Exclusive methods, Discrete, and Continuous frequency Distribution.Cumulative frequencies, Graphical representation :- Histogram ,bar chart, line diagram, pie chart& ogive CurvesMeasures of central tendency and measures of dispersion, Concept of measures of central tendency, Definitions of A.M., Median, Mode, Quartiles, Examples on ungrouped and grouped data, Properties of A.M. (statement only), Methods of obtaining mode & quartiles graphically, Concept of measures of dispersion . Absolute and Relative measures, of dispersion, Definitions of Range, Q.D, S.D and variance ,coefficient ofvariation. Examples on grouped and ungrouped data	15
Unit II Correlation and Regression, probability & testing of Hypotheisis - Concept of correlation between two variables and types of correlation, Method of obtaining correlation coefficient Properties of correlationcoefficient. Examples on ungrouped data, Concept of regression, Lines of regression Regression coefficientsand properties without proof. Examples on ungrouped data, Probability and Sampling Definition of sample space, Outcomes, events, exhaustive events,Mutually exclusive events, Equally likely events, certain eventsimpossible events.Definition of probability, Limits of probability. Probability of complementary event, Additive law of probability. Simple illustrativeexamples.Definition of conditional probability, Multiplicative lawprobability, Independent events, Simple illustrative examples.Idea of population and sample. Simple Random Sampling andStratified Random sampling. Advantages and disadvantages of both the methods, Testing of hypothesis, Simple and composite hypothesis, Null andalternative hypothesis, types of errors, Critical region, Acceptanceregion, level of significance. Tests of significance: Chi square tests, t tests and F test	15

References :

- 1) Goon A. M., Gupta M. K. and Dasgupta B.:Fundamentals of mathematical statistics vol. I & II. World Press, Calcutta.
- 2) Gupta & Kapoor: Fundamental of mathematical statistics.

4) Waiker and Lev: Elementary Statistical methods.

³⁾ Thingale T. K. and Dixit P. G. (2003): A text book of paper- I for B.Sc. I, Nirali Publication, Pune.

- 5) Rohatgi V. K. and Sauh A. K. Md E. (2002) An Introduction to probability and statistics (John Wiley & Sons-Asia)
- 6) Thigale T. K. and Dixit P. G. (2003): A text book Of paper II for B.Sc. I.
- 7) Meyer P. L. (1970): Introductoryto probability and statistical Application. Addision wesly.
- 8) Cochran, W.G.: Sampling Techiniques, Wiley Estern Ltd., New Delhi.
- 9) Des Raj : Sampling theory

DSC-B - Computer(Credit- 2)

Units	Lectures (30)
Unit- I Introduction to Programming, Algorithm, Flowchart, Pseudocode Fundamentals of C, Character set, keywords, identifiers, data types, constants, symbolic, constants, escape sequences, variables. arithmetic, relational & logicaloperators, type conversions in expressions.	15
Unit- II Input/outputPrintf(), scanf(), getchar(), putchar(), gets(), puts(), enum, sizeof()operatorFormatting input/output.Control Structures & Array If, ifelse, nested if, switch statement, while loop , do while loop , for loop, continue & break statementArray- declaration, initialization of One dimensional & twodimensional array, character array, strlen(), strcpy(), strcmp(), strcat().	15

Reference Books

1) Computer Fundamentals by P. K. Sinha

2) C Application programs and Projects by Pramod Vasambekar

- 3) Use of Computer from Vision Publication
- 4) Let Us C by Kanetkar
- 5) Ansi C by Balgurusami

DSC-B - Cell Biology(Credit 2)

