"Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha, Kolhapur Vivekanand College, Kolhapur (Empowered Autonomous). Department of Physics

M.Sc. Entrance Examination Syllabus 2025-26

Sr. No.	Content
1	Laws of motion:
	Introduction of coordinate systems (Cartesian, Polar, Cylindrical, and Spherical), Definition of
	translational and rotational motion, force and torque, Frames of reference - Inertial and Non-
	inertial frame with examples, Newton's laws of motion (first, second and third) and their proofs.
	Momentum and Energy:
	Introduction to mechanics, Mechanics of a particle - Conservation theorem of linear momentum,
	angular momentum, energy, Concept of Centre of Mass, Mechanics of system of particles -
	Conservation theorem of linear momentum, angular momentum, energy.
2	Gravitation:
	Newton's Law of Gravitation, Motion of a particle in a central force field (motion in a plane,
	angular momentum is conserved, areal velocity is constant), Kepler's Laws (statement only),
	Satellite in circular orbit and applications, Geosynchronous orbits, Weightlessness, Basic idea
	of global positioning system (GPS).
	Elasticity:
	Bending of beam, Bending moment, Cantilever (without considering weight of cantilever),
	Beam supported at both the ends (without considering weight of beam). Torsional oscillation,
	Work done in twisting a wire, Twisting couple on a cylinder, Torsional pendulum -
	Determination of Rigidity modulus and moment of inertia, Determination of Y, η and σ by
	Searles method.
3	Laws of Thermodynamics:
	Thermodynamic system, thermodynamic variables, thermodynamic state, equation of state,
	thermodynamic equilibrium, Zeroth Law of thermodynamics, Internal energy, First law of
	thermodynamics, conversion of heat into work, specific heats CP& CV, Applications of First
	Law (Isothermal process, Adiabatic process, Isochoric, Isobaric), relation between CP & CV,
	work done during isothermal and adiabatic processes, reversible & irreversible processes,
	1

r	
	Second law of thermodynamics, Carnot's ideal heat engine, Carnot's cycle (Working,
	efficiency), Carnot's theorem, Entropy (concept & significance), change in entropy, Entropy
	changes in reversible & irreversible processes, Third law of thermodynamics, Entropy change
	in conduction of heat, diffusion of gases, physical significance of entropy, Un-attainability of
	absolute zero. Zero point energy.
4	Interference:
	Principle of Superposition, Coherence and condition for interference, Division of amplitude and
	division of wave front, Division of wave front - Lloyds single mirror(determination of
	wavelength of light of monochromatic source), Division of amplitude- Interference in thin parallel
	films (reflected light only), Wedge shaped films, Newton's rings and its application for
	determination of wavelength and refractive index of light.
	Diffraction:
	Revision of wave fronts and diffraction, Fraunhofer diffraction - Elementary theory of plane
	diffraction grating, Determination of wavelength of light using diffraction grating, Theory of
	Fresnel's half period zones, Zone plate (construction, working and its properties), Fresnel's
	diffraction at a straight edge.
5	Orthogonal curvilinear co-ordinates:
	Introduction to Cartesian, spherical, polar and cylindrical co-ordinates system, concept of
	orthogonal curvilinear co-ordinates, unit tangent vectors, arc length, area and volume elements
	in orthogonal curvilinear co-ordinates system, Expression for gradient, divergence, Laplacian
	and curl in Cartesian, spherical, polar and cylindrical co-ordinate system.
	Partial differential equation:
	Partial differential equation, degree, order, linearity and homogeneity of differential equations,
	methods of separation of variables, Frobenius method of power series, solution of Legendre,
	Hermite and Bessel differential equation
6	Nucleus (Nuclear Structure & General Properties of nuclei):
	Introduction, Constituents of nuclei, Nuclear size, Nuclear magnetic moment, Electric
	quadrupole moment, Nuclear spin, Unit of atomic mass (amu), Mass defect, Packing fraction,
	Packing fraction curve, Binding energy, B.E. curve, Nuclear forces, Liquid drop model,
	Semiempirical B.E. formula, Magic numbers, Introduction of elementary particles.
	Particles Accelerators:
	Need of accelerators, Types of accelerators (Qualitative) orbital accelerators, Cyclotron,
	(Principle, construction, working, theory, merits, demerits). Limitation of cyclotron,

