
Python Programming
Tuples and Dictionaries

By

Mr. Sumedrao M. Gaikwad

BCA Department

Vivekanand College(Autonomous)

Kolhapur.

Tuples
Tuples are very similar to lists, but they are immutable (i.e., unchangeable)

Tuples are written with round brackets as follows:

t1 = (1, 2, 3)
t2 = (“a”, “b”, “c”, ”d”)
t3 = (200, “A”, [4, 5], 3.2)
print(t1)
print(t2)
print(t3)

Tuples
Like lists, tuples can:

Contain any and different types of elements
Contain duplicate elements (e.g., (1, 1, 2))
Be indexed exactly in the same way (i.e., using the [] brackets)
Be sliced exactly in the same way (i.e., using the [::] notation)
Be concatenated (e.g., t = (1, 2, 3) + (“a”, “b”, “c”))
Be repeated (e.g., t = (“a”, “b”) * 10)
Be nested (e.g., t = ((1, 2), (3, 4), ((“a”, “b”, ”c”), 3.4))
Be passed to a function, but will result in pass-by-value and not pass-by-reference outcome
since it is immutable
Be iterated over

Examples
t1 = ("a", "b", "c")
print(t1[::-1])
t2 = ("a", "b", "c")
t3 = t1 + t2
print(t3)
t3 = t3 * 4
print(t3)

for i in t3:
print(i, end = " ")

print()

This will print the elements of t1 in
a reversed order, but will not change
t1 itself since it is immutable

This will concatenate t1 and t2 and
assign the result to t3 (again, t1 and
t2 will be unchanged since they are
immutable)

This will repeat t3 four times and
assign the result to t3. Hence,
t3 will be overwritten (i.e., NOT
changed in place- because it is
immutable-, but redefined with a
new value)

Examples

t4 = ((1, 2, 3), ("a", "b", "c"))
for j in t4:

for k in j:
print(k,end = " ")

print()

This is an example of nesting, where
a matrix with 2 rows and
3 columns is created. The first row
includes the elements 1, 2, and 3.
The second row includes the elements
“a”, “b”, and “c”.

This outer loop iterates over each
element in t4; that is, it gets first the
element (1, 2, 3) and second the
element (“a”, “b”, “c”)

This inner loop iterates over each
element read by the outer loop; that
is, it first iterates over the elements
of the element (1, 2, 3), and second
it iterates over the elements of the
element (“a”, “b”, “c”)

Examples

def func1(t):
t = t * 2

t = (1, 2, 3)
print(t)
func1(t)
print(t)

This will output (1, 2, 3)

This will also output (1, 2, 3) since
tuples are immutable, hence, will
always exhibit a passed-by-value
behavior

This change on t remains local to the function
since a value of t was passed and not a
reference to it

Using Functions with Tuples
You can also use functions with tuples

t1 = (1, 2, 3, 1, 5, 1)
print(t1.count(1))
print(t1.index(1))

The count(x) function returns the number of
elements with the specified value x (e.g., x is 1
in this example)

The index(x) function returns the index of the
first element with the specified value x (e.g., x
is 1 in this example)

Output:
3
0

In fact, Python has only these two built-in functions that can be used
on tuples

Towards Dictionaries
Lists and tuples hold elements with only integer indices

So in essence, each element has an index (or a key) which can only be an integer, and
a value which can be of any type (e.g., in the above list/tuple, the first element has
key 0 and value 45)

What if we want to store elements with non-integer indices (or keys)?

45 “Coding” 4.5 7 89

0 1 2 3 4Integer
Indices

Dictionaries
In Python, you can use a dictionary to store elements with keys of any types (not
necessarily only integers like lists and tuples) and values of any types as well

The above dictionary can be defined in Python as follows:

dic = {"NUM":45, 1000:"coding", 2000:4.5, 3.4:7, "XXX":89}

45 “Coding” 4.5 7 89

“NUM” 1000 2000 3.4 “XXX”

keys of different types

Each element is a key:value pair, and elements are separated by commas

key value

Values of different types

Dictionaries
In summary, dictionaries:

Can contain any and different types of elements (i.e., keys and values)
Can contain only unique keys but duplicate values

Can be indexed but only through keys (i.e., dic2[“a”] will return 1 but dic2[0] will return an
error since there is no element with key 0 in dic2 above)