Units	Lectures (30)
Unit-ICell Structure - Discovery of Cell, Cell theory -Definition, discovery, three assumptions of cell theory, exceptions, organismal theory, protoplasm theory, Organization of Prokaryotic cell, Organization of Eukaryotic cell (plant and animal cell), Ultra structure & functions of cell organelles Mitochondria, Chloroplast, E.R., Golgi apparatus ,Lysosome, Peroxisome,Ribosomes. Cell membrane & Membrane transport, Cell membrane – components, Molecular models of cell membrane-Unit membrane model, Protein, crystal model, fluid mosaic model, Types of membrane transport, Passive transport-simple diffusion, facilitated diffusion, osmosis.Active transport-primary and secondary transport, Sodium pump,Na+-K+ ATPase pump, Bulk transport-endocytosis and exocytosis	15
Unit- II Nucleus - Introduction,morphology,occurrence,shape,size,number,positionUltra structure of nucleus-Nuclear membrane, nucleoplasm,nucleopore complex, nucleus. Chromosome structure- introduction, General features of Prokaryotic chromosome.General features of Eukaryotic chromosome Chromosomenumber, size, Chromosomal nomenclature & General structure Cytoskeleton assembly Introduction, Cytoskeleton elements, Microtubules- occurrence,structure,chemical composition,microtubule associated proteins, functions, Microfilaments- occurrence, structure, chemical composition, functions, Intermediate filaments(IF) - occurrence, structure, chemicalcomposition, types of IF, functions Organization of cilia and flagella	15

References:-

1) Molecular biology of cell-Albert

- 2) Molecular biology & cell biology Loddish etal
- 3) Cell biology De Robertis
- 4) Cell biology-Genetics, molecular biology-P.S. Warma & Agarwal
- 5) Genes Lewin
- 6) Cell biology –Geral karp
- 7) Practical biochemistry Keith, Wilson and Walker

DSC-B - Microbiology (Credits-2)

Units	Lectures (30)
Unit-I	
 Culture media and pure culture techniques:Common components of media and their functionsPeptone, Yeast extract, NaCl, Agar and SugarCulture media - a) Living Media (Lab. animals, plants, bacteria, embryonated eggs,tissue cultures), b) Non living media – i)Natural, ii) Synthetic, iii) Semisynthetic, iv)Differential, v) Enriched, vi) Enrichment, vii) Selective. Methods for isolation of pure culture - i) Streak plate ii) Pour plate iii) Spread plate Microbial growth:Definition of growth, phases & growth curve - a] Continuous culture, b] Synchronous growth, c] Diauxic growthEffect of environmental factors on growth-temperature, pH., osmoticpressure, hydrostatic pressure, surface tension, heavy metals. 	15
ultraviolet light.	
Unit- II	
 Water Microbiology – Sources of microorganisms in water, fecal pollution of water, Routine bacteriological analysis of water i)SPC ii) Tests for coliforms-Qualitative-detection of presence of coliforms by -Presumptive, confirmed, completed, differentiation of coliforms-IMViCQuantative: MPN technique. Air microbiology - Sources of microorganism in air, definition of (i) infectious dust, (ii) droplets(iii) droplet nucleiSampling methods for microbial examination air, (i) solid impaction-sieve device (ii) liquid impingement – bead bubbler diviceGerm free and Gnotobiotic life- rearing greem free animals, vs normal animals , uses of germ free animals 	15
Medical microbiology	
Definition, Host, parasite, Saprophytes, Commensals, Infection,Etiological agent, Disease, Pathogen, Opportunistic pathogen, Truepathogen, Virulence, Pathogenicity, Fomites, Incubation period,Carriers, Morbidity rate, Mortality rate, Epidemiology, Etiology,Prophylaxis, Antigen, Antibody, Hapten, Vaccine, Immunity.Virulence factor: Production of endotoxin, exotoxin, enzymes, escapingof phagocytosis.Types of diseases: Epidemic, Endemic, Pandemic, Sporadic.Types of infections: Chronic, Acute, Primary, Secondary, Reinfection,Iatrogenic, Congenital, Local, Generalized, Covert, Simple, Mixed,Endogenous,	

Exogenous, Latent, Pyogenic, Nasocomial.Mode of transmission of diseases:Air borne transmissions, Vehicle transmissions, Contact transmissions,Vector borne transmissions.	
General principles of prevention and control of microbial diseases	

References:

- 1) General microbiology-Stanier
- 2) Introduction to microbiology-Ingraham
- 3) Brock biology of microorganisms-Madigan etal
- 4) Fundamentals of microbiology-Frobisher
- 5) Microbiology-Pelczar
- 6) General microbiology -Pawar&Daginawala
- 7) Text book of microbiology-Ananthanarayan& panikar

DSC-B-Physics (Credit 2)

