
Name of Teacher: Miss Radhika M. Patil

Class: B.Sc. Computer Science (Entire)- II Semester : 3

Course Title: Object Oriented Programming using C++

Control Statements:
Control statements are used to control the flow of execution of program. This execution order depends on

supply data values and conditional logic.

C++ contains following types of control statements:
1. Conditional
a) if
b) if else
c) Switchc) Switch

2. Unconditional
a) break
b) continue
c) goto

3. Looping
a) while
b) do while
c) for loop

If statement

This control statement is used to execute single statement or block of code when given condition is true and if

condition is false then it skips if block and rest code of program will be executed.

if (conditional expression)

Syntax:

if (conditional expression)
{
// statements;

}

Program
void main()
{
int num;
cout << "Enter an integer: ";
cin >> num;cin >> num;
if (num > 0)
{
cout << "Number is positive " ;
}
getch();

}

Syntax

if…else statement
It is an extension of if statement. If condition is true then statements in if block will be executed . Otherwise statements in else block

will be executed.

In either case, either true or false block will be executed but not both.

if (condition)
{
// statements to be executed if condition is true ;

}
else
{
// statement to be executed if condition is false;
}

Example

void main()
{
int number;
cout << "Enter an integer: ";
cin >> num;

if (num > 0)
{{

cout << "You entered a positive integer: " << num << endl;
}
else
{

cout << "You entered a negative integer: " << num << endl;
}

getch();

}

Output:
y is greater than x

When we need to check more than one condition then we use multiple if else statements i.e.
nested if else statement

Syntax:

Nested if....else statement

• if 'expression' is True, then the control enters into the main if block .Inside the if block

expression1 is evaluated ,if it is true the statement-block1 will be executed otherwise

statement-block3 will be executed.

• Otherwise statement-block3 will be executed.

Example

if-else-if ladder in C++

Here, a user can decide among multiple options. The C++ if statements are executed from the top down. As soon as one of the conditions
controlling the if is true, the statement associated with that if is executed, and the rest of else-if ladder is bypassed. If none of the conditions are
true, then the final else statement will be executed.

Syntax:

if (condition1)
{

//Block 1; //Block 1;
}
else if (condition2)
{

//Block2;
}
.
.
else
{

//Block3;
}

Here,

• If condition1 evaluates to true, the code block 1 is executed.

• If condition1 evaluates to false, then condition2 is evaluated.

• If condition2 is true, the code block 2 is executed.• If condition2 is true, the code block 2 is executed.

• If condition2 is false, the code block 3 is executed.

if condition?

if condition?

if condition?
Block2

True

True

False

False

False

Block2

Block2

Block3

Statements

True

Block4

void main()
{

int number;
cout << "Enter an integer: ";
cin >> number;
if (number > 0)
{

cout << "You entered a positive integer: " << number << endl;
}
else if (number < 0)else if (number < 0)
{

cout << "You entered a negative integer: " << number << endl;
}
else
{

cout << "You entered 0." << endl;
}
cout << "This line is always printed.";
getch();

}

C++ Switch Statements

Use the switch statement to select one of many code blocks to be executed.

switch (expression)
{

case constant1:

Syntax

case constant1:
// code to be executed if expression is equal to constant1;
break;

case constant2:
// code to be executed if expression is equal to constant2;
break;

.

.

.
default:

// code to be executed if expression doesn't match any constant
}

How does the switch statement work?

The expression is evaluated once and compared with the values of each case label.

• If there is a match, the corresponding code after the matching label is executed.

•For example, if the value of the variable is equal to constant2,

then code after case constant2: is executed until the break statement is encountered.

