"Education for Knowledge, Science and Culture"

... Shikshanmaharshi Dr. Bapuji Salunkhe

VIVEKANAND COLLEGE (AUTONOMOUS), KOLHAPUR

Department of Mathematics

B.Sc. II

Semester III & IV

CBCS syllabus to be implemented from June 2022 Onwards

Vivekanand College, Kolhapur (Autonomous) Department of Mathematics

B.Sc. II

POs:

- > To develop fundamental scientific knowledge.
- > To develop basic scientific and mathematical skills.
- > Students should progress their vertical mobility
- > To develop required technical skills
- > Develop moral, social and ethical values
- Able to survive in society

PSOs:

- Enabling students to develop a positive attitude towards mathematics as an interesting and valuable subject of study.
- Acquire good knowledge and understanding advanced areas of mathematics chosen by students from given course.
- Students should be able to recall basic facts about mathematics and train the students to extract information, formulate and solve problems in systematic and logical manner.
- Students will learn numerical aptitude applying both qualitative and quantitative knowledge for their further career
- Students learn how to apply mathematical concepts to practical and real-life problems.

Semester: III

MATHEMATICS-DSC-1003C Mathematics-Paper-III Number Theory and Integral Calculus Theory: 72 Hours (90 lectures of 48 minutes)- Credits-4 (Marks-100)

Section I: Number Theory

Course Outcomes:

At the end of the course, the students will able to:

CO1: Use mathematical induction and understand the logic and methods behind the major proofs in Number Theory.

CO2: Describe method of solving linear Diophantine equation

CO3: Determine GCD and LCM by using Euclidean algorithm.

CO4: Understand the definition of congruence and familiar with number theoretic functions.

UNIT	Contents		
		Allotted	
1	Divisibility theory in the integers:	10	
	Well ordering principle, Mathematical Induction, The Division Algorithm, The		
	Greatest Common Divisor, Least common multiple, The Euclidean Algorithm,		
	The Diophantine Equation ax + by = c and its examples.		
2	Prime and their Distribution:	09	
	Definition of prime number, The Fundamental Theorem of Arithmetic , $\sqrt{2}$ is		
	irrational, Euclid Theorem		
3	Theory of congruences:	08	
	Definition of Congruence , basic properties of congruence, Fermat's Theorem		
	,examples on Fermat's theorem, Wilson's theorem (statement only) ,examples		
	on Wilson's theorem		
4	Number – Theoretic Function:	09	
	The Sum and Number of Divisors and its examples, The Greatest Integer		
	Function Euler's Phi-Function , Some Properties of the Phi-Function and its		
	examples		

Reference Books:

1) David M. Burton – Seventh Edition, Elementory Number Theory, Mcgraw Hill Education

2) Ivan Niven ,H. Zuckerman , Fifth edition , An Introduction to the theory of Numbers , Wiley

Section II: Integral Calculus

Course Outcomes:

At the end of the course, the students will able to:

CO1: Acquire the information about beta, gamma function and evaluate it in various problems CO2: Apply Leibnitz rule for differential under integral sign

CO3: Learn definition of Fourier Series, Odd and Even Functions, Half range series.

CO4: Use the knowledge of double and triple integrals for finding area and volume

UNIT	Contents	Hours
		Allotted
1	Beta and Gamma Functions:	10
	Definition of Gamma function, Basic Properties of Gamma function,	
	Examples on Gamma functions Definition of Beta function, Basic Properties	
	of Beta function, Examples on Beta functions, Relation between Beta and	
	Gamma function	
2	Differentiation under Integral Sign and error function:	10
	Case of constant limits of integration, Problem involving one parameter,	
	problems involving two parameters, Leibnitz rule for differential under	
	integral sign and examples, Definition of error function, complementary	
	error function. basic properties of error function.	
3	Multiple Integral	08
	Double Integration: Method of evaluation and related examples, (Cartesian,	
	Polar Form), change of order of integration, Change of variable, Examples of	
	triple integral.	
4	Fourier Series:	08
	Periodic functions, Even and Odd functions, Fourier Series Expansion of	
	elementary functions, (Over the different ranges $[-\pi, \pi], [0, 2\pi], [-c, c], [0, 2c]$)	
	Fourier Sine and Cosine series expansion, Half Range series expansion.	

Recommended Book:

- 1. Shanti Narayan, Integral Calculus, S. Chand and Company, New Delhi.
- 2. J.K.Goyal, K.P.Gupta, Laplace and Fourier Transforms, A Pragati Edition (2016)
- 3. G.V. Kumbhojkar and H.V. Kumbhojkar Engineering Mathematics , Nirali Publication
- 4. Dr.S. Shrenadh, Integral Transform, S. Chand Prakashan
- 5. P. N. and J. N. Wartikar, Elements of Applied Mathematics.
- 6. Gorakh Prasad, Integral Calculus, Pothishala Pvt. Ltd., Allahabad.