	Units	Lectures (30)
	Unit-I	
0	ptics correlated with microscopy: Concept of interference	
ar	nd diffraction, Diffraction gratin (Descriptiononly), concept of	
po	plarization and plane polarized light, production ofpolarized	
lig	ght by absorption, reflection, refraction and scattering, Nicol	
pr	rism, definition of optical activity, LASER- LASER	
ac	ction(Energy level diagram), properties of LASER,	15
ap	oplications of LASER.BioelectricityIntroduction, electricity	
ot	bserved in living systems-examples, origin ofbioelectricity,	
re	esting potential and action potential, Nernst	
ec	quation, conduction velocity, origin of compound action	
po	otential, Electrocardiogram (ECG), Electroencephalogram (EEG),	
El	lectromyogram (EMG), Electroculogram (EOG),	
	Unit II	
Se	emiconductor Devices and Digital Electronics, Light Emitting	
D	iode (LED), seven segment display, photodiode, optocoupler,	
sp	bectral distribution of solar energy, solarcellconstruction,	
W	orking efficiency and fill factor, applications of solarcell.	
Bi	inary and BCD number system, Basic logic gates OR,	
Ν	OR, AND, NANA and NOT, Demorgans theoremAtomic	15
st	ructures and X-raysIntroduction, J. J. Thomson atomic model,	15
R	utheford atomic model and Bohr model, Limitations of Bohr	
at	omic model, Energy level diagramof Hydrogen atom,,	
Q	uantum numbers, Nuclear models and forces(Liquid drop	
m	odem and shell model), production of x-rays and itsproperties,	
C	ontinuous and characteristics X-ray spectrum, Brags	
la	w,Applications of X-ray	

References:

- 1) Physics by Devid Hallday Roberet Resnik, (Vol-I and Vol-II) Wiley Eastern limited
- 2) Fundamental of Mechanics, S.K.Saxena, Himalaya Publications
- 3) Perspectives of modern physics, Aurthur Beiser, McGrawHill Publication
- 4) Heat and Thermodynamics, Zemansky, McGrawHill Publication
- 5) Fundamentals of optics, Jenkins white, McGrawHill Publication
- 6) Text book of optics, N.Subrahmanyan Brijlal, S.chand and Company Limited
- 7) Optics by Ajoy Ghatak, Tata McGrawHill Publication
- 8) Properties of Matter, D.S.Mathur, Sha, alal Charetible trust

- 9) Solar Energy, Suhas Sukatme, Tata McGrawHill Publication
- 10) Principle of electronics, V.K.Mehta, S.chand and Company Limited
- 11) Digital Principles and application, Malvino and Leach, Tata McGrawHill Publication
- 12) Elements of Spectroscopy, Gupta, Kumar, Sharma, Pragati Prakashan
- 13) Introduction to Atomic spectra, H.E. White ,McGrawHill Publication
- 14) Biophysics, Vastala Piramal, Dominent Publishers and Distributor

Practical-I Techniques in Chemistry and Biochemistry

Techniques in Chemistry :-

Sr	Name of the Practical	Practicals	
NO	Physical Chemistry- Major experiments		
1	To study the specific reaction rate of hydrolysis of methyl acetate in presence of HCl.	1	
2	To study the reaction between potassium per sulphate $(K_2S_2O_8)$ and potassium iodide (KI) in solution with equal concentration of reactants.	1	
3	To determine the normality of given strong acid by titrating it against strong base, conductometrically.	1	
4	To determine the normality of given strong acid by titrating it against strong base, potentiometrically.	1	
	Physical Chemistry Minor Experiments	1	
1	To determine the Heat of ionisation (Δ Hi) of weak acid.	1	
2	To prepare and standardise HCl/H ₂ SO ₄ of commercial sample.	1	
	Inorganic Chemistry Major Experiments	1	
1	Estimation of amount of magnesium from talcum powder by complexometric titration.	1	
2	To determine the percentage purity of given sample of soda ash.		
3	Preparation of standard potassium dichromate $(K_2Cr_2O_7)$ solution and determination of strength of ferrous ammonium sulphate solution $(NH_4)_2Fe(SO_4)_2.6H_2O$.	1	
	Inorganic Chemistry Minor Experiments	1	
1	Preparation of Ferrous ammonium sulphate (NH ₄) ₂ Fe(SO ₄) ₂ .6H ₂ O.	1	
2	To prepare buffer solution and to measure their pH using pH meter.	1	
	Organic Chemistry Major Experiments	1	
1	Estimation of Vitamin-C.	1	
2	Estimation of sap value of given oil sample.	1	
3	To determine the strength in terms of g/lit or kg/dm ³ of given solution of aniline.	1	
4	To determine the acetamide in given solution.	1	
	Organic Chemistry Minor Experiments	1	
1	Preparation of phthalimide from phthalic anhydride.	1	
2	Preparation of p-Nitro acetanilide from acetanilide.	1	