	Synchrocyclotron, (construction, working, theory). Betatron, (principle, construction, working
	mathematical theory, merits) Accelerators in India.
7	Introduction to Quantum Mechanics:
	Origin of quantum mechanics, Review of black body radiation, Photoelectric effect, mat
	waves, De-Broiglie hypothesis, experimental evidence of de Broglie theory (Davisson a
	Germer experiment), wave particle duality, Heisenberg's uncertainty principle and differ
	forms uncertainty principle
	The Schrodinger's Equation:
	Physical interpretation of wave function, Schrodinger's time dependent and independent
	equation (one and three dimensional) Requirements of wave function, Eigen value, Eig
	function, Normalized orthogonal and orthonormal wave functions, Probability current dense
	(Continuity equation). Examples on Normalization of wave function
8	Crystal Structure:
	Types of the solids, Amorphous, crystalline, lattice, lattice translation vectors, lattice with ba
	(Central , non central elements) Unit cell , Examples of crystal structure NaCl, KCl, Z
	Diamond, Miller Indices, Calculations of coordination number, lattice constant, recipro
	lattices, types of lattices, Brillouin Zones, Diffraction of X-rays, Bragg's law, atom
	geometrical factor, Bragg's X-ray spectrometer,
	Superconductivity:
	Idea of superconductivity, Critical temperature, Critical magnetic field. Meissner effect. Typ
	and type II Superconductors, London's Equation and Penetration Depth, Isotope effect
9	Digital Electronics:
	Introduction to logic gates, De-Morgan's theorem, NAND and NOR gates as universal gates,
	S and J-K flip flops, half and full adder, parallel binary adder.
	Operational Amplifiers (Black Box approach):
	Introduction of differential amplifier and its types, symbol of Op-Amp, different parameters
	Op-Amp, Characteristics of Op-Amp (IC 741), Open-loop & Closed-loop Gain. CMRR, conc
	of Virtual ground. Applications of Op-Amps: (1) Inverting and Non-inverting Amplifiers,
	Adder, (3) Subtractor, (4) Differentiator, (5) Integrator
10	Lagrangian Dynamics:
	Introduction Basic Concepts: (1) Co-ordinate system (2) Degrees of freedom; Constrain
	Holonomic constraints, Nonholonomic constraints, Forces of constraints, Configuration spa
	Generalized Co-ordinates, Principle of virtual work, D'Alembert's principal. Lagrange

	equation from D'Alembert's principle. Application of Lagrange's equation to a particle in a
	space, Atwood's machine and bead sliding on uniformly rotating wire under force free condition
	simple pendulum
11	Atomic Physics:
	Quantum numbers, spatial quantization, vector atom model, Alkali Spectra, Optical spectra
	series, Spectral term spectral notation, energy level diagram of sodium, spin orbit interaction
	Zeeman effect, Explanation of Anomalous Zeeman effect on vector atom model, Anomalous
	Splitting of D1 and D2 Line
	Molecular Physics:
	Molecular system, type of bonds, diatomic molecule as a rigid rotator rotational states o
	diatomic molecule, Raman effect, Experimental study of Raman effect, classical theory o
	Raman effect, Applications of Raman effect.
12	X-Ray Diffraction:
	Reciprocal lattice and its properties, concept of Brillouin zone, diffraction of X-rays by
	crystals, Ewald construction, Bragg's law in reciprocal lattice, X-ray diffraction methods: 1
	Laue method. 2) Rotating crystal 3) Powder method - Principle, Construction, Working
	analysis of cubic crystal by powder crystal method