Semester: IV MATHEMATICS-DSC-1003D Mathematics-Paper-IV Discrete Mathematics and Integral Transform Theory: 72 Hours (90 lectures of 48 minutes)- Credits-4 (Marks-100) Section I: Discrete Mathematics

Course Outcomes:

After studying this course student will able to

- CO1: Understand Recurrence Relation, Generating functions and solving problems involving recurrence equations.
- CO2: Understand basic concept of graph theory to apply in various fields.

CO3: Formulate Recurrence Relations to solve problems involving an unknown sequence.

CO4: Familiarize with the types of graphs, types of paths and their properties

UNIT	Contents		
		Allotted	
1	Recurrence relation:	10	
	Models of Recurrence Relations- Compound Interest, Tower of Hanoi, Bit Strings,		
	Fibonacci Numbers (Counting Rabbits) , linear recurrence relation with constant		
	coefficients, homogeneous solutions & examples, particular solutions and total		
	solutions ,Examples .		
2	Generating functions	08	
	Generating functions, Basic properties of generating functions, applications to		
	solving recurrence relations and Examples		
3	Basics of Graph Theory:	10	
	Graph-Vertices, Edges, Types of Edges- Simple, Parallel, Loop, Simple graph,		
	Multi graph, Pseudo graph, Degree of A vertex- Even and odd Vertex, Isolated,		
	Pendant Vertex, Finite and Infinite Graphs, Adjacent vertices, Undirected Graph		
	And Directed Graph/Digraph, In-degree and Out-Degree of Vertex, Handshaking		
	Lemma		
4	Paths and Circuits:	08	
	Walks-open & close, length of walk, trail, Paths, simple path, length of path,		
	Circuit, cycle, Subgraph-Spanning subgraph (Edge Disjoint, Vertex Disjoint),		
	Operations of graph (Union, Intersection, Complement, Ring Sum), Connected		
	Graphs and components, Disconnected Graphs, Isomorphic Graph, Types of		
	Graph - Complete, Regular, Bipartite, Complete Bipartite		

Reference book :

- 1. Hari Kishan & Shiv Raj Pundir, Discrete Mathematics, Pragati Prakashan, 2013
- 2. Susanna S. Epp, Discrete Mathematics with Applications, PWS Publishing Company, 1995.
- 3. S. Lipschurtz, M. Lipson: Discrete Mathematics, Schaums Outlines.

Section II: Integral transforms

Course Outcomes:

After studying this course student will able to

- CO1: recognize the different methods of finding Laplace transforms and Fourier transforms of different functions.
- CO2: explain the applications and the usefulness of these special functions.
- CO3: Determine Fourier transform, Relation between Laplace and Fourier Transform.
- CO4: apply the knowledge of Laplace transforms, Fourier transforms and Finite Fourier transforms in finding the solutions of differential equations,

UNIT	Contents	
		Allotted
1	Laplace Transform.	10
	Laplace Transform: Definitions; Piecewise continuity, Function of exponential	
	order, Function of class A, Existence theorem of Laplace transform. Laplace	
	transform of standard functions. First shifting theorem and Second shifting	
	theorem and examples, Change of scale property and examples, Laplace	
	transform of derivatives and examples, Laplace transform of integrals and	
	examples. Multiplication by power of t and examples. Division by t and	
	transform of Hoaviside's unit ston function	
2	Inverse Lanlace Transform and application :	10
2	Definition Standard results of inverse Lanlace transform Examples First	10
	shifting theorem and Second shifting theorem and examples. Change of scale	
	property and Inverse Laplace of derivatives, examples. The Convolution	
	theorem and Multiplication by S. examples. Division by S. inverse Laplace by	
	partial fractions, examples, Solving linear differential equations with constant	
	coefficients by Laplace transform.	
3	Fourier Transform	08
	The infinite Fourier transform and inverse: Definition examples Infinite	
	Fourier sine and cosine transform and examples. Definition: Infinite inverse	
	Fourier sine and cosine transform and examples. Relationship between	
	Fourier transform and Laplace transform. Change of Scale Property and	
	examples. Modulation theorem. The Derivative theorem. Extension theorem.	
	Convolution theorem and examples.	0.0
4	Finite Fourier Transform and Inverse, Fourier Integrals:	08
	Finite Fourier sine and cosine transform with examples. Finite inverse Fourier	
	sine and cosine transform with examples. Fourier integral theorem. Fourier	
	sine and cosine integral (without proof) and examples.	