References:

1. Textbook of practical organic chemistry (4th Edition, Longman) - A. I. Vogen

Techniques in Biochemistry :-

Sr. No.	Name of the Practical		
	Biochemistry- Major experiments	Practical	
-	Estimation of Glucose(500 ug/ml) by DNSA method 6 tubes-		
1	Graphical)	1	
	Estimation of Protein by Biuret Method 6 tubes- Graphical) e.g-		
2	Casein - 5mg/ml	1	
	Estimation of Amino acid by Ninhydrin Method,6 tubes-		
3	Graphical) e.g- Leucine - 65ug/ml	1	
4	Estimation of Cholesterol by Iron reagent 6 tubes- Graphical)	1	
	Estimation of Reducing sugar from apple juice by Benedict'		
5	method - Quantitatively.	1	
	Separation & purification of Lysozyme from egg yolk by Ion		
6	Exchange chromatography	1	
	Biochemistry Minor Experiments	1	
	Preparation of Buffers- Phosphate, Acetate, and determination of		
	pH with pH meter	1	
	General -Qualitative tests for carbohydrates and detection of		
2	carbohydrate from given mixture(Glucose, fructose, maltose,	1	
	xylose, sucrose, starch)		
	General -Qualitative tests for Amino acids and detection of		
3	Amino acid from given mixture (Arginine, methionine, cystine,	1	
	tyrosine, tryptophan, histidine)		
4	Isolation and characterisation of Casein from Milk	1	
5	Isolation and characterisation of Starch from Potato.	1	
	Qualitative assay of α -amylase using starch as a substrate		
6	(use of Iodine- visual detection by varying the time of enzyme	1	
	substrate reaction.)		
_	Separation and detection of Amino acid by Paper/ Thin layer		
7	chromatography	1	
8	Separation of Biomolecules by Gel filtration Chromatography	1	

References:

1. Practical Biochemistry - J. Jayaraman,

2. Practical Biochemistry - David Plummer

Practical-II Laboratory Exercises in Microbiology & Instrumentation

Practicals in Microbiology :-

Sr. No.	Name of the Practical			
1)	Microscopic examination of bacteria by			
	a. Monochrome staining. b . Gram staining c . Negative staining.	6		
	d. Capsule staining. e. Cell wall staining. f. Endospore staining			
2)	Mounting and identification of Mold.	2		
	a) Aspergillus b) Penicillium			
3)	Preparation of bacteriological culture media			
	i) Peptone water. ii) Nutrient broth.	2		
	iii) Nutrient agar. iv) Mac Conkey's agar.			
4)	Preparation of Fungal culture media	2		
	i) Sabouraud's agar ii) PDA			
5)	Enumeration of bacteria by total viable count from soil by spread plate	2		
	technique and pour plate technique			
6)	Observation of motility by hanging drop technique.			
7)	Study of growth curve of bacteria	1		
8)	Isolation, colony characters, Gram staining & motility of E.coli, Bacillus	2		
	sp.	-		
9)	Differentiation of fecal & non-fecal coliforms by IMViC Test			
10)	Isolation, colony characters, Gram's staining and motility of Bacteria	1		
	isolated from- Air (solid impaction technique)	-		
11)	Study of Sugar (Glucose/Lactose) Fermentation ability of Microorganisms	1		

References:

- 1. Experimental Microbiology Patel
- 2. Media Preperation Dr. A.M. Deshmukh
- 3. Bacteriological Techniques F. J. Baker

