"Education for knowledge, science and culture"

Shikshanmaharshi Dr. Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's

VIVEKANAND COLLEGE (AUTONOMOUS), KOLHAPUR

B. Sc. Part - I (Computer science Entire) CBCS Syllabus with effect from June, 2018

Semester: I Electronics -Paper- I

Electronics GEC-1301 A

Electronics circuits and digital electronics – I

Theory: 60 Hours (75 Lectures) credits -4

Section – I

UNIT 1: Liner components in computer

Definition of active and passive elements

Resistors: Classification, color code, specifications of resistors

Types of resistors: - Linear Resistors (Fixed): -Carbon composition, carbon film, wire wound. Linear resistors (Variable): -Wire wound, Potentiometer, Preset.

Non-Linear resistors: - Thermistors, LDR and Varistors.

Capacitors: Definition, Capacitance, capacitive reactance (XC), Charging and discharging of capacitor,

Types of capacitors: -Fixed electrostatic capacitors: -ceramic, mica, paper, etc

Fixed electrolytic capacitors: - Aluminum and Tantalum.(Construction of electrolyte capacitor). Variable capacitors: -Air dielectric capacitor and Trimmers.

Inductors and Transformers:

Inductors: - Definition, symbol, Inductance, Inductive reactance (XL), Types of Inductors: - Air core, Iron core and ferrite core inductors.

Transformers:- Principle and construction of transformer, Specification of transformer. Types of Transformer: - Step-up, step-down transformer

Types of Switches: (Explanation using Symbols)

Relays: - Principle, construction and working of electromagnetic relays

UNIT 2: DC circuit analysis

Basic laws: Ohm's law, Kirchoff's current and voltage law, concept of current source, Voltage source. Application of Kirchoff's laws to simple circuits,

Network Theorems: - (only for dc resistive circuit) Thevenin's Theorem, Norton's Theorem, superposition Theorem, Maximum power transfer theorem, (only statement and examples)

UNIT 3: Semiconductor Diode

Formation of P-N junction, depletion layer, internal potential barrier, working and I-V characteristics of PN junction diode. Diode applications,

zener diode: Breakdown mechanism, Zener and Avalanche Break down I-V characteristics.

Photodiode and LED, current limiting resister for LED, Applications- Optocoupler, dot matrix display of LED, 7-segment display.

UNIT4: Bipolar junction Transistor

Structure and working of bipolar junction transistor: CB, CC, CE configurations, CE mode characteristics, Relation between α and β , DC load line and Q point, potential divider Biasing, Concept of transistor as an amplifier and transistor as a switch.

(12)

(09)

(06)

(10)

Section – II

UNIT 1: Number System, Binary Codes and Binary Arithmetic

Different types of number system (Decimal, Binary, Octal, Hexadecimal Number system, Inter conversion from one system to another) and codes (BCD code, Gray code, Exess-3 code, ASCII code, EBCDIC code). Concept of parity, Signed and unsigned numbers, 1's complement and 2's complement of binary numbers, binary arithmetic (addition, subtraction, multiplication, division).

UNIT 2: Logic Gates, Boolean algebra and Logic Families

Logic gates: All Logic gates -AND, OR, NOT, NOR, NAND, EX-OR, EX-NOR

(Defination, Symbol, Expression and Truth Table), Universal gates (NAND and NOR)

Boolean algebra: Rules and laws of algebra, De-Morgan's Theorems, Simplifications of logic Expressions using a) Boolean algebra, b) K-map,

Logic families: Introduction (Bi-polar and unipolar logic family), Characteristics, TTL NAND gate, tristate logic

UNIT 3: Combinational Circuits

Concept of Combinational Circuits, Half adder, Full adder, half subtractor, 4-bit adder/subtractor, Arithmetic logic unit, Encoder (Decimal to BCD, Octal to binary), Decoder (3:8), Multiplexer, Demultiplexer, tree multiplexing, tree demultiplexing

Unit 4: sequential circuits

(10) Flip-flop

(07)

(10)

Concept of sequential circuits, Flip-flops: RS, Clocked RS, JK, Master Slave JK, D Flip-flop, Counter- Asynchronous, up/down, Decade, Synchronous, Ring Counter, Johnson counter (Truth tables and timing diagrams) (4 bit)

Shift Registers: SISO (left shift, right shift), SIPO, PISO, PIPO Registers (4-bit)

(10)

"Education for knowledge, science and culture"

Shikshanmaharshi Dr. Bapuji Salunkhe

Shri Swami Vivekanand Shikshan Sanstha's

VIVEKANAND COLLEGE (AUTONOMOUS), KOLHAPUR

B. Sc. Part - I (Computer science Entire) CBCS Syllabus with effect from June, 2018

Semester II Electronics -Paper- I

Electronics GEC-1301 B

Electronics Devices and Circuits – II

Theory: 60 Hours (75 Lectures) credits -4

UNIT 1: Field Effect Transistor

Comparison between BJT and FET, classification of FETs, Structure and working of JFET, I-V characteristics and parameters (transconductance, drain resistance, amplification factor) concept of MOSFET-depletion and Enhancement (construction and application only)

