
Vivekanand College, Kolhapur (Autonomous)

Department of Biotechnology

Course outcome of B.Sc-I (Entire) Biotechnology CBCS

Subject wise both Semester-I and II

Implemented from June 2018

Subject Offered Sem-I:- A Sem-II:- B	Course Outcome
DSC 1331 A Chemistry-I	At the end of this course students will be able to: CO 1 Analyze the relation between different measures of concentration CO2. Construct the thermodynamic models for reaction rate CO3.learn the concepts of hybridization CO4.calculate Gibb's free energy for biological process.
DSC 1332 A Biochemistry-I	At the end of this course students will be able to: CO 1. Understand basic concepts of origin of life CO 2. Outline the importance of carbohydrates and lipids in the diet. CO 3.understand the basic concepts of biological buffer system. CO 4. Predict and illustrate sap value, iodine value, and acid value.
DSC 1333 A Plant Science	At the end of this course students will be able to: CO 1. Understand general classification of plant kingdom CO 2.explain the terms used in plant morphology and taxonomy CO 3.outline the general characters of Algae, Bryophytes etc. CO 4.explain the rules of taxonomy.
DSC 1334 A Mathematics	At the end of this course students will be able to: CO 1.differentiate various types of matrices. CO 2.Outline the importance of Bernoulli differential equation CO 3.Explain the system of linear equation CO 4.Discuss the mathematical theorem
DSC 1335 A Computer	At the end of this course students will be able to CO 1 Choose the operating system for computers. CO2 To learn different aspects of office operations. CO3 Outline the database management system. CO4 Acquaint the students with basic computer knowledge
DSC 1336 A Biotechniques and Instrumentation	At the end of this course students will be able to: CO 1. Illustrate different methods of protein purification CO 2. Demonstrate and use different lab instruments CO 3 understand basic concepts of spectroscopy CO 4. Perceive the knowledge about different types of microscopy.

	MAPURAN
DSC 1337 A	At the end of this course students will be able to:
Microbiology-I	CO 1. Choose specific staining techniques for various types
	of Microorganisms.
	CO 2 explain different methods required for sterilization
	CO 3. Understand the bacterial bacterial taxonomy
	CO 4.understand nutritional requirements of bacteria.
DSC 1338 A	At the end of this course students will be able to:
Physics-I	CO 1. Reflect the importance of various temperature scale
	CO 2.understand basic concepts of elasticity
	CO 3. Demonstrate the nature of electromagnetic waves.
	CO 4.outline the concepts of viscosity, surface tension.
DSC 1331 B	At the end of this course students will be able to:
Chemistry-II	CO 1. Describe the mechanism of organic evolution
	CO 2.elaborate the concept of aromaticity
	CO 3.compare the gravimetric and titrimetric analysis
	CO4.explain chemical nature of natural products.
DSC 1332B	At the end of this course students will be able to:
Biochemistry-II	CO 1 Classify different types of proteins.
	CO 2. Elaborate the role of chromatography in purification
	of bimolecule.
	CO 3. Describe the functions of different coenzymes.
	CO4. Explain IUB classification of enzymes.
DSC 1333 B	At the end of this course students will be able to:
Animal Science	CO 1. Understanding the diversity of life.
	CO 2. Reflect the importance of host parasite relationship
	CO 3. Explain the structure and functions of different types
	of tissue.
	CO4. Encourage the students to opt for carrier in applied
200121	zoology.
DSC 1334 B	At the end of this course students will be able to:
Statistics	CO 1. Differentiate between correlation & regression
	CO 2. Explain the importance of random sampling
	CO 3. Perceive the knowledge of probability &testing
	hypothesis.
	CO4. Outline the importance of graphical representation of
	data.
DSC 1335 B	At the end of this course students will be able to:
Computer	CO 1. Explain the importance of programming
	CO 2. Illustrate the relation between symbolic and logical
	operator.
	CO 3. Explain importance of formatting
	CO4. Outline the types of conservation in expression.

NAMO CO,

ESTD. JUNE 1964

	STE STD. JUNE
DSC 1336 B	At the end of this course students will be able to:
Basics in cell biology	Transfer age about the cent theory
	CO 2. Explain concept of different types of membrane
	transport.
	CO 3. Illustrate the structure of the cell.
	CO4. Outline the types of conservation in expression.
DSC 1337B	CO 1. Acquire the Knowledge about the isolation of
Microbiology-II	microorganism in pure culture from mixed population.
	CO 2. To carry out microbiological analysis of water
	CO 3. To conclude Different modes of transmission of
	diseases.
	CO 4.
DSC 1338 B	CO 1.To correlates optics with microscopy.
Physics-II	CO 2.Apperciate the importance of laser.
	CO 3.Discuss different types of semi-conductor devices.
	CO 4.Draw microbial growth curve.

Head

Department of Biotechnology (Entire)

Vivekanand College, Kolhapur (Autonomous)