Practicals in In	strumentation :-
------------------	------------------

Sr. No.	Name of the Practical		
1)	Use, care and study of Compound Microscope		
2)	Demonstration (Principle, working, construction) of Colorimeter	1	
3)	Determination of λ - max of a dye solution (Any dye)	1	
4)	Demonstration (Principle, working, construction) of PH meter	1	
5)	Demonstration (Principle, working, construction) of Autoclave	1	
6)	Demonstration (Principle, working, construction) of Centrifuge	1	
7)	Demonstration (Principle, working, construction) of Hot air oven & Incubator	1	
8)	Demonstration (Principle, working, construction) of Laminar Air Flow	1	
9)	Study of UV absorption spectra of macromolecules (protein and nucleic acid) & determination of Purity	1	
10)	Separation of Amino Acids by Paper Electrophoresis	1	
11)	Separation of Small & Large Biomolecules by Dialysis technique	1	

References:

- 1. Practical Biochemistry J. Jayaraman
- 2. Practical Biochemistry David Plummer

Practical-III Laboratory Exercises in Plant Science & Animal Science

Practicals in Plant Science :-

Sr. No.	Name of the Practical	Practicals
1)	Study of algae (Nostoc, Sargassum)	1
2)	Study of bryophyte (Riccia / Anthoceros)	1
3)	Study of Pteridophyte (Selaginella)	1
4)	Study of gymnosperms (Pinus)	1
5)	Study of Angiosperms (Sunflower, Maize)	1
6)	Plant anatomy – Dicot and monocot root, stem, leaf	2
7)	Study of apical meristem (Stem and root)	1
8)	Study of typical flower	1
9)	Study of types of inflorescence	1
10)	Study of fruit types as per theory	1
11)	Study of morphology of seed (Monocot & dicot)	1
12)	Breaking of seed dormancy	1

References:

1. Vikas Handbook of Botany - Shrivastava K. C., B.S. Dattatray, A. B. Raizada (1977)

Practicals in Animal Science :-

Sr. No.	Name of the Practical		
1)	Classification and Identification of Non-chordates &		
	Chordates. (One animal each).		
	Non- chordates- Sycon, Hydra, Liver fluke/ Earthwarm / Nereis,	2	
	Cockroach, Pearl oister/Pila, Starfish.		
	Chordates- Lebeo, Frog, Cobra, Alligator, Fowl and Rat.		
2)	Earthworm Dissection (Digestive system, Nervous system)	2	
3)	Study of Plasmodium, Ascaris, Liver Fluke, Taenia- Salium	2	
4)	Blood slide Preparation and Identification of Blood cells.		
5)	Blood cell count		
	i) Differential count of W. B. Cs.	2	
	ii) Total count of W. B. Cs and R. B. Cs.		
6)	Preparation of Haemin Crystals	1	
7)	Study of Bone Marrow cells	1	
8)	Histology of Skin, Tooth, Liver, Kidney, Uterus.	2	
9)	Demonstration of –		
	ii) Bee Keeping- Study of Instruments	2	
	iii) Sericulture - Study of different Stages.		
10)	Study Tour-Visit to Sericulture/Apiculture/Vermicomposting unit)	2	

References:

1. Practical Zoology by Lal.

Practical-IV Methods in Mathematics, Statistics & Computer Applications in Biotechnology

Practicals in Mathematics, Statistics & Computer Applications:-

Sr. No.	Name of the Practical			
Practicals in Mathematics				
1)	1)1. Applications of differential equationi) Growth & decay,ii) Newton's law of cooling			
2)	Eigen values & Eigen vectors	2		
3)	Complex numbers: Geometrical representation of complex numbers (Argand's diagram) Graphical representation of Z , $Z1+Z2$, $Z1 - Z2$, $Z1$. Z2 , Z1/Z2 [Z-a] = b			
	Practicals in Statistics			
1)	Frequency distribution – Graphical, Histogram, ogive curve [less & greater than].	2		
2)	Measures of central tendency (Grouped and ungrouped) A. M., Median, Mode.	2		
3)	Measures of Dispersion – Range, s. d., C. V. combined s. d.	2		
4)	Correlation, Regression. Scattered diagram, Karl Pearson's correlation coefficient, eqn of Regression line.	2		
5)	 5) Testing of Hypothesis: Large sample test: Normal, proportion. Small sample test.: x2, t, f. 			
Practicals in Computer Applications				
1)	Study of commands of word.	1		
2)	Creation of worksheet with graphs	1		