Applications: FET as-Voltage Variable resistance, switch, memory cell, DRAM

UNIT 2: Amplifier and Oscillators

General classification of amplifier ,Idea of Multistage amplifier, different coupling methods (Direct coupling, RC coupling, Transformer coupling) Concept of positive and negative feedback. Barkhausen criteria; Types of oscillators RC coupled, wein bridge, Hartley, Colpitts oscillator

UNIT 3: Operational Amplifiers

Concept of operational amplifier; ideal characteristics of Opamp; Different parameters of Op Amp, Virtual ground concept, Applications; inverting amplifier, noninverting amplifier, Unity gain amplifier, buffer, Adder, subtractor, integrator and differentiator, comparator, schmitt trigger

UNIT 4 Power Supply

Working of rectifier (Half, Full, Bridge);different parameters of rectifiers; filter circuits; concept of Regulator; concept of load and line regulation; Zener diode As a regulator; concept of Three pin IC regulator(Block Diagram) positive and negative voltage regulator ICs; SMPS block diagram; UPS: online and offline (block diagram)

UNIT 1: Multivibrator

Section – II

Types of multivibrator, block diagram of IC 555; Application of IC 555 as Astable, and Monastable (Calculation of frequency and Pulse width) Crystal clock using inverter.Clock circuit using NAND gate

UNIT 2: Memory devices and memory Organization

Types of Memory – volatile and nonvolatile, SRAM and DRAM, Classification and Working principle of memory devices; RAM, ROM, PROM, EPROM, and EEPROM; Concept of Diode Matrix ROM, speed and cost range of memory devices, Memory organization - building the required memory size by using available memory chips, memory address map

UNIT 3 Introductions to Microprocessor

Introduction, Types (8, 16, 32 Bits), Pin Diagram and Architecture of 8085, Pin Diagram and Architecture of 8086

UNIT 4 Programming of process

Instruction Set of 8085, ALP Programs for Addition, Subtraction, Multiplication, Division, Data transfer, Block Transfer

RECOMMENDED BOOKS:

1. Principles of Electronics: A.P. MALVINO, (TMH)

- 2. A text Book of Applied Electronics R. S. Sedha(S chand Publication)
- 3. Electronic Devices and Circuits Allen Mottershead (PHI)

4. Principles of Electronics V.K. Mehta (New Edn.)

(10)

(10)

(10)

(08)

(10)

(10)

(08)

(09)

5. Basic Electronics and Linear Circuit N.N. Bhargava,

D.C. Kulshreshtha, S.C. Gupta(TMH)

6. Digital principals and applications; Malvino Leach, Tata McGraw Hill, 4th Edition

7. Fundamentals of Digital Electronics; A. Anand Kumar PHI Publications 2001

- 8. Digital Principles; T.L Floyd 3rd edition
- 9. Digital Electronics; C.F. Strahglo
- 10. Modern digital Electronics; R.P Jain, Tata Mc-Graw Hill Publication
- 11. Digital logic and computer design-Morris Mano
- 12. First course in Digital System Design; John P. Uyemura, Brooke/cole, Thompson Learning.
- 13. Computer Organization -J.P. Hays TMH

Electronics -Lab- I and II GEC-1301 A and 1301 B

Analog Electronics

- 1. Positive & Negative Voltage regulators using 3 in IC's
- 2. Verification of Kirchhoff's Laws
- 3. To verify Thevenin, Norton theorem for a resistive circuit.
- 4. To study forward bias characteristic of rectifier diode.
- 5. Study of CRO
- 6. Transistors as switch (Application for LED & Relay)
- 7. Study of full wave rectifier with & without filter (calculation of ripple)
- 8. Transistor characteristics (CE) configuration
- 9. RC phase shift oscillator
- 10. Hartley Oscillator
- 11. Colpitts Oscillator
- 12. Op Amp as adder
- 13. Op Amp as subtractor
- 14. Characteristics of JFFT calculation of parameters

Digital Electronics

- 1. Study of basic gates
- 2. Universal building block using NAND and NOR gates
- 3. Verification of De-Morgans Theorems
- 4. Study of Flip-Flops (D & JK)
- 5. Half & full adder
- 6. Study of Flip Flop: RS, Clocked RS, D.
- 7. Study of astable Multivibrator circuit using IC 555
- 8. Study of monostable Multivibrator circuit using IC 555
- 9. Study of Multiplexer
- 10. Study of De multiplexer
- 11. Arithmetic Operation using uP8085 I
- 12. Arithmetic Operation using uP8085 II
- 13. Block transfer using uP8085
- 14. Block Exchange using up8085
- At least 12 experiments from each group

Nature of Question Paper for all (Theory) papers U.G. Courses under Faculty of Science.

Nature of Question Paper ----- Total 80 Marks

Section-I

Q.No.1 Multiple Choice based objective type question 08 Marks

(Four options for each question be given)

Q.No. 2 Attempt any two of the following -long Answers (out of three) 16 Marks

Q.No. 3 Attempt any four of the following -Short Answers - (out of six) 16 Marks

Section-II

Q.No.4 Multiple Choice based objective type question 08 Marks

(Four options for each question be given)

Q.No.5 Attempt any two of the following -long Answers (out of three) 16 Marks

Q.No. 6 Attempt any four of the following -Short Answers - (out of six) 16 Marks