Name of Teacher: Miss Radhika M. Patil
Class: B.Sc. Computer Science (Entire)- 11 Semester : 4

Course Title: Introduction to Data Structure using C++

vV VY

vV V VY

Queue:

Queue is a linear Data Structure in which elements can be inserted from one end called the rear end and deleted from other end called

front end.

Front points to the beginning of the queue and Rear points to the end of the queue.

In a queue, one end is always used to insert data (enqueue) and the other is used to delete data (dequeue), because queue is open at both

its ends.

The enqueue() and dequeue() are two important functions used in a queue.

The elements of queue are processed in the order in which they are inserted.

Queue is based on the principle of First In First Out (FIFQO).

Definition:

A Queue is ordered collection of items from which items may be inserted at one end called rear and deleted from one end called front.

Enqueue Dequeue
—m 10|20 |30 | S |15 |25 —>»
Front Rear

Fig. Queue

The following diagram shows a queue with elements 10, 12 and 30

10 | 12 30
Front Rear

A new element 20 will be added at the rear.

10 |12 | 30 |20

| |

Front Rear

An element can be deleted only from the front. Thus 10 will be deleted from the queue.

12 130 | 20

]

Front Rear

» In case of insertion operation, rear should be incremented by first and the element should be stored at that position.

» In case of deletion, the element at front has to be returned and then front has to be incremented by 1.

* Queue as an ADT:
1. Set of values for Queue:
Queue is finite collection of elements having same data type and all operations are carried out at two ends called front and rear.
2. Properties of Queue:
The properties are related to inserting and deleting the element from the Queue. The operations are done in FIFQ manner.
3. Operations on Queue:
a) Insert (Item x, Queue Q):
When Queue is not full the this function inserts an item x into rear of the queue and returns Queue Q’ with rear pointing to the position
of x.
b) remove (Queue Q):
If Queue is not empty then this function deletes the item x pointed by the front of the queue and returns new queue Q’ with front is
pointing to the item up to deleted item.
¢) isEmpty(Queue Q):
This function returns TRUE when Queue is empty else returns FALSE.
d) isFull (Queue Q):
This function returns TRUE when Queue is full else returns FALSE.

Operations on a Queues
The basic operations that can be performed on queue are :
1. To insert an element in a queue.

2. To delete an element from the queue.

[

. To insert an element in a queue:

Algorithm
Step 1: If Rear = MAX-1 then
Print “OVERFLOW” and Go to step 4
End if
Step 2: If Front = -1 and Rear = -1
Set
Front = Rear =0
Else
Set Rear = Rear+1
End if
Step 3: Set Queue[Rear] = Num
Step 4: Return

In this algorithm to insert an element in a queue.

In Step 1, we first check for the overflow condition.

In Step 2, we check if the queue is empty.

In case the queue is empty, then both Front and Rear are set to zero, so that the new value can be stored at the Oth location.

Otherwise, if the queue already has some values, then Rear is incremented so that it points to the next location in the array.

V V. VYV V VY V

In Step 3, the value is stored in the queue at the location pointed by Rear.

2. To delete an element from the queue.

* Algorithm

Step 1: If Front = -1 OR Front > Rear then » In this algorithm to delete an element from a queue.
Print “UNDERFLOW” » In Step 1, we check for underflow condition. An underflow occurs if
Else Front =—1 or Front > Rear.
Set » However, if queue has some values, then Front is incremented so that it now
Val = Queue[Front] points to the next value in the queue.

Front = Front+1
End if
Step 2: Return

e Static implementation of Queue:
Program: Write an OOP to perform insert and delete operations on linear or simple queue.

int max=10;
class Queue

{

int front, rear;
int Q[20];
public:

Queue()

{
front =-1;
rear = -1;

}

void insert();

void del();
void display();

void Queue::insert()

{

int x;

cout<<"\n Enter number to insert:";
cin>>Xx;

if(rear = = max-1)

{
cout<<"\n Queue is full";
h
clse
{
if (front==-1 && rear == -1)
{
front =0;
rear = 0;
}
}
else
{
rear =rear + 1;
§
Q[rear] = x;
display();

void Queue::del()

{

int x;
if(front = =-1 || front > rear)
{
cout<<"\n Queue is empty";
}
else
{
x=Q|[front];
cout<<"\n Deleted element 1s:"<<x;
if (front = = rear)
{
front = rear= -1;
}
else
{
front = front + 1;
}
display();
}

void Queue::display()

{
if(front ==-1)
{
cout<<"\n Queue is empty";
}
else
{
cout<<"\n Queue is: ";
for(int i= front; i<=rear ; i++)
{
cout<<" "<<QJ1];
}
b
b

void main()

{

}

Queue q;

int ch;
clrscr();

do

cout<<"\n 1. Insert";
cout<<"\n 2. Delete";
cout<<"\n 3. Exit";

cout<<"\n Enter your choice:";

cin>>ch;
switch(ch)
{
case 1 : g.insert();
break;
case 2 : q.del();
break;
case 3 : cout<<"\n Exit....";
break;

default: cout<<"\n Invalid choice";

}

Vwhile(ch!=3);

getch();

Types of Queue:

There are four different types of queues:
1. Simple/ Linear Queue
2. Circular Queue
3. Priority Queue
4. Double Ended Queue

1. Linear Queue
» In Linear Queue, an insertion takes place from one end while the deletion occurs from another end.

» The end at which the insertion takes place is known as the rear end, and the end at which the deletion takes place is known as front end.

» It strictly follows the FIFO rule.

» The linear Queue can be represented, as shown in the below figure:

front rear

The above figure shows that the elements are inserted from the rear end, and if we insert more elements in a Queue, then the rear value
gets incremented on every insertion.

If we want to show the deletion, then it can be represented as:
front rear

In the above figure, we can observe that the front pointer points to the next element, and the element which was previously pointed by
the front was deleted.

» The major drawback of using a linear Queue is that insertion is done only from the rear end.

» If the first three elements are deleted from the Queue, we cannot insert more elements even though the space is available in a Linear
Queue.

» In this case, the linear Queue shows the overflow condition as the rear is pointing to the last element of the Queue.

Circular Queue

There was one limitation in the array implementation of Queue.
If the rear reaches to the end position of the Queue then there might be possibility that some vacant spaces are left in the beginning which
cannot be utilized.

So, to overcome such limitations, the concept of the circular queue was introduced.

https://www.javatpoint.com/ds-types-of-queues

THANK YOU...