Recommended Book:

1. J.K.Goyal, K.P.Gupta, Laplace and Fourier Transforms, A Pragati Edition (2016).

Reference Books:

1. Dr.S.Shrenadh, Integral Transform, S. Chand Prakashan.

- 2. B Davies, Integral Transforms and Their Applications, Springer Science Business Media LLC(2002)
- 3. Murray R. Spiegel, Laplace Transforms, Schaum's outlines
- 4. Sharma, Gupta, Integrals Transform, KRISHNA Prakashan Media (P) Ltd. Meerut, India

MATHEMATICS LAB: DSC-1003C (Practical) Credits: 08 Marks: 100

Core Course Practical In Mathematics (CCPM-II) Number Theory, Integral Calculus, Discrete Mathematics and Integral Transform (Marks: 50) Credits 04

- 1) Euclidean Algorithm
- 2) Diophantine Equations
- 3) Fermat's and Wilson's theorem
- 4) Euler-phi function
- 5) Beta & Gamma Function-I
- 6) Beta & Gamma Function-II
- 7) Multiple Integral
- 8) Laplace Transform
- 9) Inverse Laplace Transform
- 10) Infinite Fourier Transform
- 11) Finite Fourier Transform
- 12) Fourier Series
- 13) Recurrence Relation
- 14) Boolean Algebra
- 15) Types of Graph
- 16) Walk and cycles

Core Course Practical In Mathematics (CCPM-III) Introduction to Scilab and C Language (Marks 50) credits 04

- 1) Introduction to Scilab
- 2) Matrix
- 3) Accessing elements of Matrices
- 4) Sub Matrix
- 5) Advanced Matrix operation
- 6) Polynomial
- 7) Plotting graphs
- 8) Introduction to Scilab Programming
- 9) Numerical Methods to find the root of the given function
- 10) Interpolation
- 11) Numerical solution of Ordinary Differential Equations -I- Euler's and Euler's Modified Method
- 12) Numerical solution of Ordinary Differential Equations -II- Runge Kutta Method
- 13) Numerical Integration-I Trapezoidal Rule
- 14) Numerical Integration-II Simpson's Rule
- 15) Numerical Methods for solution of System of linear equations-I Gauss Jordan
- 16) Numerical Methods for solution of System of linear equations-I Gauss Seidel

Reference Books:

- 1) Shanti Narayan; Dr. P. K. Mittal, Differential Calculus, S. Chand Publishing
- 2) S. V. Kumbhokar, G.V. Kumbhojkar, Advanced Calculus, Nirali Pubilcation
- 3) N. Piskunov, Differential And Integral Calculus, MIR Publisher, MOSCOW.
- 4) Scilab- A hand on Introduction by Satish Anniger
- 5) Goyal and Gupta: Integral Transform, Krishna Publication, Meerut.
- 6) Goyal : Integral Transform, Vikas Publishing House.
- 7) S. Lipschutz, M.Lipson: Disrete Mathematics, Schaums Outline

Skill Enhancement Course Skill enhancement Experiments (4 Credits)

Analytic Geometry with Desmos or GeoGebra

- 1. Find roots of equations.
- 2. To Find maxima and minima of given equation.
- 3. To calculate the approximate limiting value of given equations
- 4. To check given function is continuous or not?

Reference Book:

- 1. G. B. Thomson, R. L. Finney, Calculus, 9th Edition, Pearson Education, Delhi, 2005.
- 2. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd., 2002.

Theory of Equations

- 1. Polynomial: Definition, representation and its extreme values
- 2. Relation between Roots and coefficients
- 3. Solution of Reciprocal and Binomial equations.

Reference Books:

- 1. W. S. Burnside, A. W. Panton, The theory of Equations, Dublin University Press, 1954.
- 2. C. C. McDuffee, Theory of Equations, John Wiley and Sons Inc., 1954.

Nature of Theory Question Paper

Instructions: 1) All the questions are *compulsory*.

2) Figures to the right indicate **full** marks.

3) Draw neat labeled diagrams wherever necessary.

4) Use of log table/calculator is allowed.

SECTION-I

Time : 2 hours		Total Marks: 35		
Q.1	. A. Choose correct	alternative.		[05]
i)	A)	B)	C)	D)
ii)	A)	B)	C)	D)
iii)	A)	B)	C)	D)
iv)	A)	B)	C)	D)
v)	A)	B)	C)	D)
I	B. Fill in the Blanks.			[02]

i)

ii)

Q.2. Attempt any two.

- i)
- ii)
- iii)

Q.3. Attempt any Three.

[12]

- i)
- ii)
- iii)
- iv)
- v)

SCHEME OF MARKING

Paper No.	Internal Evaluation	End semester theory Examination	Total
III (Section I)	15	35	50
III (Section II)	15	35	50
IV (Section I)	15	35	50
IV (Section II)	15	35	50

Structure of B.Sc. II (Semester III & IV) (Mathematics)

B.Sc. II	Subject (Core Course)	No. Of	Hours	Credits
		Lect.		
Semester –	Mathematics:-	5	4	4
III	Number Theory and Integral Calculus			
Semester –	Mathematics:-	5	4	4
IV	Discrete Mathematics and Integral			
	Transforms			
Annual	CCPM(II)	4	3.2	4
Practical	Number Theory and Integral Calculus,			
	Discrete Mathematics and Integral			
	Transforms			
	CCPM(III)	4	3.2	4
	Introduction to SCILAB and Numerical			
	Analysis			
Annual	Skill Enhancement course	2	1.6	2
SEC	Analytic Geometry with Desmos and			
	GeoGebra			
	Skill Enhancement course	2	1.6	2
	Theory Of Equations			