3)	Power Point presentation.			
4)	Write program to convert temperature in Celsius into Fahrenheit.	2		
5)	Write program to find area of circle	1		
6)	Write program to find given number is even or odd.	1		
7)	Write program to display Fibonacci series			
8)	Write program to find class from given marks of subject.			
9)	Write program to print sum of 1 to n numbers			
10)	Write program to display number, square & cube upto given number.	1		
11)	Write program to sort elements of array	1		
12)	Write program for addition of two matrix			
13)	Introduction to biological database			

List of minimum equipment's-for Biotechnology

1) Hot air oven - 1 2) Incubator - 1 3) Autoclave - 1 4) Refrigerator - 1 5) Students microscopes(oil immersion) - 10 nos. for one batch 6) Digital balance - 2 7) *pH meter* - 1 8) Centrifuge - 1 9) Colorimeter - 1 10) Distilled Water Plant - 1 11) Laminar air flow cabinet - 1 12) Colony counter - 1 13) Water bath - 1 14) Arrangements for gas supply and fitting of two burners per table. 15) One working table of 6' x $2\frac{1}{2}$ ' for two students. 16) One separate sterilization room attach to the laboratory $(10' \times 15')$ 17) At least one wash basin for a group of five students 18) One separate instrument room attached to lab (10' x 15') 19) One laboratory for one batch including working tables (6' $x 2\frac{1}{2}$ ') per two students for one batch 20) Store room (10' x 15')

Practical Examination

(A) The practical examination will be conducted on two consecutive days for three hours per day per batch of the practical examination.

(B) Each candidate must produce a certificate from the Head of the Department in her/hiscollege, stating that he/she has completed in a satisfactory manner the practical course onlines laid down from time to time by Academic Council on the recommendations ofBoard of Studies and that the journal has been properly maintained. Every candidatemust have recorded his/her observations in the laboratory journal and have written areport on each exercise performed. Every journal is to be checked and signedperiodically by a member of teaching staff and certified by the Head of the Departmentat the end of the year. Candidates must produce their journals at the time of practicalexaminations.

Note:- At least 90% Practical's should be covered in practical examination.

Nature of Question Paper (Theory)

Total Marks: 40

Instructions

Time: 2 Hrs

1. All the questions are compulsory.

- 2. Figures to the right indicates full marks.
- 3. Draw neat labeled diagram wherever necessary.

Q. 1. Rewrite the sentenc	es by selecting	g correct alternative fror	n the following.	(8 Marks)
1. a)	b)	c)	d)	
As above i to viii.				
Q. 2. Attempt any two.				(16 Marks)
i. ii				
iii				
Q. 3. Attempt any four.				(16 Marks)
1. ii.				

- iii..
- iv.
- v.
- vi.

Scheme of marking (Theory)

Semester	Core Course	Marks	Evaluation	Standard of passing
I.	DSC - A	40	semester wise	35% (14 M)
II	DSC - B	40	semester wise	35% (14 M)

Scheme of marking (CIA - Continuous Internal Evaluation)

Semester	Core Course	Marks	Evaluation	Standard of passing
I.	DSC - A	10	semester wise	35% (4 M)
II	DSC - B	10	semester wise	35% (4 M)

Scheme of marking (practical)

Semester	Marks	Evaluation	Standard of passing
----------	-------	------------	---------------------

I & II	50	Annual	35% (18 M)
--------	----	--------	------------

Note: For Semester I & II for both DSC-A & B, 9 subject theory papers of 30 Hrs. (36.5 Lectures) Credit - 2

Practical Examination Annual having 4 Practical I to IV (each having 50 Marks)

For Continuous Internal Evaluation/Examination - 10 Marks

Mandatory :	1. Presenty	-	3 Marks	
	2. Any one of the following	-	7 Marks	
	Unit Test / Home Assignment/ Seminar			