•If there is no match, the code after default: is executed.

void main()
{

int day = 4;
switch (day)

{
case 1:

cout << "Monday";
break;

case 2:
cout << "Tuesday";
break;break;

case 3:
cout << "Wednesday";
break;

case 4:
cout << "Thursday";
break;

case 5:
cout << "Friday";
break;

case 6:
cout << "Saturday";
break;

case 7:
cout << "Sunday";

break;
default: cout<<“\n Invalid choice”;
}
getch();
}

Looping Statement

 Loop statements are used to repeat execution of statements or blocks.

 Repeating the execution of same code fragment several times is called iteration.

 Basic logic behind iteration is that a sequence of statements is repeated until a certain condition is satisfied.

 When this condition is false then iteration terminates. When this condition is false then iteration terminates.

Following are various looping or iterative statements used in C++.

a) while loop

b) do while loop

c) for loop

a) while loop
 A while loop repeatedly executes a target statement as long as given condition is true.

Syntax:

initialization of loop control variable;initialization of loop control variable;

while (condition)

{

statements;

increment/decrement;

}

 Condition may be any expression.

 Loop iterates when condition is true, when condition becomes false then control passes to the line immediately after

the loop.

 Key point of while loop is that loop might not ever run when condition is tested and if the result is false then the loop

body will be skipped and first statement after while loop will be executed.

 There must be increment or decrement statement inside the while block that should make the evaluation of result.

Otherwise infinite loop is created.

Initialization

while
condition

True

False

Statements

Increment/decrement

Statements after while loop

Program:

Program to print 1 to 10 numbers using while loop.

void main()
{

int i;
i=1;i=1;
while (i<=10)
{

cout<<i<<“ “<<;
i++;

}
cout<<“ Loop terminated”;
getch();

}

b) do while loop

 do while loop works like while where group of statements is executed as long as condition is true.

 If condition becomes false then flow of execution goes out of do while loop.

 Main difference between while and do while loop is that in do while loop, statements are executed before

evaluating conditional expression where as in while loop, condition is checked first and then statements are

executed.

Syntax:

initialization of loop control variable;

do
{

statements;

increment/decrement;

} while (condition);

Initialization

Statements

Increment/decrement

while
condition

False

Statements after do while loop

True

Program:

Program to print 1 to 10 numbers using do while loop.

void main()
{

int i=1;
dodo
{

cout<<i<<“ “;
i++;

}while (i<=10);

cout<<“\n Loop terminated”;
getch();

}

c) for loop
for loop is entry controlled loop.

Syntax:

for (initialization; condition; increment/decrement)
{

Block of statements;
}

Initialization

condition

True

False

}
Statements

Increment/decrement

Statements after for loop

True

Execution of for loop

 Initialization of loop control variable is done first using assignment statements such as i=0, variable i is known as loop

control variable.

 Value of loop control variable is tested using test condition. If condition is true, body of loop is executed otherwise loop

is terminated and execution continues with statements that immediately follow the loop.

 When body of the loop is executed, control is transferred back to the for statement after evaluating last statement in the

loop. Now the control variable is incremented or decremented and new value of control variable is again tested to see

whether it satisfies loop condition.

Program:

Program to print 1 to 10 numbers using for loop.

void main()
{

int i;
for (i=1; i<=10; i++)
{

cout<<i<<“ “;cout<<i<<“ “;
}

cout<<“\n Loop terminated”;
getch();

}

• Nested for loop

 Nested loop means a loop statement inside another loop statement.

 That’s why nested loops are also called as “loop inside loop“

 C++ allows at least 256 levels of nesting.

Syntax for Nested For loop:Syntax for Nested For loop:

for (initialization; condition; increment)
{

for (initialization; condition; increment)
{

// statement of inner for loop;
}

// statement of outer for loop;
}

Nested for loop Program:

Program to display 7 days of 3 weeks

void main()
{

int weeks = 3, days_in_week = 7;

for (int i = 1; i <= weeks;i++)
{

cout << "Week: " << i << endl;
for (int j = 1; j <= days_in_week; ++j)
{

cout << " Day:" << j << endl;
}

}

getch();
}

THANK YOU…THANK YOU…

