0.11	
Subject Offered	Course Outcome
Sem-V:- E	
Sem-VI:- F	
DSC 1355E	At the end of this course students will be able to:
Basics in Genetic	CO 1. Understand the concept of cloning
Engineering	CO2. Demonstrate the techniques of DNA fingerprinting
	CO 3. Perceive knowledge about sequencing technology.
	CO 4. illustrate the importance of probe designing
DSC 1356E	At the end of this course students will be able to:
Industrial	CO1.Construct the design required to set up industrial fermentation.
Biotechnology	CO2. Draw a contrast between industrial & pilot fermentation
	CO 3. Discover various ways of media formulation for industrial scale.
	CO 4.Predict & illustrate the nature of industrial processes.
DSC 1357E	At the end of this course students will be able to:
Applications of	CO 1. Outline the importance of Hybridization & mutation in crop
biotechnology in	improvement.
Agriculture	CO2. Explain the techniques of artificial seed germination.
	CO 3. Discuss the strategies to develop transgenic plants
	CO 4.formulate biofertilizer.
DSC 1358E	At the end of this course students will be able to:
Developmental	CO 1. Learn the concept of apomixes & polyembryony
Biology	CO2. Understand the mechanism of self incompatibility.
(Animal & Plant)	CO 3. Classify different characters & biological functions of embryo
	development. CO 4.Elaborate the mechanism of regeneration.
DSC 1355F	At the end of this course students will be able to:
Advances in	CO 1. Reflect the importance of chemical synthesis of DNA.
Genetic	CO2. Differentiate various types of PCR & their applications.
Engineering	CO 3. Appreciate the importance of screening.
Eligineering	CO 4.study impact of GM foods on human health.
DSC 1356F	At the end of this course students will be able to:
Food &	CO 1. Choose appropriate fermentation technology.
Microbial	CO2. Compare classical & Modern fermentation techniques.
Biotechnology	CO 3. Outline the importance of preservation.
Biotechnology	CO 4.study characteristics of food supply.
DSC 1357F	At the end of this course students will be able to:
Applications of	CO 1. Appreciate the exigency of stem cell technology
biotechnology in	CO2. Classify different types of vaccines
Health	CO 3.Explain the mechanism of hybridoma technology.
Ittalui	CO 4.Predict the nature of forensic medicines.
DSC 1358F	At the end of this course students will be able to:
Bioinformatics	CO 1. Outline the importance of Human Genome Project.
Diomiormatics	CO2. List different types of structural database.
	CO 3. Explain the importance of phylogenetic analysis.
	CO 4. Construct drug molecules.

Self-la Head Department of Biotechnology (Entire)

mile \