Output: {'a': 2, 'b': 2}
dic2 = {"a":1, "a":2, "b":2}
print(dic2)

The element “a”:2 will override the element “a”:1
because only ONE element can have key “a”

Dictionaries
In summary, dictionaries:

CANNOT be concatenated

CANNOT be repeated

Can be nested (e.g., d = {"first":{1:1}, "second":{2:"a"}}

Can be passed to a function and will result in a pass-by-reference and not pass-by-
value behavior since it is immutable (like lists)

Output:
{'first': {1: 1}, 'second': {2: 'a'}}
{'first': [1, 2, 3], 'second': {2: 'a'}}

def func1(d):
d["first"] = [1, 2, 3]

dic = {"first":{1:1},
"second":{2:"a"}}
print(dic)
func1(dic)
print(dic)

Dictionaries
In summary, dictionaries:

Can be iterated over

Output:

dic = {"first": 1, "second": 2, "third": 3}
for i in dic:

print(i)

How to get the values?

first
second
third

ONLY the keys will be returned.

Dictionaries
In summary, dictionaries:

Can be iterated over

Output:

dic = {"first": 1, "second": 2, "third": 3}
for i in dic:

print(dic[i])

1
2
3

Values can be accessed via indexing!

Adding Elements to a Dictionary
How to add elements to a dictionary?

By indexing the dictionary via a key and assigning a corresponding value

Output:

dic = {"first": 1, "second": 2, "third": 3}
print(dic)
dic["fourth"] = 4
print(dic)

{'first': 1, 'second': 2, 'third': 3}
{'first': 1, 'second': 2, 'third': 3, 'fourth': 4}

Adding Elements to a Dictionary
How to add elements to a dictionary?

By indexing the dictionary via a key and assigning a corresponding value

Output:

dic = {"first": 1, "second": 2, "third": 3}
print(dic)
dic[”second"] = 4
print(dic)

{'first': 1, 'second': 2, 'third': 3}
{'first': 1, 'second’: 4, 'third': 3}

If the key already exists,
the value will be overridden

Deleting Elements to a Dictionary
How to delete elements in a dictionary?

By using del

Output:dic = {"first": 1, "second": 2, "third": 3}
print(dic)
dic["fourth"] = 4
print(dic)
del dic["first"]
print(dic)

{'first': 1, 'second': 2, 'third': 3}
{'first': 1, 'second': 2, 'third': 3, 'fourth': 4}
{'second': 2, 'third': 3, 'fourth': 4}

Deleting Elements to a Dictionary
How to delete elements in a dictionary?

Or by using the function pop(key)

Output:dic = {"first": 1, "second": 2, "third": 3}
print(dic)
dic["fourth"] = 4
print(dic)
dic.pop(“first”)
print(dic)

{'first': 1, 'second': 2, 'third': 3}
{'first': 1, 'second': 2, 'third': 3, 'fourth': 4}
{'second': 2, 'third': 3, 'fourth': 4}

Dictionary Functions
Many other functions can also be used with dictionaries

Function Description

dic.clear() Removes all the elements from dictionary dic

dic.copy() Returns a copy of dictionary dic

dic.items() Returns a list containing a tuple for each key-value pair in
dictionary dic

dic.get(k) Returns the value of the specified key k from dictionary dic

dic.keys() Returns a list containing all the keys of dictionary dic

dic.pop(k) Removes the element with the specified key k from dictionary dic

Dictionary Functions
Many other functions can also be used with dictionaries

Function Description

dic.popitem() Removes the last inserted key-value pair in dictionary dic

dic.values() Returns a list of all the values in dictionary dic

	Slide 1: Python Programming Tuples and Dictionaries
	Slide 2: Tuples
	Slide 3: Tuples
	Slide 4: Examples
	Slide 5: Examples
	Slide 6: Examples
	Slide 7: Using Functions with Tuples
	Slide 8: Towards Dictionaries
	Slide 9: Dictionaries
	Slide 10: Dictionaries
	Slide 11: Dictionaries
	Slide 12: Dictionaries
	Slide 13: Dictionaries
	Slide 14: Adding Elements to a Dictionary
	Slide 15: Adding Elements to a Dictionary
	Slide 16: Deleting Elements to a Dictionary
	Slide 17: Deleting Elements to a Dictionary
	Slide 18: Dictionary Functions
	Slide 19: Dictionary Functions

